
Notes for CSC 2/454, Sept. 20 and 25, 2023

==
Static Analysis and Action Routines

Recall that static semantics are enforced at compile time, and dynamic semantics
are enforced at run time. In principle, we don’t need static semantics at all:
everything could be figured out at run time. From this perspective, static
semantics is an optimization—a chance to get error messages sooner and to
move work off the critical path of run-time execution. Language theorists tend to
define semantics as purely dynamic. Then they write static semantic rules (the
ones for the type system tend to be the most complex). The static semantics is
said to be sound if everything it deduces at compile time would always have come
out the same way at run time.

Some things have to be dynamic semantics because of late binding (discussed in
Chap. 3): we lack the necessary info (e.g., input values) at compile time, or
inferring what we want is uncomputable.

A smart compiler may avoid run-time checks when it is able to verify compliance
at compile time. This makes programs run faster.
 array bounds
 variant record tags
 dangling references

Similarly, a conservative code improver will apply optimizations only when it
knows they are both safe and beneficial
 alias analysis
 caching in registers
 computation out of order or in parallel
 escape analysis
 limited extent
 non-synchronized
 subtype analysis
 static dispatch of virtual methods

A more aggressive compiler may
 use optimizations that are always safe and often beneficial
 prefetching
 trace scheduling

generate multiple versions with a dynamic check to dispatch
 use optimizations that are often safe and often beneficial, so long as it

checks along the way at tun time, to make sure it's safe, and is
prepared to roll back if necessary

 transactional memory

Alternatively, language designer may tighten rules
 type checking in ML v. Lisp (cons: 'a * 'a list -> 'a list)
 definite assignment in Java/C# v. C

--

As noted in Chap. 1, job of semantic analyzer is to
(1) enforce rules
(2) connect the syntax of the program (as discovered by the parser) to
 something else that has semantics (meaning) – e.g.,
 value for constant expressions
 code for subroutines

This work can be interleaved with parsing in a variety of ways.
 - At one extreme: build an explicit parse tree, then call the semantic analyzer as
 a separate pass.
 - At the other extreme, perform all static dynamic checks and generate
 intermediate form while parsing, using action routines called from the parser.
 - The most common approach today is intermediate: use action routines to
 build an AST, then perform semantic analysis on each top-level AST fragment
 (class, function) as it is completed.

We'll focus on this intermediate approach. But first, it's instructive to see how we
could build an explicit parse tree if we wanted. This will help motivate the code
to build an AST.

 recursive descent
 each routine returns its subtree
 table-driven top-down
 push markers at end-of-production
 each, when popped, pulls k subtrees off separate attribute stack
 and pushes new subtree, where k is length of RHS

1: E → T TT
2: TT → ao T TT
3: T → F FT
4: FT → mo F FT
5: F → (E)
6: F → id
7: F → lit

(A + 1) * B

So how do we build a syntax tree instead?
Start with RD, work with parameters, local variables, return values:

 AST_node expr():
 case input_token of
 id, literal, (:
 T := term()
 return term_tail(T)
 else error

 AST_node term_tail(T1):
 case input_token of
 +, - :
 O := add_op()
 T2 := term()
 N := new Bin_op(O, T1, T2) // subclass of AST_node

E

 return term_tail(N)
), id, read, write, $$:
 return T1 // epsilon
 else error

Here code in black is the original RD parser; red has been added to build the AST.

It's standard practice to express the extra code as action routines in the CFG:

E → T { TT.st := T.n } TT { E.n := TT.n }

TT1 → ao T { TT2.st := make_bin_op(ao.op, TT1.st, T.n) } TT2 { TT1.n := TT2.n }

TT → ε { TT.n := TT.st }

T → F { FT.st := F.n } FT { T.n := FT.n }

FT1 → mo F { FT2.st := make_bin_op(mo.op, FT1.st, F.n) } FT2 { FT1.n := FT2.n }

FT → ε { FT.n := FT.st }

F → (E) { F.n := E.n }

F → id { F.n := id.n } // id.n comes from scanner

F → lit { F.n := lit.n } // as does lit.n

Here the subscripts distinguish among instances of the same symbol in a given
production. The .n and and .st suffixes are attributes (fields) of symbols.
I’ve elided the ao and mo productions.

See how this handles, for example, (A + 1) * B :

A parser generator like ANTLR can turn the grammar w/ action routines into an
RD parser that builds a syntax tree.

It's also straightforward to turn that grammar into a table-driven TD parser.
 Give each action routine a number
 Push these into the stack along with other RHS symbols
 Execute them as they are encountered. That is:
 - match terminals
 - expand nonterminals by predicting productions
 - execute action routines
 e.g., by calling a do_action(#) routine with a big switch
 statement inside

requires space management for attributes; companion site (Sec. 4.5.2)
explains how to maintain that space automatically

 extension of the attribute stack we used to build a parse tree above
 space for all symbols of all productions on path from root
 to current top-of-parse-stack symbol
 - when predict, push space for all symbols of RHS
 - maintain lhs and rsh indices into the stack
 - at end of production, pop space used by RHS; update lhs and rsh indices

==
Decorating a Syntax Tree

The calculator language we’ve been using for examples doesn’t have
sufficiently interesting semantics.
Consider an extended version with types and declarations:

 program → stmt_list $$
 stmt_list → decl stmt_list | stmt stmt_list | ε
 decl → int id | real id
 stmt → id := expr | read id | write expr
 expr → term term_tail
 term_tail → add_op term term_tail | ε
 term → factor factor_tail

 factor_tail → mul_op factor factor_tail | ε
 factor → (expr) | id | int_const | real_const
 | float (expr) | trunc (expr)
 add_op → + | –
 mul_op → * | /

 Now we can
 - require declaration before use
 - require type match on arithmetic ops

We could do some of this checking while building the AST.
We could even do it while building an explicit parse tree.

