
Notes for CSC 2/454, Sept. 20 and 25, 2023 
 
======================================== 
Static Analysis and Action Routines 
 
Recall that static semantics are enforced at compile time, and dynamic semantics 
are enforced at run time.  In principle, we don’t need static semantics at all: 
everything could be figured out at run time.  From this perspective, static 
semantics is an optimization—a chance to get error messages sooner and to 
move work off the critical path of run-time execution.  Language theorists tend to 
define semantics as purely dynamic.  Then they write static semantic rules (the 
ones for the type system tend to be the most complex).  The static semantics is 
said to be sound if everything it deduces at compile time would always have come 
out the same way at run time. 
 
Some things have to be dynamic semantics because of late binding (discussed in 
Chap. 3): we lack the necessary info (e.g., input values) at compile time, or 
inferring what we want is uncomputable. 
 
A smart compiler may avoid run-time checks when it is able to verify compliance 
at compile time.  This makes programs run faster. 
 array bounds 
 variant record tags 
 dangling references 
 
Similarly, a conservative code improver will apply optimizations only when it 
knows they are both safe and beneficial 
 alias analysis 
  caching in registers 
  computation out of order or in parallel 
 escape analysis 
  limited extent 
  non-synchronized 
 subtype analysis 
  static dispatch of virtual methods 
 
 



A more aggressive compiler may 
 use optimizations that are always safe and often beneficial 
  prefetching 
  trace scheduling 

generate multiple versions with a dynamic check to dispatch 
 use optimizations that are often safe and often beneficial, so long as it 

checks along the way at tun time, to make sure it's safe, and is 
prepared to roll back if necessary 

  transactional memory 
 
Alternatively, language designer may tighten rules 
 type checking in ML v. Lisp (cons: 'a * 'a list -> 'a list) 
 definite assignment in Java/C# v. C 
 
---------------------------------------- 
 
As noted in Chap. 1, job of semantic analyzer is to 
(1) enforce rules 
(2) connect the syntax of the program (as discovered by the parser) to 
 something else that has semantics (meaning) – e.g., 
  value for constant expressions 
  code for subroutines 
 
This work can be interleaved with parsing in a variety of ways. 
    - At one extreme: build an explicit parse tree, then call the semantic analyzer as 
       a separate pass. 
    - At the other extreme, perform all static dynamic checks and generate 
 intermediate form while parsing, using action routines called from the parser. 
    - The most common approach today is intermediate: use action routines to 
       build an AST, then perform semantic analysis on each top-level AST fragment 
       (class, function) as it is completed. 
 
We'll focus on this intermediate approach. But first, it's instructive to see how we 
could build an explicit parse tree if we wanted.  This will help motivate the code 
to build an AST. 
 
 



 recursive descent 
  each routine returns its subtree 
 table-driven top-down 
  push markers at end-of-production 
  each, when popped, pulls k subtrees off separate attribute stack 
   and pushes new subtree, where k is length of RHS 
 
 
1:  E  →  T  TT 
2:  TT  →  ao  T  TT 
3:  T  →  F  FT 
4:  FT  →  mo  F  FT 
5:  F  →  ( E ) 
6:  F  →  id 
7:  F  →  lit 
 
(A + 1) * B 
 
 
 
 
 
So how do we build a syntax tree instead? 
Start with RD, work with parameters, local variables, return values: 
 
 AST_node expr(): 
  case input_token of 
   id, literal, ( : 
    T := term() 
    return term_tail(T) 
  else error 
 
 AST_node term_tail(T1): 
  case input_token of 
   +, - : 
    O := add_op() 
    T2 := term() 
    N := new Bin_op(O, T1, T2) // subclass of AST_node 

 
 
 
 
 
 
 
 
 
 

E 



    return term_tail(N) 
   ), id, read, write, $$ : 
    return T1       // epsilon 
  else error 
 
Here code in black is the original RD parser; red has been added to build the AST. 
 
It's standard practice to express the extra code as action routines in the CFG: 
 

E  →  T  { TT.st := T.n }  TT  { E.n := TT.n } 

TT1  →  ao  T  { TT2.st := make_bin_op(ao.op, TT1.st, T.n) }  TT2  { TT1.n := TT2.n } 

TT  → ε  { TT.n := TT.st } 

T  →  F  { FT.st := F.n }  FT  { T.n := FT.n } 

FT1  →  mo  F  { FT2.st := make_bin_op(mo.op, FT1.st, F.n) }  FT2  { FT1.n := FT2.n } 

FT  → ε  { FT.n := FT.st } 

F  →  ( E )  { F.n := E.n } 

F  →  id  { F.n := id.n }   // id.n comes from scanner 

F  →  lit  { F.n := lit.n }   // as does lit.n 
 
Here the subscripts distinguish among instances of the same symbol in a given 
production.  The .n and and .st suffixes are attributes (fields) of symbols. 
I’ve elided the ao and mo productions. 
  
See how this handles, for example, (A + 1) * B : 
 
 
 
 
 
 
 
 
 
 
 



A parser generator like ANTLR can turn the grammar w/ action routines into an 
RD parser that builds a syntax tree. 
 
It's also straightforward to turn that grammar into a table-driven TD parser. 
 Give each action routine a number 
 Push these into the stack along with other RHS symbols 
 Execute them as they are encountered.  That is: 
     - match terminals 
     - expand nonterminals by predicting productions 
     - execute action routines 
   e.g., by calling a do_action(#) routine with a big switch 
    statement inside 

requires space management for attributes; companion site (Sec. 4.5.2) 
explains how to maintain that space automatically 

  extension of the attribute stack we used to build a parse tree above 
   space for all symbols of all productions on path from root 
   to current top-of-parse-stack symbol 
     - when predict, push space for all symbols of RHS 
     - maintain lhs and rsh indices into the stack 
     - at end of production, pop space used by RHS; update lhs and rsh indices 
 
 
======================================== 
Decorating a Syntax Tree 
 
The calculator language we’ve been using for examples doesn’t have 
sufficiently interesting semantics. 
Consider an extended version with types and declarations: 
  
 program  →  stmt_list $$ 
 stmt_list  →  decl  stmt_list | stmt  stmt_list | ε 
 decl   →  int id | real id 
 stmt   →  id := expr | read id | write expr 
 expr   →  term  term_tail 
 term_tail  →  add_op  term  term_tail | ε 
 term   →  factor  factor_tail 



 factor_tail   →  mul_op  factor  factor_tail | ε 
 factor   →  ( expr ) | id | int_const | real_const 
         | float ( expr ) | trunc ( expr ) 
 add_op   →  + | – 
 mul_op   →  * | / 
 
 Now we can 
    - require declaration before use 
    - require type match on arithmetic ops 
 
We could do some of this checking while building the AST. 
We could even do it while building an explicit parse tree. 
 
The more common strategy is to implement checks once the AST is built 
 easier -- tree has nicer structure 
 more flexible -- can accommodate non depth-first left-to-right traversals 
     - mutually recursive definitions 
   e.g., methods of a class in most languages 
     - type inference based on use 
     - switch statement label checking 
  etc. 
 
Assume the parser builds the AST and tags every node with a source location.  
 
Tagging of tree nodes is annotation 
 inside the compiler, tree nodes are structs 
  annotations and pointers to children are fields 
 (annotation can also be done to an explicit parse tree; we’ll stick to ASTs) 
  
But first: what do we want the AST to look like? 
The book uses what it calls a tree grammar. 
This is nice and clear, but it doesn’t match the literature, which uses an equivalent 
but superficially different notation called an abstract grammar. 
The 5th edition of the text will use this more standard notation. 
 
Each “production” of the abstract grammar has an AST node type (class) on the 
left-hand side and a set of variants (subclasses), separated by vertical bars, on the 



right-hand side.  Note that the abstract grammar is not for parsing; it's to 
describe the trees that 
    - we want the parser to build 
    - we need to annotate 
 
For convenience, we also provide a linear form for trees, to facilitate writing down 
semantic rules.  We’ll insert parentheses into this linear form when necessary for 
disambiguation. 
 
Example for the extended calculator language: 
 
 s →  int_decl (x, s)    int x ; s 
      |  real_decl (x, s)    real x ; s 
      |  assign (x, e, s)    x := e ; s 
      |  read (x, s)     read x ; s 
      |  write (e, s)     write e ; s 
      |  null      ε 
 e → var (x)      x 
      |  int_lit (n)     n 
      |  real_lit (r)     r 
      |  float (e)     float e 
      |  trunc (e)     trunc e 
      |  bin_op (e, o, e)    e  o  e 
 o ∈	{+, -, *, /}  
 x ∈		variables 
 n ∈		integers 
 r ∈		reals 
 
Here's a syntax tree for a tiny program.  Structure is given by the abstract 
grammar.  Construction would be via execution of appropriate action routines 
embedded in a CFG. 
 
