
Notes for CSC 2/454, Jan. 28 – Feb. 4, 2025 
 
================================================ 
SCANNING 
 
Scanner is responsible for 
    tokenizing source 
    removing comments 
    saving text of identifiers, numbers, strings 
    saving source locations (file, line, column) for error messages 
 
    a DFA for identifiers: 
 
 
 
 
 
 
 
Can be built by hand (ad hoc) or automatically from regular expressions (REs) 
    ad-hoc generally yields the fastest, most compact code 
        by doing lots of special-purpose things 
    automatically-generated scanners can come close, though 
        and are easy to develop and change 
 
A scanner generator builds a DFA automatically from a set of REs 
Specifically, it constructs a machine that accepts the “language” 
 
    identifier | int const | real const | comment | symbol | ... 
 
In other words, a real scanner accepts the alternation of a language's 
tokens, with a separate final state for each. 
We run the scanner over and over to get one token after another. 
 
(Note that theoreticians use “language” to mean a set of strings -- 
not nec. the valid programs of a programming language.) 
 



Nearly universal rule: 
    always take the longest possible token from the input 
    thus foobar is foobar and never f or foo or foob 
    more to the point, 3.14159 is a real const and never 3, ., and 14159 
 
An RE generates a regular language; a DFA recognizes it. 
 
The standard Unix lex (flex) outputs C code. 
Some other tools produce numeric tables that are read by a separate driver. 
The table is the transition function 
    two-dimensional array indexed by current state and input character 
    entries specify 
        next state 
        whether to keep scanning, return a token, or announce an error 
 
Longest-possible token rule means we return only when the next 
character can't be used to continue the current token. 
That next character must generally be saved for the next token. 
 
In some cases you may need to peek at more than one character of 
lookahead in order to know whether to proceed. 
 
    In Ruby, when you have a 3 and you see a dot, do you proceed (in 
    hopes of getting 3.14) or do you stop (in fear of getting 3..5 or 3...5)? 
 
    In messier cases, you may not be able to get by with any fixed amount of 
    lookahead.  In Fortran IV (c. 1962), for example, one had 
 
        DO 5 I = 1,25       loop 
        DO 5 I = 1.25       assignment 
        DO 5,I = 1,25       alternate syntax for loop, f77 
 
For most languages it suffices to remember we were in a potentially 
final state, and save enough information that we can back up to it if we 
get stuck later. 
For some languages (famously, Fortran), that isn't enough. 
     Sometimes need semantic information in order to scan (yuck). 



 
-------------------------------------------------- 
Building a scanner from regular expressions 
 
multi-step process 

1) write REs by hand, including for whitespace and comments, but with 
identifiers and reserve words (keywords) combined 

2) build NFA from REs 
3) build DFA from NFA 
4) minimize DFA 
5) add extra logic to 

o implement the longest-possible-token rule, with backup 
o discard white space and comments (i.e., start over when you realize 

that's what you found) 
o distinguish reserve words from identifiers 
o save text of “interesting” tokens 
o tag returned tokens with location and text 
o return an extra $$ token at end-of-file 

 
In most compilers, the parser drives the front end. 
The scanner is a subroutine (function) called by the parser. 
 
Step (2) above is inductive.  It starts with a trivial DFA to accept a single 
character: 
 
 
 
 
Note that this machine has a single start state, a single final state, 
no transitions into the start state, and no transitions out of the final 
state.  We'll maintain these invariants in three inductive steps: 
 
Concatenation (A B): 
 
 
 
 



Alternation (A | B): 
 
 
 
 
Kleene closure (A*): 
 
 
 
 
 
 
Step (3) uses what's called a “set of subsets” construction. 
Step (4) divides the states of an initial DFA into progressively finer 
equivalences classes, until it can prove that additional refinement 
makes no difference. 
 
