
Notes for CSC 2/454, Nov. 2, 4, and 9, 2020

==
Concurrency (take 258 to learn more)

A process or thread is a potentially-active execution context.
Classic von Neumann (stored program) model of computing has single
thread of control. Parallel programs have more than one.
A process can be thought of as an abstraction of a physical processor.

Processes/threads can come from
multiple CPUs
kernel-level multiplexing of single physical machine
language or library level multiplexing of kernel-level abstraction

They can run
in true parallel
unpredictably interleaved
run-until-block

Most work focuses on the first two cases, which are equally difficult
to deal with.

In the most common (but by no means universal :-(use of
terminology, each processor chip has one or more cores, each of
which has one or more hardware threads. The operating system
multiplexes one or more kernel-level threads on top of one or
hardware threads, and a library package or language run-time system
multiplexes one or more user-level threads on top of one or more
kernel-level threads. Kernel-level threads in the same address
space are said to constitute a process. (But theoreticians say
"process" where systems people say "thread.")

Two main classes of programming notation

1) synchronized access to shared memory
2) message passing between processes that don't share memory

Both approaches can be embedded in a programming language.
Both can be implemented on hardware designed for the other,
though shared memory on message-passing hardware tends to be slow.

We'll focus here on shared memory. The book covers message passing
on the companion site.

The multicore revolution

Moore's Law doubled the speed of uniprocessors every year and a
half for 30 years. That ended around 2004.

Hit the "heat wall": 150W out of 2cm2 of silicon is as much as you
can cool with air. Faster uniprocessors must be liquid cooled or
they will melt.

Absent unknown new VLSI technology, the short-term solution has been
to move back down the heat curve, build processors with, say, 1/2 the
MIPS and 1/50th the heat dissipation, and put a lot of them on one
chip. (Heat is roughly proportional to clock rate. Heat curve is
nonlinear, though, because of superpipelining, superscalarity,
out-of-order execution, speculation, etc.)

To use such a chip, however, programs had to be multithreaded.
Concurrency went from exotic high-end systems, to mid-range
servers, to deskside machines and game consoles, to laptops, to
tablets and phones.

We are currently in the middle of another paradigm shift, as
computationally intensive kernels (not to be confused with the OS
kernel) move onto GPUs and other accelerators. The typical cell
phone today has half a dozen accelerators.

Languages v. language extensions v. libraries:

Thread creation syntax
• static set
• co-begin: Algol 68, Occam, SR
★ parallel loops
• - iterations are independent: SR, Occam, others
• - or iterations are to run (as if) in lock step: Fortran 95 forall
• launch-on-elaboration: Ada, SR
★ fork/join: Ada, Modula-3, Java, C#, OpenMP
• implicit receipt: DP, Lynx, RPC systems
• early reply: SR, Lynx
• Cf. separated new() and start() in Java

Most widely used:

--
Race Conditions

A race condition (or just "a race") occurs when program behavior
depends on the order in which events occur in different threads.
Race conditions are not all bad; sometimes any of the possible program
outcomes are ok (e.g. workers taking things off a task queue). Often,
however, we want to avoid race conditions. Suppose processors A and B
share memory, and both try to increment variable X at more or less the
same time. Very few processors support arithmetic operations on memory
(even if the ISA supports provides single instructions for this,
they aren't guaranteed to be atomic), so each processor executes

LOAD X
INC
STORE X

Suppose X is initialized to 0. If both processors execute these
instruction sequences concurrently, we could see an increase of
either one or two.

Data races v. synchronization races
essentially unannotated v. annotated:
synchronization races are the expected ones, which the programmer

tells the implementation to implement correctly

Races of one sort or another are what makes concurrent programming hard
growing consensus that data races are bugs

initialization example

// ready == false

p = new foo(args)
ready = true while (!ready) {}

// use *p

butterfly "causality" example (IRIW)

// x == y == 0

y = 1 x = 1
a = x b = y

a == b == 0 ?

must be considered in the implementation of nonblocking algorithms
and synchronization primitives

Modern languages are converging on semantics (memory models) that
say circularity never occurs in "properly synchronized" (data race free)
programs.

--
Synchronization

Synchronization is the act of ensuring that events in different
threads happen in a desired order. Synchronization can be used
to eliminate races. In our example we need to make the increment
operations atomic. One way to do that (not the only way) is to make
them take turns. This is called mutual exclusion: only one thread
at a time can execute its critical section. Informally, atomicity
requires the appearance that threads take turns; mutual exclusion
really makes them take turns. Most synchronization can be regarded
as either atomicity or condition synchronization, which means making
sure that a given thread does not proceed until some condition holds
(e.g. that a variable contains a given value).

[Other ways to get atomicity:
(1) nonblocking algorithms
(2) transactional memory, which may be implemented in hardware or

in a library or language, with either nonblocking algorithms or locks.]

Example: bounded buffer.

index: 1..SIZE
buf: array [index] of data
nextfree, nextfull : index

procedure insert(d : data)
// put something into the buffer, waiting if it's full

procedure remove : data
// take something out of the buffer, waiting if it's empty

A solution requires
(1) the buffer behaves AS IF only one thread manipulates it

at a time.
(2) threads wait for non-full or non-empty conditions as

appropriate.

(1) is atomicity; (2) is condition synchronization.

You might be tempted to think of mutual exclusion as a form of
condition synchronization (the condition being that nobody else is
in the critical section), but it isn’t. The distinction is basically existential
v. universal quantification -- my state v. everybody's state.
Mutual exclusion requires multi-thread agreement.

We do not in general want to over-synchronize. That eliminates
parallelism, which we generally want to encourage for performance.
Basically, we want to eliminate "bad" race conditions -- the ones
that cause the program to give incorrect results.

Synchronization can be based either on spinning (busy-waiting) or
re-scheduling (yielding to a different thread). The latter is built on
the former. To get started, you have to have something nontrivial that
is atomic in hardware -- something that happens all at once, as an
indivisible action.

In most machines, reads and writes of individual memory locations
are atomic (note that this is not trivial; memory and/or busses must
be designed to arbitrate and serialize concurrent accesses). In
early machines, reads and writes of individual memory locations were
all that was atomic.To simplify the implementation of mutual
exclusion, hardware designers began in the late 60's to build
so-called read-modify-write, or fetch-and-ϕ, instructions into
their machines.

Spin-based condition synchronization with atomic reads and writes is
easy. You just cast each condition in the form of "location X
contains value Y" and you keep reading X in a loop until you see
what you want. Mutual exclusion is harder. Much early research was
devoted to figuring out how to build it from simple atomic reads and
writes. Dekker is generally credited with finding the first correct
solution for two threads in the early 1960s. Dijkstra published a
version that works for N threads in 1965. Peterson published a much
simpler two-thread solution in 1981, while he was on the faculty
here at Rochester. It can be extended to N threads with a log-depth
tree.

A busy-wait mutual exclusion mechanism is known as a spin lock.
The problem with spin locks is that they waste processor cycles.
Synchronization mechanisms are needed that interact with a
thread/process scheduler to put a thread to sleep and run something
else instead of spinning. Note, however, that spin locks are still
valuable for certain things, and are widely used. In particular, it
is better to spin than to sleep when the expected spin time is less
than the rescheduling overhead.

Semaphores were the first proposed scheduler-based synchronization
mechanism, and remain widely used. Conditional critical regions and
monitors came later. Monitors have the highest-level semantics, but
a few sticky semantic problems. They are also widely used.
Synchronization in Java 2 is sort of a hybrid of monitors and CCRs.
Java 5 has true monitors. Shared-memory synch in Ada 95 is yet
another hybrid.

--
Spin Locks

Synchronization with only reads and writes is very subtle. I'm not
going to go into the details. Dijkstra and Peterson's N-thread locks
require O(N) time to acquire, which is bad. All of the locks based on
only reads and writes, including Lamport's O(1) lock, require O(N)
space, which is bad. Even Lamport's fast lock is only O(1) in the
absence of contention.

Can do better with atomic read-modify-write (fetch-and-phi)
instructions.

test_and_set
fetch_and_or
fetch_and_and
fetch_and_add
fetch_and_clear_then_add
fetch_and_store (swap)

universal:
compare_and_swap
load-linked + store-conditional

These typically return the old value, prior to changes, from which
you can of course deduce the new value.