 
 
 
 
 



 
Remember: abstract 
grammars are not CFGs. 
Language for a CFG is the 
set of possible fringes 
of parse trees.  Language 
for a abstract grammar 
is the set of possible 
whole abstract trees. 
No comparable notion 
of parsing: structure of 
tree is self-evident. 
 
Our abstract grammar helps guide us as we write 
(by hand) the action routines to build the AST.  It can 
also help guide us in writing recursive tree-walking 
routines to perform semantic checks and (later) generate 
mid-level intermediate code. 
    - Helpful to augment the tree grammar with semantic rules that 
 describe relationships among annotations of parent and children. 
    - Semantic rules are like action routines, but without explicit 
 specification of what is executed when. 
 
Semantic rules on an AST can be specified in multiple ways.  The book uses 
attribute grammars (AGs), which specify the value of AST node fields (attributes) 
as functions of the values of other attributes in the same local parent-and-
children neighborhood of the tree.   
  
AGs are not used much in production compilers these days, but have proven 
useful for prototyping (e.g., the first validated Ada implementation [Dewar et al., 
1980]) and for some cool language-based tools 
    - syntax-directed editing [Reps, 1984] 
    - parallel CSS [Meyerovich et al., 2013] 
 
More common these days are inference rules, which are more declarative than 
AGs, and more amenable to formalization and automatic proofs of correctness 
(not covered here).  They will be used in the 5th edition of the text. 



 
Automatic tools to convert inference rules into a semantic analyzer are a current 
topic of research.  In practice, semantic analyzers are still written by hand.  That 
said, a good set of inference rules 

• imposes discipline on our thinking as we define the language 
• provides a concise specification of semantics that is more readable than the 

code and more precise than English 
• defines a common standard—a formal characterization of the language 

that determines whether a hand-written implementation is correct or not 
 
Most languages don’t have formal definitions, but they’re clearly the wave of the 
future.  WebAssembly is a great example. 
 
Inference rules can be used to specify all aspects of program semantics.  The 
typical modern semantic framework specifies dynamic semantics of the (abstract) 
language as a set of inference rules that define the behavior of the language on 
an abstract machine, determining the output of a <program, input> pair. 
 
Compilers (and, to a lesser extent, interpreters) typically also specify static 
semantics to pre-compute whatever they can.  In particular, they perform static 
type checking in order to reduce overhead during eventual execution and to 
catch errors early.  This type checking typically involves more than the usual 
programmer thinks of as types: it includes things like 
 

• passing the right # of parameters to subroutines 
• using only disjoint constants as case statement labels 
• putting a return statement at the end of (every code path of) every 

function 
• putting a break statement only inside a loop 
• . . . 

 
(Theoreticians, in fact, consider type checking a purely static activity.  They don’t 
use the term “type checking” for what happens at run time in a dynamically typed 
language like Python—they call that “safety” instead.) 
 



Static semantics is said to be sound if every judgment it reaches matches what 
dynamic semantics would have concluded at run time.  (It is generally not 
complete—it does not reach all the judgments that can be reached at run time.) 
 
An inference rule is typically written with a long horizontal line, with predicates 
above the line and a conclusion below the line.  Both predicates and conclusions 
are referred to as judgments; they often (though not always) describe properties 
of nodes in a parent-and-children neighborhood of an AST.  As an example, in an 
AST subtree comprising a constant expression, we might write 
 

  
 
The ev-add-n rule specifies that if e1 evaluates to n1, e2 evaluates to n2, and n1 + n2 
= n3, then e1 + e2 (i.e., bin_op(e1, +, e2)) evaluates to n3. 
 
If we flesh out formal semantics for the calculator language with variables, types, 
and multiple operators it has a more sophisticated version of this rule: 
 

 
 
This introduces the notion of an environment (a mapping from names to values, 
where values have types).  It then generalizes across types and operators.  We 
say: “If e1 evaluates to v1 in environment E, e2 evaluates to v2 in environment E, v1 
and v1 have the same type, and v1 ⊕ v2 = v3, then e1 ⊕ e2 (i.e., bin_op(e1, ⊕, e2)) 
evaluates to v3 in environment E.  The ⊢ symbol is called a “turnstile.”  Note that 
the ⊕	in the last premise is a math operator; the ⊕	in the conclusion is the 
corresponding syntactic operator. 
 
