Schedulers

Give us the ability to "put a thread/process to sleep" and run something
else on its kernel thread/processor.
Start with coroutines
make uniprocessor run-until-block threads @F
add preemption ——,
add multiple processors —

Coroutines
As in Simula and Modula-2. Covered in section 8.6 in the book.

Multiple execution contexts, only one of which is active. cuttett—
transfer(other):
save all callee-saves registers on stack // including ra & fp
xcurrent := sp
current := other
sp := kcurrent
pop all callee-saves registers // including ra, but not sp
return // into different coroutine!

other and current are pointers to context blocks.
Each contains sp; may contain other stuff as well
(priority, 1/0 status, accounting info, etc.)

No need to change pc; always changes at the same place.

Create new coroutine in a state that looks like it's blocked in transfer.
(Or maybe let it execute and then "detach". That’s basically early reply.)

Run-until block threads on a single process
Need to get rid of explicit argument to transfer.

ready_1list data structure: threads that are runnable but not running.

reschedule:
t : cb := dequeue(ready_list)
transfer(t)

To do this safely, we need to save current somewhere. Two options.

(1) Suppose we're just relinquishing the processor for the sake of
fairness (as in MacOS 9 or Windows 3.1):

yield:
enqueue(ready_list, current)
reschedule

(2) Now suppose we're implementing synchronization:

sleep_on(q):
enqueue(q, current)
reschedule

Some other thread/process will move us to the ready list when we can
continue.

Preemption

Use timer interrupts (in OS) or signals (in library package) to trigger
involuntary yields.

Requires that we protect the scheduler data structures:

yield:
disable_signals()
enqueue(ready_list, current)
reschedule
re-enable_signals()

Note that reschedule takes us to a different thread, possibly in code
other than yield. Invariant: every call to reschedule must be made with
signals disabled, and must re-enable them upon its return.

disable_signals() N
if not <desired condition>
s - ,géi,,q ,
sleep_on <condition queue> W

re-enable_signals()
Multiprocessors
Disabling signals doesn't suffice:

yield:
disable_signals()
acquire(scheduler_lock) // spin lock
enqueue(ready_list, current)
reschedule
release(scheduler_lock)
re-enable_signals()

disable_signals()
acquire(scheduler_lock) // spin lock
if not <desired condition>

sleep_on <condition queue>
release(scheduler_lock)
re-enable_signals()

Scheduler-Based Synchronization
semaphores

So-called binary semaphores are scheduler-based mutual exclusion
locks. The acquire operation is named P; the release operation is
named V; these stand for words in Dutch. (Mnemonically, | think of
P as standing for "pause", though it doesn’t.) Binary semaphores
are called "binary" because we can think of them as a counter that
is always 0 or 1, and that indicates the number of threads that
could perform acquire operations without blocking.

We can extend this to general semaphores, with non-binary counters.
These are useful for certain algorithms, though they don't add any
additional power (you can implement them trivially with binary
semaphores).

In either case, a semaphore is a special sort of counter. It has an
initial value, and it keeps track of the excess (if any) of past V
operations over past P operations. A P operation is delayed (the
thread is de-scheduled) until #P—#V < C, the initial value of the
semaphore.

Here is one possible implementation:

type semaphore = record

N : integer // initialized to something non-negative
Q : queue of threads

procedure P(ref S : semaphore)

disable_signals()
acquire(scheduler_lock)
if S.N > 0

S.N -:=1
else

sleep_on(S.Q)
release(scheduler_lock)
re-enable_signals()

procedure V(ref S : semaphore)
disable_signals()
acquire(scheduler_lock)
if S.Q is nonempty
enqueue(ready_list, dequeue(S.Q))
else
S.N +:=1
release(scheduler_lock)
re-enable_signals()

What can we do with semaphores?
Here is a bounded buffer:

shared buf : array [1..SIZE] of data

shared next_full, next_empty : integer :=1

shared mutex : semaphore := 1

shared empty_slots, full_slots : semaphore := SIZE, @

procedure insert(d : data)
P(empty_slots)
P(mutex)
buf [next_empty] :=d
next_empty := next_empty mod SIZE + 1
V(mutex)
V(full_slots)

function remove returns data :
P(full_slots)
P(mutex)
d : data := buf[next_fulll
next_full := next_full mod SIZE + 1
V(mutex)
V(empty_slots)
return d

It is generally assumed that semaphores are fair, in the sense that
threads complete P operations in the same order they start them.

Problems with semaphores:

(1) They're pretty low-level. When using them for mutual exclusion,
for example (the most common usage), it's easy to forget a P or a
V, especially when they don't occur in strictly matched pairs
(because you do a V inside an if statement, for example, as in
the use of the spin lock in the implementation of P).

(2) Their use is scattered all over the place. If you want to change
how threads synchronize access to a data structure, you have to
find all the places in the code where they touch that structure,
which is difficult and error-prone.

These problems are addressed by monitors and other language mechanisms.

PC) g{"[M e 3

VD 3


MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad


