
Notes for CSC 2/454, Dec. 2, 2020

==
Building a program:

Terminology:
- An object file contains machine language code and data.
- A relocatable object file contains the information needed to

relocate the file's contents.
- An executable object file can be loaded and run.

(You may recall that Rust, for some reason, calls object files crates.)

It is possible for a file to be both relocatable and executable.

Example of a C program with 4 source files, foo.c, foo.h, bar.c, and bar.h:

foo.c foo.h bar.h bar.c
| / \ / \ |
| / \ / \ |
| / X \ |
| / / \ \ |
| / / \ \ |
| / / \ \ |
| / / \ \ |
gcc gcc
| |
| |

foo.s bar.s
| |
| |
as as
| |
| |

foo.o crt0.o bar.o
\ libc.a /
\ libm.a /
\ etc /
\ | /
\ | /
linker

|
a.out
|

OS loader
|

running program

Assemblers

Translate assembly language to machine language.
Long ago, had lots of fancy features (e.g., sophisticated macro systems)
for the convenience of human users. Nowadays very little assembly code
is written by hand.

Some produce assembly code and make the assembler a separate pass.
Some compilers produce machine code directly.

For these you either need an option to produce assembly code on
demand or a good disassembler for people developing/debugging
the compiler.

Principal complication of assembly is the fact that a label may be used
before it is defined:

cmp %eax, %ecx
jne .L1

...

.L1: addl %eax, %edx

When the assembler sees jne (jump if not equal) the first time, it doesn’t
know .L1’s location.

Translation therefore takes 2 steps:

1) associate memory locations with labels, based on an understanding of
how long each eventual code block will be (this can be complicated by
the fact that the length of some instructions [e.g., branches,
loads] depends on how far away things end up).

2) go back and do the actual assembly-to-machine code translation, using
the locations figured out in step 1.

Step 2 also generates a symbol table.
Each entry contains
- the string representing the symbol
- the segment -- e.g. undefined, absolute, text, data, bss

(bss = zero-initialized globals [“block started by symbol”])
- the offset from the start of the segment
- a bit for private versus global
- for symbols not defined here, a list of the instructions in

which the symbol is referenced (so the linker can patch them up
[see below])

This is in addition to (or an augmentation of) the symbol table
produced by the compiler.

--
Linking

Assemblers (and compilers) seldom produce exactly the bits that will be
in the code segment in memory when your program runs. Two tasks
generally remain to be done

(1) Symbol resolution
Most programs are made of separately-compiled modules.
Something needs to stitch these together to make a whole

program. This is called linking; it's done by a linker.
The '.o' files that the assembler produces from your source files

are called object files because they contain "object" code
(as opposed to source code). They define certain symbols that
represent interesting things in your program -- mainly code and
data -- and contain unresolved references to symbols in other
object files.

The linker takes a collection of object files and
resolves mutual references. It usually knows about certain
"standard" libraries that contain many of the symbols.

(2) Relocation
Because your program is typically made from separately-compiled

pieces, the assembler doesn't know when it creates a given .o
file where in your address space that file will lie. This means
it doesn't know the absolute addresses at which code and data
will lie.

Branches can be made in terms of relative offsets from the program
counter, but jumps, loads, and stores have to be deferred until
we know what the absolute address of the beginning of the object
file will be.

Once we know this address, we can relocate the code. This job is
usually also done by the linker.

Object files contain information indicating that certain words need
to be modified to reflect where symbols have been placed.
- Might be as simple as adding the address of a file to the word
- Or adding some piece of the address to some piece of the word;

more on this below.

A warning: the term loading is sometimes used for relocation. It is
better used for the task of putting a program (or at least part of it)
into physical memory so it can run. The kernel does loading in response
to an exec system call (or its equivalent in non-Unix systems). Once
upon a time, when hardware didn't do address translation, programs had
to be relocated when they were loaded; hence the confusion. It's
especially unfortunate that Unix's linker is called "ld", which suggests
"loader". Sometimes a linker is called a "link editor" or (unfortunately)
"link-loader".