Example 1 (in the book): real numbers (no exponential notation) 
 
    RN = d*(.d|d.)d* 
 
    14-state NFA results from construction 
    5-state subset DFA 
    4-state minimal DFA 
 
Example 2: character strings with optional backslash-escaped quotes 
 
    S = “ ( [^\”] | \a )* “             “a” for anything;  “[^\”]” for anything but \ and “ 
 
    11-state NFA results from construction 
    6-state subset DFA 
    4-state minimal DFA 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
   
 

                                
NB: 
 (1) There’s nothing magic about the characters we choose to consider as 

      possible reasons to split a group.  In a mechanical tool, we’d simply 
      iterate over all characters in the alphabet.  Many wouldn’t teach us 
      anything. 

 
(2) Real scanner accepts alternation of tokens, with a separate final state 
      for each.  Scanner generator 

• starts with NFAs for all the separate tokens 
• creates a new start state with an Ε-transition to the start state of 

each token NFA 



• turns that into a DFA 
• runs the minimization algorithm starting not with two classes (final 

and non-final) but with K+1: non-final, final for token T1, final for 
token T2, ..., final for token TK. 

 
Suggestion: try Exercise 2.5 in the book: extend Examples 1.13-15 to build a 
minimal DFA for integers and decimals together. 
 
---------------------------------------- 
 
In our two examples, the DFA was smaller than the original NFA. 
Is that always the case? 
 
No!  Quite the contrary. 
 
Example 3: subset of (a|b|c)* in which some letter appears at least 3 times. 
 
    RE (one possibility): 
       (a|b|c)* ( (a|b)*c(a|b)*c(a|b)*c(a|b)* 
                | (c|b)*a(c|b)*a(c|b)*a(c|b)* 
                | (a|c)*b(a|c)*b(a|c)*b(a|c)* ) (a|b|c)* 
    exists an 8-state NFA 
    minimal DFA has 28 states 
 
 See the PLP Companion Site, Sec. 2.4.1 
 
That NFA, of course, doesn't come from the standard construction. 
Are there any that do, and for which the DFA is bigger yet? 
Absolutely! 
 
Example 4: subset of (0|1|2|3|4|5|6|7|8|9)* in which some digit appears 
at least 10 times. 
 
    minimal DFA has 10,000,000,001 states 
    one RE is 
 
 
 



(0|1|2|3|4|5|6|7|8|9)* 
( 
   ((1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)* 0 
    (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)* 0 
    (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)* 0 
    (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)* 0 
    (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)*) 
 | 
   ((0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)* 1 
    (0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)* 1 
    (0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)* 1 
    (0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)* 1 
    (0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)*) 
 | ... 
 | 
   ((0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)* 9 
    (0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)* 9 
    (0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)* 9 
    (0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)* 9 
    (0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)*) 
) 
(0|1|2|3|4|5|6|7|8|9)* 
 
    anybody believe the automatically constructed NFA for that has 10 
    billion states? 
 
---------------------------------------- 
 
We can also build a RE from a DFA (as shown in Section 2.4.1 on the PLP 
companion site).  This completes a proof that the two notations are 
equally powerful.  Nobody does this in practice, however; it amounts to 
converting the computer-friendly notation into a human-friendly 
notation, and we usually want to go the other way. 
 
---------------------------------------- 
 
In a real compiler, the input may have errors, including lexical errors. 
    Consider, in Java or C, the input 
 
        int myVaria$ble 
 
    That dollar sign isn't supposed to be there. 
 
What should a scanner do? 



Generally suffices to 
    return the longest token that starts at the beginning of the 
        remaining part of the input program 
        (after deleting white space and comments) 
    or, if there isn't a valid token starting there, delete characters until there is, 
        print an error message reporting the deletion, and return the token found 
 
In our Java example, that will return myVaria, complain and delete the $, and 
then return ble.  That’s not the “right” fix, but the rest of the compiler will deal. 
 
Pseudocode for a table-driver scanner can be found in the text. 
 
======================================== 
CONTEXT FREE GRAMMARS 
 
Here's a grammar for a simple desk calculator language 
(from the intro lecture notes): 
 
    1    pgm          →  stmt_list $$ 
    2    stmt_list    →  stmt_list  stmt | ε 
    3    stmt           →  id := expr  |  read  id  |  write  expr 
    4    expr           →  term  |  expr  add_op  term 
    5     term           →  factor  |  term  mult_op  factor 
    6    factor         →  ( expr )  |  id  |  lit 
    7    add_op      →  +  |  - 
    8    mult_op    →  *  |  / 
 
[This happens to be a “bottom-up” grammar -- one of the two kinds that 
are easy to parse.] 
 