The more common strategy is to implement checks once the AST is built
 easier -- tree has nicer structure
 more flexible -- can accommodate non depth-first left-to-right traversals
 - mutually recursive definitions
 e.g., methods of a class in most languages
 - type inference based on use
 - switch statement label checking
 etc.

Assume the parser builds the AST and tags every node with a source location.

Tagging of tree nodes is annotation
 inside the compiler, tree nodes are structs
 annotations and pointers to children are fields
 (annotation can also be done to an explicit parse tree; we’ll stick to ASTs)

But first: what do we want the AST to look like?
The book uses what it calls a tree grammar.
This is nice and clear, but it doesn’t match the literature, which uses an equivalent
but superficially different notation called an abstract grammar.
The 5th edition of the text will use this more standard notation.

Each “production” of the abstract grammar has an AST node type (class) on the
left-hand side and a set of variants (subclasses), separated by vertical bars, on the

right-hand side. Note that the abstract grammar is not for parsing; it's to
describe the trees that
 - we want the parser to build
 - we need to annotate

For convenience, we also provide a linear form for trees, to facilitate writing down
semantic rules. We’ll insert parentheses into this linear form when necessary for
disambiguation.

Example for the extended calculator language:

 s → int_decl (x, s) int x ; s
 | real_decl (x, s) real x ; s
 | assign (x, e, s) x := e ; s
 | read (x, s) read x ; s
 | write (e, s) write e ; s
 | null ε
 e → var (x) x
 | int_lit (n) n
 | real_lit (r) r
 | float (e) float e
 | trunc (e) trunc e
 | bin_op (e, o, e) e o e
 o ∈	{+, -, *, /}
 x ∈		variables
 n ∈		integers
 r ∈		reals

Here's a syntax tree for a tiny program. Structure is given by the abstract
grammar. Construction would be via execution of appropriate action routines
embedded in a CFG.

Remember: abstract
grammars are not CFGs.
Language for a CFG is the
set of possible fringes
of parse trees. Language
for a abstract grammar
is the set of possible
whole abstract trees.
No comparable notion
of parsing: structure of
tree is self-evident.

Our abstract grammar helps guide us as we write
(by hand) the action routines to build the AST. It can
also help guide us in writing recursive tree-walking
routines to perform semantic checks and (later) generate
mid-level intermediate code.
 - Helpful to augment the tree grammar with semantic rules that
 describe relationships among annotations of parent and children.
 - Semantic rules are like action routines, but without explicit
 specification of what is executed when.

Semantic rules on an AST can be specified in multiple ways. The book uses
attribute grammars (AGs), which specify the value of AST node fields (attributes)
as functions of the values of other attributes in the same local parent-and-
children neighborhood of the tree.

AGs are not used much in production compilers these days, but have proven
useful for prototyping (e.g., the first validated Ada implementation [Dewar et al.,
1980]) and for some cool language-based tools
 - syntax-directed editing [Reps, 1984]
 - parallel CSS [Meyerovich et al., 2013]

More common these days are inference rules, which are more declarative than
AGs, and more amenable to formalization and automatic proofs of correctness
(not covered here). They will be used in the 5th edition of the text.

Automatic tools to convert inference rules into a semantic analyzer are a current
topic of research. In practice, semantic analyzers are still written by hand. That
said, a good set of inference rules

• imposes discipline on our thinking as we define the language
• provides a concise specification of semantics that is more readable than the

code and more precise than English
• defines a common standard—a formal characterization of the language

that determines whether a hand-written implementation is correct or not

Most languages don’t have formal definitions, but they’re clearly the wave of the
future. WebAssembly is a great example.

Inference rules can be used to specify all aspects of program semantics. The
typical modern semantic framework specifies dynamic semantics of the (abstract)
language as a set of inference rules that define the behavior of the language on
an abstract machine, determining the output of a <program, input> pair.

Compilers (and, to a lesser extent, interpreters) typically also specify static
semantics to pre-compute whatever they can. In particular, they perform static
type checking in order to reduce overhead during eventual execution and to
catch errors early. This type checking typically involves more than the usual
programmer thinks of as types: it includes things like

• passing the right # of parameters to subroutines
• using only disjoint constants as case statement labels
• putting a return statement at the end of (every code path of) every

function
• putting a break statement only inside a loop
• . . .

(Theoreticians, in fact, consider type checking a purely static activity. They don’t
use the term “type checking” for what happens at run time in a dynamically typed
language like Python—they call that “safety” instead.)