AND... Just to make life more confusing, modern systems often employ
Address Space Layout Randomization (ASLR) as a security measure. This
effectively puts relocation back into the loader's job description.

Unix ELF Object File Format (Executable and Linking Format)

Contains
ELF header (contains pointer to section header table)
sections

.text code

.rodata constants

.data initialized, writable data

.bss placeholder for uninitialized data

.symtab global symbols, defined and undefined

.rel.text relocation information for code

.rel.data relocation information for data

.debug debugger symbol table if compiled -g

.line line number map if compiled -g

.strtab heap for strings in .symtab and .debug
section header table

ELF File Header

from /usr/include/sys/elf.h :

typedef struct
{

unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */
Elf32_Half e_type; /* Object file type */
Elf32_Half e_machine; /* Architecture */
Elf32_Word e_version; /* Object file version */
Elf32_Addr e_entry; /* Entry point virtual address */
Elf32_Off e_phoff; /* Program header table file offset */
Elf32_Off e_shoff; /* Section header table file offset */
Elf32_Word e_flags; /* Processor-specific flags */
Elf32_Half e_ehsize; /* ELF header size in bytes */
Elf32_Half e_phentsize; /* Program header table entry size */
Elf32_Half e_phnum; /* Program header table entry count */
Elf32_Half e_shentsize; /* Section header table entry size */
Elf32_Half e_shnum; /* Section header table entry count */
Elf32_Half e_shstrndx; /* Section header string table index */

} Elf32_Ehdr;

Details of the relocation information vary from machine to machine.
ELF defines 11 different encodings.
Two of them cover most cases on the x86:

PC relative branches
linker should subtract address of instruction from target
address and then add result into field (usually -4)

absolute jumps
linker should add target address into field (usually zero)

RISC machines tend to be quite a bit trickier.
For example, a source statement like

void() *f = &foo;

is likely to become a PAIR of instructions on even a 32-bit RISC machine:
lui r1, c1 # &foo >> 16
ori r1, c2 # &foo & 0xffff

The linker needs to know how to create the two specified constants,
given the address of foo, and how to embed them in the immediate fields
of the instructions.

--
Loader: Loads file from disk/secondary storage

Read header for size of text and data segments
Create new address space - text, data, stack
Copy instructions/data from file into new address space (memory)
Copy program arguments onto stack
Initialize machine registers/stack pointer
Jump to startup routine

call any static initializers
copy program arguments from stack to registers (on RISC machine)
call program's main routine
on return, terminate program with exit system call

32-bit Linux Memory Layout (slightly updated from the version in the book).
Note: fig is not to scale -- kernel occupies 1/4 of address space.

Address
,---------,
| |
| kernel |

c0000000 |---------|
| stack |
| | |
| v |

|---------|
| misc | libraries, files
|---------|

| ^ |
| | |
heap
static
read-
write

read-
only

08048000 |---------|
| misc | libraries, files

00110000 |---------|
| unused | helps catch pointer bugs

0 '---------'

Tools: Several tools can be used to read/interpret object files:

od -- displays the contents of any file
nm -- displays the symbol table information appended to an object

file
objdump -- on Linux
readelf -- on Linux

(abbreviated) example

% nm -p -v time_test.o

time_test.o:
0000000000 f time_test.c
0000000000 U exit
0000000000 U random
0000000000 U printf
0000000004 D counter
0000000008 D nthreads
0000000044 d count
0000000048 d sense
0000002712 T main
0000003692 T barrier
0000003852 T initialize
0000136824 B t1
0000136828 B t2
0000136832 B t3

Key:
u undefined (external)
t text (code)
d initialized data
b bss
s section boundary
f source file boundary
a absolute (non-relocatable) value

Capital letter means exported global.

--
Shared libraries

Motivation
save disk space -- don't have copies of libraries in every executable

on the disk
save space in main memory -- don't have copies of libraries in every

running process in memory
allow upgrades of libraries without re-compilation -- when you replace

the shared copy of the library you automatically upgrade every
application that is set up to use it (at least the next time it
is launched)

Implementation is kind of complicated. Key ideas include
- position-independent code (PIC)
- linkage tables (for absolute jumps, references to external symbols)
- initialization of tables with ld.so address, for lazy code linking

Lots of wrinkles may be different on different systems.
For example: x86-32 doesn't allow direct reads of PC (rip); need to fake
with call instruction.

