
Notes for CSC 254, 23 Oct. 2023

===============================
Introduction to Scripting Languages

What is a scripting language?
 glue
 extension
 text processing
 web (CGI, server-side, client-side, XSLT)

Common characteristics
 economy of expression
 usually interpreted; for both batch and interactive use
 often a single canonical implementation
 lack of definitions; simple scoping rules
 dynamic typing, sometimes lots of coercion
 high-level types: sets, bags, dictionaries, lists, tuples, objects
 easy access to other programs
 pattern matching and string manipulation

Perhaps more accurately termed dynamic languages, in reference to the use of
dynamic typing.

Ancestors
 shells
 JCL
 sh/ksh/bash
 csh/tcsh
 DOS shell
 text processing
 RPG
 sed
 awk

Modern categories
 general-purpose
 Rexx (old but still used on IBM platforms) late '70s

 Perl (long the most widely used) late '80s
 Tcl (now on the downswing, except for Tk) late '80s
 Python (has probably passed Perl) early '90s
 Ruby (on the upswing) early '90s*
 * didn't really catch on in the West until
 good English documentation came out in 2001)
 AppleScript (Mac platform only)
 PowerShell (and, once, Visual Basic — Windows platform only)
 extension
 most of the general-purpose ones
 Python at Disney and ILM
 Tcl in AOLServer
 Lua
 esp. in gaming
 Scheme
 Elk
 SIOD — leading extension language for GIMP
 (Tcl, Python, Perl also supported)
 Guile
 Emacs Lisp
 proprietary
 Maya
 Cold Fusion
 AutoCAD
 Macromedia Director, Flash
 Adobe tools w/ JavaScript, AppleScript, or VBScript
 many, many others
 math
 APL; S, R; Mathematica, Matlab, Maple
 web
 CGI -- all the GP options
 PHP -- leading server-side option; also ASP
 JavaScript -- leading client side option (VB used w/in some orgs.)
 Dart -- leader among several languages designed to compile to
 JavaScript as a way to get around the not-on-all-browsers
 problem
 XSLT -- for processing XML

--
names & scopes
 what is the scope of an undeclared variable?
 Perl: global unless declared otherwise
 PHP: local unless explicitly imported
 Ruby: foo is local; $foo is global; @foo is instance; @@foo is class

 Python and R: local if written; global otherwise
 Fig. 14.16, p. 740:

 i = 1; j = 3
 def outer():
 def middle(k):
 def inner():
 global i # from main program, not outer
 i = 4
 inner()
 return i, j, k # 3-element tuple
 i = 2 # new local i
 return middle(j)

 print(outer())
 print(i, j)

 prints
 (2, 3, 3)
 4 3

No way historically to write an intermediate-level (non-global, non-local) var
in Python. In recent python, replace “global” with “nonlocal”.
In R, use foo <<- val (rather than foo <- val). These options avoid
creating a new local R; accesses closest existing.

 Both static and dynamic scope in Perl:
 Fig. 14.17, p. 741:

 sub outer($) { # must be called with scalar arg
 $sub_A = sub {
 print "sub_A $lex, $dyn\n";
 };
 my $lex = $_[0]; # static local initialized to first arg

 local $dyn = $_[0]; # dynamic local initialized to first arg
 $sub_B = sub {
 print "sub_B $lex, $dyn\n";
 };
 print "outer $lex, $dyn\n";
 $sub_A->();
 $sub_B->();
 }

 $lex = 1; $dyn = 1;
 print "main $lex, $dyn\n";
 outer(2);
 print "main $lex, $dyn\n";

 prints
 main 1, 1
 outer 2, 2
 sub_A 1, 2
 sub_B 2, 2
 main 1, 1

--
strings & pattern matching

 grep and sed: "basic" REs

 awk, egrep, C regex library: "extended" (Posix) REs
 quantifiers (generalizations of Kleene closure)
 character sets
 ^ and $, .
 backslash

 Perl, Python, Ruby, JavaScript, elisp, Java, C#: "advanced" REs
 trailing modifiers:
 g global (all matches)
 i case insensitive
 s allow dot to match an embedded newline
 m allow $ and ^ to match before / after embedded newline
 x ignore comments and white space in pattern

 capture:

 $_ = "-3.14e+5"; # default subject of match if =~ not used
 if (/^([+-]?)((\d+)\.|(\d*)\.(\d+))(e([+-]?\d+))?$/) {
 # floating point number
 print "sign: ", $1, "\n";
 print "integer: ", $3, $4, "\n"; # only one nonempty
 print "fraction: ", $5, "\n";
 print "mantissa: ", $2, "\n";
 print "exponent: ", $7, "\n";
 }

 This prints
 sign: -
 integer: 3
 fraction: 14
 mantissa: 3.14
 exponent: +5

 greedy (default *) and minimal (*?) matches
 +? matches at least one but no more than necessary
 ?? matches zero or one, with a preference for zero

 special escape sequences
 lots of these. E.g.,
 \n , \r , \t , ...
 \d digit
 \s white space
 \w word character (letter, digit, underscore)
 ...

