
==
Language-level Synchronization

Scheduler-based locks in many languages (C/C++, Rust, Scala, Ruby, ...)

Monitors

Attempt to address the two weaknesses of semaphores previously discussed.
Suggested by Dijkstra, developed more thoroughly by Brinch Hansen, and
formalized nicely by Hoare (a real cooperative effort!) in the early 1970s.
Several parallel programming languages have incorporated monitors
as their fundamental synchronization mechanism. None, to my knowledge,
incorporates the precise semantics of Hoare's formalization.

A monitor is a shared object with operations, internal state, and a
number of condition queues. Only one operation of a given monitor
may be active at a given point in time. A thread that calls a busy
monitor is delayed until the monitor is free. On behalf of its calling
thread, any operation may suspend itself by waiting on a condition.
An operation may also signal a condition, in which case one of the
waiting threads is resumed, usually the one that waited first.

The precise semantics of mutual exclusion in monitors are the
subject of considerable dispute. Hoare's original proposal remains
the clearest and most carefully described. It specifies two
bookkeeping queues for each monitor: an entry queue, and an
urgent queue. When a thread executes a signal operation from
within a monitor, it waits in the monitor's urgent queue and the first
thread on the appropriate condition queue obtains control of the
monitor. When a thread leaves a monitor it unblocks the first
thread on the urgent queue or, if the urgent queue is empty, it
unblocks the first thread on the entry queue instead.

The two main semantic controversies:

(1) Should a signal-er keep going, rather than moving to the
urgent queue and letting the wait-er in? That reduces
context switches but requires that we treat signals as
"hints" instead of "absolutes". The idiom

if not condition wait
becomes

while not condition wait

(2) The "nested monitor problem": A calls M1.e1, which calls
M2.e2, which waits. Should A release exclusion on M1?
If it does, the world may change before it returns, and it may
not even be able to resume, if some other thread enters and
locks M1. If A doesn't release M1, however, B may not be
able to pass through M1 to reach M2 to signal A.
The most elegant solution I know of (but which I don't think
anybody implements) was suggested by Wettstein: to make
signals hints, release all monitors, re-acquire them all
outermost first on wakeup, and require that invariants
hold when making nested calls.
Java does not release outer monitors.

Building a correct monitor requires that one think about the
monitor invariant. (Everybody remember loop invariants?)
The monitor invariant is a predicate that captures the notion "the
state of the monitor is consistent." It needs to be true initially,
and at monitor exit. It also needs to be true at every wait statement.
In Hoare's formulation, needs to be true at every signal operation as
well, since some other thread may immediately run.

Hoare's definition of monitors in terms of semaphores makes clear that
semaphores can do anything monitors can. The inverse is also true; it
is trivial to build a semaphores from monitors (if you don't see how,
you should figure it out :-).

--
Concurrency in Java

Explicit threads (in Java from the beginning)

class Foo extends Thread {
public Foo ... // constructor; does not start thread running

public void run() {
// this is where the thread starts running

}
}

Foo f = new Foo;
// returns when constructor is done
f.start()

// puts new thread on the ready list,
// set up to execute its run routine

...
f.join()

// optional; waits for f to finish (return from its run method)

start() is implemented by Thread. It calls run().
In classes derived from Thread you should always override run, and you
should make threads begin execution by calling start().
Never override start(). Never call run().

Executors (introduced in Java 5). Allow caching of threads to avoid
start-up / shut-down costs. Also abstract out the physical parallelism,
so you can have N tasks run by M ≤ N threads under the hood.

class Foo implements Runnable {
...
// constructor and run() method same as before

}
...
ExecutorService pool = Executors.newCachedThreadPool();
...
pool.execute(new Foo(constructor_args));
...
// indicate that pool will never get any additional tasks
pool.shutdown();
// wait for all workers to complete
try {

pool.awaitTermination(60, TimeUnit.SECONDS);
} catch(InterruptedException e) {}

Runnables are object closures. They're useful for other things besides
concurrency -- basically anything you want to package up for future
execution. There's also a Callable that produces a value that can be
picked up later.

Can also use newFixedThreadPool(numThreads)
or newSingleThreadExecutor()
These are all factory methods that create and manage Executor objects.

Java 2 synchronization (really should be generic; leaving that out for simplicity):

class BB {
final private int SIZE = 10;
private Object[] buf = new Object[SIZE];

private int nextEmpty = 0;
private int nextFull = 0;
private int fullSlots = 0;

synchronized public void insert(Object d)
throws InterruptedException {

while (fullSlots == SIZE) {
wait();

}
buf[nextEmpty] = d;
nextEmpty = (nextEmpty + 1) % SIZE;
++fullSlots;
notifyAll(); // explain why!