Static semantics is said to be sound if every judgment it reaches matches what
dynamic semantics would have concluded at run time. (It is generally not
complete—it does not reach all the judgments that can be reached at run time.)

An inference rule is typically written with a long horizontal line, with predicates
above the line and a conclusion below the line. Both predicates and conclusions
are referred to as judgments; they often (though not always) describe properties
of nodes in a parent-and-children neighborhood of an AST. As an example, in an
AST subtree comprising a constant expression, we might write

The ev-add-n rule specifies that if e1 evaluates to n1, e2 evaluates to n2, and n1 + n2
= n3, then e1 + e2 (i.e., bin_op(e1, +, e2)) evaluates to n3.

If we flesh out formal semantics for the calculator language with variables, types,
and multiple operators it has a more sophisticated version of this rule:

This introduces the notion of an environment (a mapping from names to values,
where values have types). It then generalizes across types and operators. We
say: “If e1 evaluates to v1 in environment E, e2 evaluates to v2 in environment E, v1
and v1 have the same type, and v1 ⊕ v2 = v3, then e1 ⊕ e2 (i.e., bin_op(e1, ⊕, e2))
evaluates to v3 in environment E. The ⊢ symbol is called a “turnstile.” Note that
the ⊕	in the last premise is a math operator; the ⊕	in the conclusion is the
corresponding syntactic operator.

Remember that this is a dynamic semantic rule: we only know values at run time.

Other inference rules change the environment (note the left-pointing turnstile):

An integer declaration introduces a new name into the environment (with, here,
an initial value of 0). An assignment updates the value in the environment. In
both cases, the new environment is used for subsequent statements.

Neither attribute grammars nor inference rules actually specify the order in which
they should be evaluated. There exist tools to figure that out, but in practice (in a
real compiler) we typically figure out the order by hand and write recursive
routines that walk the AST and compute the values of fields.

The book gives an extended (AG) example for declaration and type checking in the
extended calculator grammar. Similar checking can be written as a set of
inference rules (and will be in the 5th edition of the text). In either case, we tag
AST nodes with essential information (e.g., type, scope). We can also pass more
general information (symbol table, error messages) among nodes, but it’s more
common to make these globals:

 insert errors, as found, into a list or tree, sorted by source location
 for symtab, label each construct with list of active scopes
 look up <name, scope> pairs, starting with closest scope
 for calculator language, which has no scopes, can enforce
 declare-before-use in a simple left-to-right traversal of the tree
 - complain at any re-definition
 - or any use w/out prior definition

To avoid cascading errors, it's common to have an “error” value for an
attribute that means “I already complained about this.” So, for example, in

 int a
 real b
 int c
 a := b + c

We label the '+' tree node with type “error” so we don't generate a
second message for the “:=“ node.

A few example recursive routines (with error list and symtab as globals):

 int_decl (x, s): // s is rest of program

if <x.name, ?, ?> ∈ symtab
 errors.insert(“redefinition of” x.name, this.location)
 else
 symtab.insert(<x.name, int, 0>)
 s() // call routine for appropriate variant

 var (x):
 if <x.name, t, v> ∈ symtab
 this.type := t; this.value := v
 else
 errors.insert(x.name “undefined”, x.location)
 this.type := error; this.value := ⊥ // undefined

 bin_op(e1, o, e2):

e1(); e2() // call routines for appropriate variants
if e1.type = error or e2.type = error

 this.type := error; this.value := ⊥
 else if e1.type <> e2.type
 this.type := error; this.value := ⊥
 errors.insert(“type clash”, this.location)
 else

this.type := e1.type;
this.value := o.op(e1.value, e2.value)

We’ve assumed here that variables have names (and numbers, values), initialized
by the scanner. We’ve also assumed that the code in the parser that builds the
AST labels all constructs with their location.

The calculator grammar is simple enough that we can interpret the entire
program in a single left-to-right pass over the tree. In more realistic languages,
we might need to do multiple traversals—e.g., one to identify all the names and
insert them in the symbol table, another to make sure the names have all been
used consistently (think of calls to mutually-recursive methods, which may appear
before the corresponding method declaration), and a third to actually “execute.”

If we were building a compiler instead of an interpreter, the final pass wouldn’t
“execute” the program but rather spit out a translated version.

For reference, here’s the complete dynamic semantics for the calculator language
with types:

Static semantics introduce rules with a “typing context” Γ. This context functions
a lot like the environment E of the dynamic semantics, but instead of mapping
names to values (which have self-evident types), it maps names to types. It
supports judgments like Γ ⊢	e : τ, meaning “in typing context Γ, expression e has
type τ.

The basic soundness theorem then asserts that if Γ ⊢	e : τ, Γ ⊢	E, and E ⊢	e ⇓	v,
then Γ ⊢	v : τ. That is, if e has type τ at compile time, E is well formed in Γ, and e
evaluates to v at run time, then v has type τ. By “E is well formed in Γ,” we mean

	
That is, if whenever the fact that x has type τ in Γ we know that the value of x in E
has type τ, then E is well formed in Γ.	

