Introduction to OCaml

ML dialect developed and maintained by researchers at INRIA,
the French national CS research institute

compiler or interpreter (your choice)

ocamlc ocaml

Interpreter runs a read-eval-print loop (REPL) much like Scheme or Python.
#use "file.ml" load source code
#load "library.cma" load binary library

simple data types
bool, int, float, strings, tuples (pairs &c), lists

+, %, etc. VS +., k., etc.

float constants must contain a decimal point

~ (string concatenation)

fst & snd

work only on two-element tuples (else type error)
hd, t1 (deprecated: prefer pattern matching)
: and @ (cons and append)

Lists are delimited with square brackets; elements are separated by semicolons.
Tuples are delimited with parentheses; elements are separated by commas.

Records (more later) are delimited with braces; elements are separated by semicolons.
Arrays are deliminted with [| and |]; elements are separated by semicolons.

"structural" (same value; aka "deep") vs
"physical" (same instance; aka "shallow") equality

=, <> structural

2 = 2;"foo" = "foo"; [1;2;3] = [1;1+1;5-2]
==, I= physical

2 == 2;"foo" != "foo"; [1;2;3] != [1;1+1;5-2]

ordering (<, >, <=, >=) are defined on all non-function types. They do
what you'd expect on arithmetic types, Booleans, characters, strings, and
tuples, but may not make much sense on others.

type inference -- more on this in Chapter 7
Type declarations are optional.
Compiler infers types when declarations are omitted.
Type checking amounts to checking for consistent usage.
Can't treat something as a string in one place and a number or a
list somewhere else.

lexical conventions
identifiers made from a-zA-Z0-9_"'
must start with a letter or underscore
constructors, variant names, modules, and exceptions have to
start with an upper case letter
everything else starts with a lower case letter or underscore

(x (* comments *) nest x)

Top-level forms terminated by ; ;
This tells the REPL to interpret.

functions
let f al a2 a3 = ...
let f (al:tl) (a2:t2) (a3:t3) : rt = ...
let f: t1 —> t2 —> t3 —> rt = fun al a2 a3 —> ...

Those three versions are equivalent, though the first is implicitly typed.

let rec f = ...
let rec g = ... (* for mutually
and h = ... recursive functions *)

pattern matching

match expr with
varl —> exprl

| var2 when pred2 -> expr2
| v
| _ —> exprN

Match is sort of like case or switch on steroids.

also works in other contexts, e.g. let (s, t, f) = my_tuple;;

or function definitions: the (bad) Fibonacci example above

let rec fibl n =
match n with
|0 —>1
|1 —>1
| _ => fibl (n-1) + fibl (n-2);;

can be rewritten

let rec fibl = function
|0 —>1
|1 ->1
| n => fibl (n-1) + fibl (n-2);;

arrays
let primes5 = [| 2; 3; 5; 7; 11 |1;;
. () subscripting
primes5.(2) =5
elements are mutable (unlike those of lists and tuples)
assignment uses left arrow:
primes5.(2) <- 12345;; = ()

strings
like arrays of characters, but with double-quoted literals.
Were mutable in older versions of the language. That's now deprecated.
If you need mutability, use bytes instead.

records
like tuples, but with fields that are named instead of positional
can declare fields to be mutable (immutable by default)

type widget = {name: string; sn: int; mutable price: float};;
let g = {name = "gear"; sn = 12345; price = 23.45};;

g.name => "gear"
g.price <- 34.56;; (x inflation)

variants

type 'a bin_tree = Empty
| Node of 'a x 'a bin_tree *x 'a bin_tree;;

let rec inorder = function
| Empty —> []
| Node(v, left, right) —> inorder left @ [v] @ inorder right;;

side effects
<— (mutable) record field assignment (not allowed in project)
:= and ! refs (like pointers; also not allowed in project)
1/0
read_line, read_int, read_float
print_int, print_float,
print_char, print_string, print_newline,
prerr_int, prerr_float, prerr_string, prerr_newline
Printf module
printf
sprintf
Sys.argv
exceptions
exception Foo of string;;
raise (Foo "ouch")
try exprl with Foo —> expr2

Extended example from the text: simulation of a DFA.

We'll invoke the program by calling a function called 'simulate’,

passing it a DFA description and an input string.

The automaton description is a record with three fields: the start

state, the transition function, and a list of the one or more final

states. We can trivially make it polymorphic in the type of input symbols:

type state = int;;

type 'a dfa = {
current_state : state;
transition_function : (state * 'a * state) list;
final_states : state list;

bis

type decision = Accept | Reject;;

We've named the first field "current_state" instead of "start_state" for
reasons that will become apparent in a minute.

The transition function is represented by a list of triples.
The first element and third elements of each triple are the from and to

states; the second element is the input symbol that transitions between —
them. — @ b
af a b ‘té
For example, consider the DFA é?
(X
let a_b_even_dfa : char dfa = (x input symbols are characters)

{ current_state = 0;
transition_function =
[(o, 'a', 2); (0, 'b', 1); (1, 'a', 3); (1, 'b', 0)
(2, 'a', @); (2, 'b', 3); (3, 'a', 1); (3, 'b', 2) 1;
final_states = [0];

e

This machine accepts strings containing an even number of a's and an even
number of b's.

If we type
simulate a_b_even_dfa ['a'; 'b'; 'b'; 'a'; 'b'l;;
then the OCaml interpreter (read-eval-print loop) will print
- : state list * decision = ([@; 2; 3; 2; 0; 11, Reject)
If we change the input string to abaaba it will print
- : state list * decision = ([@; 2; 3; 1; 3; 2; 0], Accept)
Here is the program:
open List;; (x includes rev, find, and mem functions x)

let move (d:'a dfa) (x:'a) : 'a dfa =
{ current_state = (
let (_, _, q) =
find (fun (s, ¢, _) -> s = d.current_state && ¢ = x)
d.transition_function in
q);
transition_function = d.transition_function;
final_states = d.final_states;

i

let simulate (d:'a dfa) (input:'a list)
(state list * decision) =
let rec helper moves d2 remaining_input
(state option x state list) =
match remaining_input with
| [1 —> (Some d2.current_state, moves)
| hd :: tl —
let new_moves = d2.current_state :: moves in
try helper new_moves (move d2 hd) tl
with Not_found -> (None, new_moves) in
match helper [] d input with
| (None, moves) —> (rev moves, Reject)
| (Some last_state, moves) —>
(rev (last_state :: moves),
if mem last_state d.final_states
then Accept else Reject);;

The basic idea is this: simulate takes a DFA and an input string as argument.
If the input string is empty, it checks to see if the start state of the DFA

is a final state. If the input string is not empty, simulate calls itself
recursively, passing a one-symbol-shorter input string and a DFA that has
been modified to have a different start state, namely the one that the old
DFA moved to when given the initial input symbol.

MLS iPad

MLS iPad