Remember that this is a dynamic semantic rule: we only know values at run time. 
 
Other inference rules change the environment (note the left-pointing turnstile): 
 

 



 

  
 
An integer declaration introduces a new name into the environment (with, here, 
an initial value of 0).  An assignment updates the value in the environment.  In 
both cases, the new environment is used for subsequent statements. 
 
Neither attribute grammars nor inference rules actually specify the order in which 
they should be evaluated.  There exist tools to figure that out, but in practice (in a 
real compiler) we typically figure out the order by hand and write recursive 
routines that walk the AST and compute the values of fields. 
 
The book gives an extended (AG) example for declaration and type checking in the 
extended calculator grammar.  Similar checking can be written as a set of 
inference rules (and will be in the 5th edition of the text).  In either case, we tag 
AST nodes with essential information (e.g., type, scope).  We can also pass more 
general information (symbol table, error messages) among nodes, but it’s more 
common to make these globals: 

 insert errors, as found, into a list or tree, sorted by source location 
 for symtab, label each construct with list of active scopes 
  look up <name, scope> pairs, starting with closest scope 
 for calculator language, which has no scopes, can enforce 
  declare-before-use in a simple left-to-right traversal of the tree 
      - complain at any re-definition 
      - or any use w/out prior definition 
 
To avoid cascading errors, it's common to have an “error” value for an 
attribute that means “I already complained about this.”  So, for example, in 
 
 int a 
 real b 
 int c 
 a := b + c 
 
We label the '+' tree node with type “error” so we don't generate a 
second message for the “:=“ node. 



 
A few example recursive routines (with error list and symtab as globals): 
 
 int_decl (x, s):   //  s  is rest of program 

if <x.name, ?, ?> ∈ symtab 
   errors.insert(“redefinition of” x.name, this.location) 
  else 
   symtab.insert(<x.name, int, 0>) 
  s()     //  call routine for appropriate variant 
 
 var (x): 
  if <x.name, t, v> ∈ symtab 
   this.type := t;  this.value := v 
  else 
   errors.insert(x.name “undefined”, x.location) 
   this.type := error;  this.value := ⊥ // undefined 
 
 bin_op(e1, o, e2): 

e1(); e2()   // call routines for appropriate variants 
if e1.type = error or e2.type = error 

   this.type := error;  this.value := ⊥ 
  else if e1.type <> e2.type 
   this.type := error;  this.value := ⊥ 
   errors.insert(“type clash”, this.location) 
  else 

this.type := e1.type; 
this.value := o.op(e1.value, e2.value) 

 
We’ve assumed here that variables have names (and numbers, values), initialized 
by the scanner.  We’ve also assumed that the code in the parser that builds the 
AST labels all constructs with their location. 
 
The calculator grammar is simple enough that we can interpret the entire 
program in a single left-to-right pass over the tree.  In more realistic languages, 
we might need to do multiple traversals—e.g., one to identify all the names and 
insert them in the symbol table, another to make sure the names have all been 
used consistently (think of calls to mutually-recursive methods, which may appear 
before the corresponding method declaration), and a third to actually “execute.” 
 
If we were building a compiler instead of an interpreter, the final pass wouldn’t 
“execute” the program but rather spit out a translated version. 
 



 
For reference, here’s the complete dynamic semantics for the calculator language 
with types: 
 

 
 
 
Static semantics introduce rules with a “typing context” Γ.  This context functions 
a lot like the environment E of the dynamic semantics, but instead of mapping 
names to values (which have self-evident types), it maps names to types.  It 
supports judgments like Γ ⊢	e : τ, meaning “in typing context Γ, expression e has 
type τ. 
 



The basic soundness theorem then asserts that if Γ ⊢	e : τ, Γ ⊢	E, and E ⊢	e ⇓	v, 
then Γ ⊢	v : τ.  That is, if e has type τ at compile time, E is well formed in Γ, and e 
evaluates to v at run time, then v has type τ.  By “E is well formed in Γ,” we mean 
 

	
That is, if whenever the fact that x has type τ in Γ we know that the value of x in E 
has type τ, then E is well formed in Γ.	