The simple test_and_set lock:

type lock = Boolean := false
procedure acquire(L : ^lock)

repeat until test_and_set(L) = false
procedure release(L : ^lock)

L^ := false

Problems:
not fair (possible starvation)
LOTS of contention for memory and interconnect bandwidth

Latter problem can be partially cured, on a cache-coherent
machine, by spinning with reads instead of TASes:

procedure acquire(L : ^lock)
// "test-and-test-and-set" lock
while test_and_set(L) = true

repeat until L = false

This is known as a test-and-test_and_set lock.

There are better solutions to these problems (including my own),
but there isn't time to cover them here: take 258!

Busy-wait solution to the bounded buffer problem:

index: 0..SIZE-1
buf: array [index] of data
nextfree, nextfull, fullslots : index := 0, 0, 0
mutex : spinlock

procedure insert(d : data)
loop

acquire(mutex)
if fullslots < SIZE

buf[nextempty] := d
nextempty++; nextempty %= SIZE
fullslots++
release(mutex)
return

else
release(mutex)

procedure remove : data
loop

acquire(mutex)
if fullslots > 0

data d := buf[nextfull];
nextfull++; nextfull %= SIZE;
fullslots--;
release(mutex)
return d

else
release(mutex)

BTW, Fetch-and-phi operations are useful not only for locking, but for
nonblocking data structures as well -- clever algorithms that avoid race
conditions without ever locking anything. If a thread is preempted (at
any time), other threads can continue to make progress. There exist
good nonblocking algorithms for lists, queues, hash tables, search trees,
mark-and-sweep garbage collection, and other things. Historically every
new nonblocking algorithm has been a publishable result. Transactional
memory changes that: some (not all) TM systems are implemented in a
nonblocking way under the hood: these provide a universal construction
for nonblocking data structures. Operations on traditional nonblocking
data structures can then be thought of as optimized hand-written
transactions, though it isn't trivial to make these interoperate with
general transactions.

Core 1 Core 2

Thread scheduler

Process scheduler

Core N

T
hr

ea
d

1a

U
se

r
sp

ac
e

O
S

ke
rn

el

P
ro

ce
ss

 1
a

P
ro

ce
ss

 1
i

T
hr

ea
d

1b

T
hr

ea
d

1k

. . .

.

. . .

. . .

T
hr

ea
d

M
a

P
ro

ce
ss

 M
a

P
ro

ce
ss

 M
j

T
hr

ea
d

M
b

T
hr

ea
d

M
l

. . .

. . .

13.2 Concurrent Programming Fundamentals 637

Shared memory Message passing Distributed computing

Language Java, C# Go Erlang
C/C++11

Extension OpenMP Remote procedure call

Library pthreads,
MPI Internet libraries

Windows threads

Figure 13.4 Examples of parallel programming systems. There is also a very large number of
experimental, pedagogical, or niche proposals for each of the regions in the table.

sider synchronization again briefly in Section 13.2.4, and then more thoroughly
in Section 13.3.

13.2.2 Languages and Libraries

Thread-level concurrency can be provided to the programmer in the form of ex-
plicitly concurrent languages, compiler-supported extensions to traditional se-
quential languages, or library packages outside the language proper. All three
options are widely used, though shared-memory languages are more common at
the “low end” (for multicore and small multiprocessor machines), and message-
passing libraries are more common at the “high end” (for massively parallel su-
percomputers). Examples of systems in widespread use are categorized in Fig-
ure 13.4.

For many years, almost all parallel programming employed traditional sequen-
tial languages (largely C and Fortran) augmented with libraries for synchroniza-
tion or message passing, and this approach still dominates today. In the Unix
world, shared memory parallelism has largely converged on the POSIX pthreads
standard, which includes mechanisms to create, destroy, schedule, and synchro-
nize threads. This standard became an official part of both C and C++ as of
their 2011 versions. Similar functionality for Windows machines is provided by
Microsoft’s thread package and compilers. For high-end scientific computing,
message-based parallelism has likewise converged on the MPI (Message Passing
Interface) standard, with open-source and commercial implementations available
for almost every platform.

While language support for concurrency goes back all the way to Algol 68 (and
coroutines to Simula), and while such support was widely available in Ada by
the late 1980s, widespread interest in these features didn’t really arise until the
mid-1990s, when the explosive growth of the World Wide Web began to drive
the development of parallel servers and concurrent client programs. This devel-
opment coincided nicely with the introduction of Java, and Microsoft followed
with C# a few years later. Though not yet as influential, many other languages,
including Erlang, Go, Haskell, Rust, and Scala, are explicitly parallel as well.

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