}

synchronized public Object remove()
throws InterruptedException {

while (fullSlots == 0) {
wait();

}
Object d = buf[nextFull];
nextFull = (nextFull + 1) % SIZE;
--fullSlots;
notifyAll(); // explain why!
return d;

}
}

Several operations (e.g. wait, join, sleep) can throw InterruptedException.
Any time you call one of these you have to be either (a) inside a try
block with a handler (catch clause) for InterruptedException, or
(b) inside a method whose header indicates "throws InterruptedException".
Kind of a nuisance.

What is InterruptedException for? It's the way to get a waiting thread
to wake up. If t is of class Thread, t.interrupt() will cause t to
experience an InterruptedException the next time it calls a blocking operation.
Note that there is no acceptable way to cause an exception in a non-blocked thread –
all such mechanisms have been deprecated.

Notes:

1) You can also use a synchronized statement (alternative to
synchronized method):

synchronized(my_obj) {
// critical section

}

2) There is only a single queue associated with each object. If you
have threads that may wait for more than one reason, you need to
worry about the "wrong kind" of thread waking up:

if (!condition) {
wait();

}
while (!condition) {

notify();
wait();

}

This can be expensive. In some cases you can get around it by waiting
in multiple sub-objects, but this doesn't work in general because a
waiting thread relinquishes only the inner lock, not any outer ones
(leading to deadlock if the releasing thread has to get into the same
outer objects).

3) A single thread can acquire the lock on a single object multiple times
(doesn't exclude itself). If it waits, it releases the lock "the
appropriate number of times." When it awakes, it will have
re-acquired the lock "the appropriate # of times," and must leave
that many synchronized methods or statements (or wait again) before
anybody else can get in.

4) my_obj.notifyAll() will wake up all threads waiting on my_obj.

5) The lock on an object is associated with the data in the object only
by convention. Java guarantees that if one thread releases a lock
and a second then acquires it, the second sees all previous writes
to all data by the first.

BB solution in Java 2 without using notifyAll is quite a bit harder:

class BB {
final private int SIZE = 10;
private Object[] buf = new Object[SIZE];

private Object producerMutex = new Object();
// waited upon only by producers; protects the following:

private int nextEmpty = 0;
private int emptySlots = SIZE;

private Object consumerMutex = new Object();
// waited upon only by consumers; protects the following:

private int nextFull = 0;
private int fullSlots = 0;

public void insert(Object d) throws InterruptedException {
synchronized (producerMutex) {

while (emptySlots == 0) {
producerMutex.wait();

}
--emptySlots;
buf[nextEmpty] = d;
nextEmpty = (nextEmpty + 1) % SIZE;

}
synchronized (consumerMutex) {

++fullSlots;
consumerMutex.notify();

}
}

public Object remove() throws InterruptedException {
Object d;
synchronized (consumerMutex) {

while (fullSlots < 0) {
consumerMutex.wait();

}
--fullSlots;
d = buf[nextFull];
nextFull = (nextFull + 1) % SIZE;

}
synchronized (producerMutex) {

++emptySlots;
producerMutex.notify();

}
return d;

}
}

Solution using Java 5 locks is efficient and arguably more algorithmically elegant,
but syntactically more cluttered due to library-based synchronization:

class BB {
final private int SIZE = 10;
private Object[] buf = new Object[SIZE];

private int nextEmpty = 0;
private int nextFull = 0;
private int fullSlots = 0;

Lock l = new ReentrantLock();
final Condition emptySlot = l.newCondition();
final Condition fullSlot = l.newCondition();

public void insert(Object d) throws InterruptedException {
l.lock();
try {

while (fullSlots == SIZE) {
emptySlot.await();

}
buf[nextEmpty] = d;
nextEmpty = (nextEmpty + 1) % SIZE;
++fullSlots;
fullSlot.signal();

} finally {
l.unlock();

}
}

public Object remove() throws InterruptedException {
l.lock();
try {

while (fullSlots == 0) {
fullSlot.await();

}
Object d = buf[nextFull];
nextFull = (nextFull + 1) % SIZE;
--fullSlots;
emptySlot.signal();
return d;

} finally {
l.unlock();

}
}

}

entry queue

exit

urgent queue

condition queues

Monitor methods
(run in mutual exclusion;
can access protected data)

. . .

MLS iPad

MLS iPad

MLS iPad

MLS iPad

mlscott

mlscott

mlscott

mlscott

mlscott

mlscott

mlscott

