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Note that this differs slightly from the version shown in the Chapter 1
lectures. Specifically, I've

*  rolled AST generation into the parser

*  separated semantic analysis from (medium level) IF generation

¢ putthat IF generation in the "middle end”

This more accurately reflects the likely structure of a modern compiler.

It's common for a compiler to have more than one intermediate
form/representation (IF/IR). These are sometimes differentiated by
"level," or degree of abstractness:

high-level
typically an AST
medium-level
often a control flow graph
basic blocks as nodes
jumps as edges
low-level
usually instructions for an idealized machine
perhaps the same notation that's used w/in basic blocks above

NB: there are no hard boundaries between these levels.

One family of IFs deserves separate mention: stack-based IFs
may be medium or low-level
not used in most compilers, but important in special cases
particularly where size is an issue
examples include JBC, CIL, 1970s pcode

example from the book: Heron's formula:

A = sqrt [s(s-a)(s-b)(s-c)]
where s = (a+b+c)/2

stack-based: 3-address pseudo-assembly
push a r2 := a
push b r3 :=b
push ¢ r4d :=c
add rl :=r2 +r3
add rl :=rl +r4
push 2 rl:=rl /2 -5
divide
pop s
push s
push s r2 :=rl -r2 —-— s-a
push a
subtract
push s r3 :=rl -r3 —— s-b
push b
subtract
push s rd :=rl -r4 - s—C
push ¢
subtract
multiply r3 :=r3 xr4
multiply r2 :=r2 x r3
multiply rl :=rl % r2
push sqrt call sqrt
call

time-space tradeoff
stack code is denser
lots of instructions, but tiny
v. speed
can't optimize for register set and pipeline performance

The JBC or CIL version of the stack-based code will use a single
byte for every instruction except the second-to-last, which
will take 3 bytes.  That's 23 instructions in 25 bytes.

The 3-address code keeps a, b, ¢, and s in registers, and uses only
13 instructions. Typically, however, most will be 4 bytes long (the
last will be 8). That's 13 instructions in 56 bytes.

Consider the GCD example from the Chap. 1 of the book.
Source (in C):

int main() {
int i = getint(), j = getint();
while (i !'=j) {
if (1>3) i=1-73;
else j = j - i;
}
putint(i);

AST (we know how to generate this now):

program
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Control Flow Graph is "straightforward” to generate from the AST:

call getint

Start —>|  i=1v
call getint

ji=rv

(\/1 =i \ y v18:=i

v2:=j al:=v13
V3=Vl #£v2 call putint
testv3

-

V4 =i

Vb=

V6 :=v4 > Vb

test v6

T; :F

v7 =i v10:=j
v8:=j Vi1 =i
v9:=v7-v8 v12:=v10 = v11
i=v9 ji=vi2

\

Here I've used "virtual registers" for all computed values.
These are assumed to be unlimited in number.
I've also used special register names (al and rv) to pass values to
and from subroutines.

Conversion from AST to control-flow graph (or other IF) typically uses
one or more pass(es) over the tree.
Like static semantic checking, these pass(es) can be expressed with
an AG, with attributes for control flow graph fragments.
More commonly, it’s just hand-written code.

The control-flow graph may see many changes during code improvement.
We may split and merge basic blocks; add and delete blocks; change the
code inside blocks; move code from one block to another; etc.

Much of the decision making is driven by data flow analysis, which

discovers properties of blocks that depend on other blocks. E.g.,

*  which virtual registers are live (contain values that may be needed
in the future at the end of a given block?

*  which values are known to be available (contained in some virtual
register) at the start of a given block?

Like the algorithm that builds predict sets for a top-down parser, the
data flow “engine” begins with “obvious” facts and iterates until it can’t

learn anything more (and we can prove the answer has converged).

Conversion to low-level IF can be as simple as picking an order for the
basic blocks of the control flow graph:

call getint

i:=rv
call getint
j i=rv
L1: vl := 1
v2 j
v3 = vl !I=v2
test v3

if false goto L2

1= v4 > v5
test v6
if false goto L3

L3: v10 :=j
vil := 1
v12 := v10 - vi11l
j 1= v12
L4: goto L1
L5: v13 := 1
al := v13
call putint
halt

This is unlikely to give you the best code for a given target instruction set;
more on this below.

Key tasks of target code generation

instruction selection
This seems like it ought to be straightforward, but it can be tricky
more than one way to do things on many machines
multiply by 2 v. add to self v. left shift one bit
messy addressing modes
side effects (e.g., on condition codes or scratch registers)
Common to make a simple choice,
then follow up w/ machine-dependent code improvement
Both simple choice and improvement may be based on automated
pattern matching (code generator generator)

instruction scheduling
order in which to execute logically independent instructions

e.g.
r2 4= r3 x r4 \
rl := a / swap these!
r2 +=ril

register allocation

what should be kept in registers when?
NP hard in the general case -- equivalent to minimal graph coloring
typical modern compilers use a heuristic solution to
the coloring problem

instruction scheduling and register allocation interact in complicated ways
if you reorder instructions, the number of registers needed may change
(have to hang onto a temporary value across the creation of
some other temporary value)
if you run out of registers, you have to spill them,
which changes the set of instructions
and the new instructions are loads and stores, for which
scheduling is particularly important
real compiler might
- schedule instructions assuming unlimited registers
- allocate registers, spilling as necessary
(this is the NP hard graph coloring problem)
typical modern compilers use a heuristic solution
- reschedule to fill new load delays, so long as it doesn't
mess up register allocation
more on this in Chap 17 (not covered this semester)

FWIW, with aggressive (machine independent and machine independent)
code improvement, even something as simple as the GCD program can
produce surprisingly clever code.

The following is from LLVM -03, hand translated from x86-64 assembly
back into pseudocode for readability.

int main() {
int i = getint(), j = getint();
while (i !'=j) {
if (1>3)i=1-73;
else j = j - i;
}
putint(i);

call getint

rl :=rv // rl holds i
call getint // rv holds j
compare rv, ril // compare j to i
goto L2 if equal
r2 :=0
compare rl, rv
L1:
r3 :=0
r3 := rv if less than // "conditional move"
// based on most recent comparison
rd4 :=ri // i
r4 := r2 if less than
rl -:=r3 //1i—=(1<3j7?j:0)
rv -:i= rd // ] = (1<j?20: 1)
compare rl, rv
goto L1 if not equal
L2:
al :=rl // i

call putint

The inner loop here is only 8 instructions long, compared to 20 in our naive
linearized control flow graph.



