
Notes for CSC 2/454, Dec. 7, 2020
==
Run-time Systems

A library is preexisting code you can call.
A run-time system is a library that makes assumptions about how the

compiler works
- may use tables generated by the compiler
- may examine or manipulate heap or stack layout
- e.g., GC requires help finding root pointers and type descriptors;

needs compiler to generate write barriers
A virtual machine is a run-time system that provides/specifies everything the

program needs, including the instruction set

--
The Java Virtual Machine (JVM)

Recall how Java works
compiler translates Java source to Java byte code (JBC)
byte code runs on virtual machine
virtual machine may execute code via interpretation,

JIT compilation, or some combination of the two

The JVM's machine architecture provides
all & only Java's built-in types

(but invokedynamic was added to the JVM for Java 7, to support
Java lambdas & dynamic languages)

type safety
definite assignment
garbage collection
threads
global constant pool, per-thread stacks, heap, method (code) area
[each stack frame contains

array of locals & formals
each slot 32 bits wide (longs and doubles take 2)
can be reused for temporally disjoint data of different types

expression evaluation stack
(sized to accommodate largest expression in the method)]

implicit references ("registers") for the current program counter, frame,
top of operand stack within frame, symbol table info in constant pool

The JVM also defines the format of .class files

At start-up, the JVM
loads the given class file (which must have a main())
verifies that it satisfies various invariants

type safety
no operand stack overflow or underflow
all references to the constant pool and the locals array are

within bounds
all constant pool entries are well formed
no inheritance from a final class
definite assignment
(several of these require data flow analysis)

allocates and initializes static data
links to library classes
calls main() in a single thread

The Java Byte Code instruction set includes
load-store

back and forth between local variable array and operand stack
arithmetic

all done implicitly on the operand stack
type conversion
object management

new, field and array element access, reflection
push, pop, dup, swap
branches, switch

specify targets as indices in the instruction array of the
current method

static and virtual method calls
specify target symbolically by name (index in constant pool)

throw exception
monitor enter, exit (wait, notify, and notifyAll are method calls)

The Common Language Infrastructure (CLI) is similar to the JVM but more general
(The Common Language Runtime [CLR] is Microsoft's implementation)

explicit support for multiple programming languages
(Microsoft supports C#, F#, Visual Basic, Managed C++, and JScript)

richer common type system (CTS)
richer calling mechanisms (including tail recursion)
multiple pointer and reference types
support for unsafe code
etc.

Common Intermediate Language (CIL) is the JBC analogue
JIT-centric: several tradeoffs made against interpretation

type information in objects, not opcodes
separate spaces for arguments and locals

built-in support for generics

--
Lazy binding of machine code

JIT
tradeoff between load time and optimization quality

HotSpot has "client" and "server" modes
faster than you might think (heavy lifting done by javac)
incremental compilation
compilation of hot methods in parallel with interpretation
caching of machine code across runs
dynamic inlining

Binary translation
FX!32 (x86 –> Alpha)
Apple Rosetta (PowerPC –> x86), Rosetta2 (x86 –> ARM)
challenges:

where are the function boundaries?
what are types of data in memory?
what locations are targets of branches?
self-modifying code
dynamically generated code
introspection

Binary rewriting
trace scheduling

HP Dynamo (PA-RISC) & DynamoRIO (x86), late 1990s
instrumentation

statistics gathering
simulate new architectures
insert dynamic semantic checks
sandboxing (a.k.a. software fault isolation -- SFI)
Pin, Valgrind tools

trace-based

(Interestingly, some processors cache traces like these in hardware.)

To learn more about language tools, take 2/455!

MLS iPad

MLS iPad

MLS iPad