Terminology: 
    CF grammar 
    symbols 
        terminals (tokens) 
        non-terminals 
    start symbol 

    production 
    derivation (see example below) 
        left-most 
        right-most (canonical) 
    sentential form 



[ Useless symbols: non-terminals that can't derive a token string, or tokens that 
can't be derived.  We will assume we have none of these.  They can be detected 
and removed automatically and efficiently. ] 
 
------------------------------------------- 
Consider the program 
    read A 
    read B 
    sum := A + B 
    write sum 
    write sum / 2 
 
Derivation using the above grammar: 
 
program 
stmt_list $$ 
stmt_list stmt $$ 
stmt_list write expr $$ 
stmt_list write term $$ 
stmt_list write term mult_op factor $$ 
stmt_list write term mult_op lit $$ 
stmt_list write term / lit $$ 
stmt_list write factor / lit $$ 
stmt_list write id / lit $$ 
stmt_list stmt write id / lit $$ 
stmt_list write expr write id / lit $$ 
stmt_list write term write id / lit $$ 
stmt_list write factor write id / lit $$ 
stmt_list write id write id / lit $$ 
stmt_list stmt write id write id / lit $$ 
stmt_list id := expr write id write id / lit $$ 
stmt_list id := expr add_op term write id write id / lit $$ 
stmt_list id := expr add_op factor write id write id / lit $$ 
stmt_list id := expr add_op id write id write id / lit $$ 
stmt_list id := expr + id write id write id / lit $$ 
stmt_list id := term + id write id write id / lit $$ 
stmt_list id := factor + id write id write id / lit $$ 
stmt_list id := id + id write id write id / lit $$ 
stmt_list stmt id := id + id write id write id / lit $$ 
stmt_list read id id := id + id write id write id / lit $$ 
stmt_list stmt read id id := id + id write id write id / lit $$ 
stmt_list read id read id id := id + id write id write id / lit $$ 
read id read id id := id + id write id write id / lit $$ 



Each line is a sentential form.  By definition that's a string of grammar symbols 
that occurs in the derivation of some string of terminals from the start symbol. 
 
This is a “canonical” (right-most) derivation: at each step we have expanded the 
right-most non-terminal in the current sentential form.  So each line is a “right 
sentential form.” 
 
Bottom-up parsers that read their input left-to-right to discover 
right-most derivations. 
Top-down parsers that read their input left-to-right discover 
left-most derivations. 
 
------------------------------------------------ 
A Little Theory 
 
A context-free grammar (CFG) is a generator for a CF language. 
A parser is a language recognizer. 
 
There is an infinite number of grammars for every context-free language. 
But not all grammars are equal! 
 
For any CFG we can create a parser that runs in O(n^3) time. 
    Early's algorithm (~emulation of an NPDA) 
    Cocke-Younger-Kasami (CYK) algorithm (dynamic programming) 
O(n^3) time is clearly unacceptable for a parser in a compiler. 
 
There are large classes of grammars for which we can build parsers that 
run in linear time.  The two most important classes are called LL and LR. 
 
    LL stands for 'Left-to-right, Leftmost derivation'. 
    LR stands for 'Left-to-right, Rightmost derivation'. 
 
We'll focus on LL parsing, which is what you're going to be using in 
your next assignment.  The LR class is larger, but 
  - most programming languages have LL grammars 
        (or something close enough to use with a couple hacks) 
  - LL parsing is generally simpler and easier to understand. 



You commonly see LL or LR (or whatever) written with a number in 
parentheses after it.  This number indicates how many tokens of 
look-ahead are required in order to parse.  Most but not all real 
compilers use one token of lookahead. 
     Some compilers (e.g., for Fortran) have hacks to get more lookahead 
         in special cases. 
     The open-source compiler-compiler ANTLR is LL(k). 
 
LL parsers are also called 'top-down', or 'predictive' parsers. 
LR parsers are also called 'bottom-up', or 'shift-reduce' parsers. 
More on this in the next lecture. 
 