798 Chapter 15 Building a Runnable Program

Relocatable object files

90
0

23
00

30
00

18
00

80
0

50
0 30

0

Executable object file

Data

X:

Y:

Code
 …

r1 := &M (2300)

call M (2300)

 …

r1 := &L (1800)

r2 := Y (3900)

r3 := X (3300)

L:

M:10
00

40
0

15
00

16
00

Imports
 X

Data

Y:

Exports
 M

B

Relocation

Code
 …

r1 := &L (1000)

r2 := Y (400)

r3 := X

L:

M:

80
0

30
0

50
0

A

Imports
 M
 M

Relocation

Exports
 X

Data

X:

Code
 …

r1 := &M

call M

Figure 15.9 Linking relocatable object files A and B to make an executable object file. For simplicity of presentation, A ’s
code section has been placed at offset 0, with B ’s code section immediately after, at offset 800 (addresses increase down the
page). To allow the operating system to establish different protections for the code and data segments, A ’s data section has
been placed at the next page boundary (offset 3000), with B ’s data section immediately after (offset 3500). External references
to M and X have been set to use the appropriate addresses. Internal references to L and Y have been updated by adding in
the starting addresses of B ’s code and data sections, respectively.

15.6.1 Relocation and Name Resolution

Each relocatable object file contains the information required for linking: the
import, export, and relocation tables. A static linker uses this information in a
two-phase process analogous to that described for assemblers in Section 15.5. In
the first phase, the linker gathers all of the compilation units together, chooses an
order for them in memory, and notes the address at which each will consequently
lie. In the second phase, the linker processes each unit, replacing unresolved exter-
nal references with appropriate addresses, and modifying instructions that need
to be relocated to reflect the addresses of their units. These phases are illustratedEXAMPLE 15.17

Static linking pictorially in Figure 15.9. Addresses and offsets are assumed to be written in hex-
adecimal notation, with a page size of 4K (100016) bytes. !

Libraries present a bit of a challenge. Many consist of hundreds of separately
compiled program fragments, most of which will not be needed by any particular

15.7.1 Position-Independent Code C 281

Dynamically linked
shared library

Main program
(addresses all statically known)

Shared code
(PIC)

GOT for foo
(separate copy
for each process)

Data
segment

GOT
for

main

int X;
extern int Y;

main:
 ...
--load X:
 eax := X
 ...
--load Y:
 eax := Y
 ...
--foo():
 call foo_stub

int Y;
extern int X;

foo:
 ...
 ebx := pc + B
 ...
--load X:
 eax := *(ebx + E)
 ...
--load Y:
 eax := *(ebx + F)
 ...
--bar():
 call bar_stub
 -- (pc-relative)

X:

foo_ptr:

foo_stub:
 jmp *foo_ptr
 push A
 jmp t1
 ...
t1:
 push GOT_main
 jmp linker

Y:

A

D
E

B

PLT
for
foo

PLT
for

main

F

C

bar_stub:
 jmp *(ebx + C)
 push C
 jmp t2
 -- (pc-relative)
 ...
t2:
 push GOT_main
 jmp *(ebx + D)

linker

ebx

Figure 15.13 A dynamically linked shared library. Calls to foo and bar are made indirectly, using an address stored in the
global offset tables (GOTs) of main and foo, respectively. Similarly, references to global variables X and Y, when made from
foo, must employ a level of indirection. Resolved values are shown with dashed lines; initial values to support lazy linking
(Section C 15.7.2) are shown with dotted lines. In the prologue of foo, register ebx is set to point to foo’s GOT, using
pc-relative arithmetic.

for subroutine calls into dynamically linked libraries. To avoid duplication of
the indirection code, the compiler incorporates a (shared, read-only) procedure
linkage table (PLT) in each code segment. To effect a call to foo, main calls
a stub routine, here named foo_stub. This, in turn, performs an indirect jump
to the address of foo found in main’s GOT. Inside foo, the call to bar is only