 Implementation
 NFA v. DFA
 tradeoff: DFA requires compilation: good if repeated;
 may also be necessary if there is capture.
 NFA can be emulated immediately.

 compilation?
 qr operator forces (one-time) compilation:

 for (@patterns) { # iterate over patterns
 my $pat = qr($_); # compile to automaton
 for (@strings) { # iterate over strings
 if (/$pat/) { # no recompilation required
 print; # print all strings that match
 print "\n"; }
 }
 print "\n";
 }

data types
 Perl goes crazy with coercion
 $a = "4"; # string
 print $a . 3 . "\n"; # concatenation ==> "34"
 print $a + 3 . "\n"; # addition ==> 7

 notion of context in Perl
 numeric, string, scalar/array, ...

 considerable variety in numeric types
 always doubles in JavaScript; doubles by default in Lua
 always strings in Tcl (!)
 PHP: ints & doubles
 Perl, Ruby: ints, doubles, and bignums
 Scheme: ints, doubles, bignums, rationals

 composites:
 where static languages tend to emphasize arrays & structs,
 scripting languages typically emphasize mappings
 (aka hashes, dictionaries, associative arrays)

 Perl, Python, Ruby:
 arrays and hashes — both self-expanding (syntax varies)
 Python: also tuples & sets
 tuples are immutable (and thus faster than arrays)
 sets support union, intersection, difference, xor
 PHP & Tcl: arrays == hashes
 array is just a hash w/ numeric keys

 JavaScript: arrays == hashes == objects
 multidimensional arrays via tuple keys
 not very efficient
 much better support in the 3Ms

objects
 hack in Perl 5; supposed to be real in Raku (Perl 6)
 "Object-based" approach in JavaScript
 classes added in ECMAScript 6 (backward compatible), TypeScript
 pure object orientation in Ruby, ala Smalltalk
 executable class declarations
 mentioned under "elaboration" in Chap. 3 lecture
 can be used, e.g., to give the effect of conditional compilation

==
Perl

Note that Perl, unlike Python & Ruby, has no real interactive mode. (You can get some
of the functionality from the Perl debugger, but it executes each line in isolation, which
is pretty unsatisfying.)

"There's more than one way to do it."

 if ($a < $b) { $s = "less"; }
 $s = "less" if ($a < $b);
 $s = "less" unless ($b >= $a);

heavy use of punctuation characters

 # comment
 #! convention script language identifier
 $, @ , % , NAKED scalar, array, hash, filehandle
 <..> readline of file handle
 =~ pattern match
 $_ default input line and loop index
 . and .= concatenation

Dynamic typing, coercion

 $a = "4";
 print $a . 3 . "\n"; prints 43
 print $a + 3 . "\n"; prints 7

subroutines

 sub min {
 my $rtn = shift(@_); # first argument
 # my gives local lexical scope; @_ is list of arguments
 # local gives dynamic scope
 for my $val (@_) {
 $rtn = $val if ($val < $rtn)
 }
 return $rtn;
 }
 ...
 $smallest = min($a, $b, $c, $d, @more_vals); # args are flattened

context

 some things behave differently in array and scalar "contexts".

 @my_array = @_;
 $num_args = @_;

 you can do this yourself:

 sub abs {
 my @args = @_;
 for (@args) {
 $_ = -$_ if ($_ < 0); # $_ is a reference;
 } # this modifies args in place
 return wantarray ? @args : $args[0];
 # note: not @args[0]
 }
 ...
 print join (", ", abs(-10, 2, -3, 4, -5)), "\n";
 print $n = abs(-10, 2, -3, 4, -5), "\n";

 This prints

 10, 2, 3, 4, 5
 10

regular expressions -- discussed in previous lecture

hashes

 %complements = ("ref" => "cyan",
 "green" => "magenta", "blue" => "yellow");
 # NB: => is (almost) an alias for ,
 # (also forces its left operand to be interpreted as a string)
 print $complements{"blue"}; # yellow

Examples from book
 HTML heading extraction (Example 14.23, Fig. 14.4, p. 716)

 while (<>) { # iterate over lines of input
 next if !/<[hH][123]>/; # jump to next iteration
 while (!/<\/[hH][123]>/) { $_ .= <>; } # append next line to $_
 s/.*?(<[hH][123]>.*?<\/[hH][123]>)//s;
 # perform minimal matching; capture parenthesized expression in $1
 print $1, "\n";
 redo unless eof; # continue without reading next line of input
 }

 note:
 #!
 while (<>)
 next, redo
 implicit matching against $_
 update-assignment to $_
 s/// -- could have been written $_ =~ s///
 minimal matching via *?
 character sets in REs: [hH], [123]
 backslash escape of /
 capture with ()
 trailing s on match allows '.' to match embedded \n

 force quit (Example 14.24, Fig. 14.5, p. 719)

 $#ARGV == 0 || die "usage: $0 pattern\n";
 open(PS, "ps -w -w -x -o'pid,command' |"); # 'process status' command
 <PS>; # discard header line
 while (<PS>) {
 @words = split; # parse line into space-separated words
 if (/$ARGV[0]/i && $words[0] ne $$) {
 chomp; # delete trailing newline
 print;
 do {
 print "? ";
 $answer = <STDIN>;
 } until $answer =~ /^[yn]/i;
 if ($answer =~ /^y/i) {
 kill 9, $words[0]; # signal 9 in Unix is always fatal
 sleep 1; # wait for 'kill' to take effect
 die "unsuccessful; sorry\n" if kill 0, $words[0];
 } # kill 0 tests for process existence
 }
 }

 note:
 @ARGV, $#ARGV latter is last index (one less than length)
 die
 open, file handles
 ps command
 -w -w print with unlimited width (wide wide)
 -x include processes w/out controlling terminals
 -o'pid,command' what to print
 split
 trailing i on match ignores case
 $$ my process id
 ne (strings) vs != (numbers)
 beginning of line marker: ^ (and eol marker: $)
 built-ins for many common shell commands (kill, sleep)