There are several important sub-classes of LR parsers, including SLR and 
LALR.  See Sec. 2.3.4 in the text (unassigned) if you're curious. 
 
------------------------------------------- 
What makes a grammar “nice”? 
 
It's particularly important that it be unambiguous -- no two parse trees 
for the same string.  Consider what would have happened if bottom-up 
productions 4 and 5 (right) were instead 
 
    expr    →   factor | expr op expr 
 
 
This gives us two parse trees for A - B - C : 

    expr   →  term  |  expr  add_op  term 
    term  →  factor  |  term  mult_op  factor 
 



Also nice if the parse trees reflect semantic structure, but that's not 
essential.  Our bottom-up calculator grammar nicely captures the notion 
of precedence: 
 
Here's a bottom-up parse 
tree for 3 + 4 * 5 : 
 
 
 
 
 
 
 
 
 
Consider what would have happened if productions 4 and 5 in the 
bottom-up grammar were 
 
    expr      →    factor | expr  op  factor 
 
This gives us a different parse 
tree for 3 + 4 * 5 : 
 
 
 
 
 
 
 
 
 
There is nothing wrong with this grammar or this tree, but you can see 
why the first one might be easier to translate into a syntax tree. 
 
 
 
 



Our grammar also captures the notion 
of left associativity.  Here's a bottom-up 
parse tree for 10 - 4 - 3 : 
 
 
 
 
 
 
 
 
 
 
 
Consider what would have happened if production 4 was 
 
    expr        →    term | term  add_op  expr 
 
This gives us a different 
parse tree for 10 - 4 - 3 : 
 
 
 
 
 
 
 
 
 
 
 
 
Again, there is nothing wrong with this grammar or this tree, but you 
can see why the first one might be easier to translate into a syntax tree. 
 
 
------------------------------------------- 



Here is an LL(1) (top-down) grammar for the same language: 
 
    1     pgm        →  stmt_list $$ 
    2     stmt_list      →  stmt stmt_list | ε 
    3     stmt           →  id := expr | read id | write expr 
    4     expr           →  term  term_tail 
    5     term_tail      →  add_op  term  term_tail | ε 
    6     term           →  factor fact_tail 
    7     fact_tail     →  mult_op  factor  fact_tail | ε 
    8     factor         →  ( expr ) | id | lit 
    9     add_op         →  + | - 
    10   mult_op        →  * | / 
 
Like the bottom-up grammar, the top-down one captures precedence, but 
most people don't find it as pretty.  Operands of a given operator 
aren't in a RHS together, and the resulting parse trees look a bit 
strange. 
 
Here's a top-down parse 
tree for 3 + 4 * 5 : 
 
 
 
 
 
 
 
 
 
It still seems to suggest that multiplication groups more tightly than 
addition, but in a lopsided sort of way. 
 
The simplicity of the parsing algorithm makes up for this weakness, in 
my opinion.  As we'll see later, top-down parsing also makes it easier 
to handle special cases and to produce good error messages when the 



input program has syntax errors. 
    gcc switched from bottom-up to top-down parsing around 2005 
    LLVM's clang front end also uses top-down parsing 
 
Also note that the top-down grammar doesn't capture associativity: in 
order to parse top-down left-to-right, we end up with a tree that tends 
to associate to the right. 
 
Here's a top-down parse 
tree for 10 - 4 - 3 : 
 
 
 
 
 
There's no getting around this in the parser.  Have to take care (by hand) to 
make sure that the syntax tree reflects associativity correctly. 
 
 
 
 
 
 
=========================================== 
TOP-DOWN AND BOTTOM-UP PARSING 
 
*** An LL family parser builds a leftmost derivation from the top down. 
*** An LR family parser builds a rightmost derivation from the bottom up. 
 
How do we parse a string with the top-down grammar?  You can get the general 
idea by building the parse tree incrementally by hand: 
 
    Start at the top and *predict* needed productions on the basis of 
    the current left-most non-terminal in the tree and the current input 
    token. 
 
Consider our example program again, together w/ the top-down grammar: 



 
                                       P   →  SL  $$ 
                                       SL  →  S  SL | ε 
                                       S   →  id :=  E | read id | write  E 
                                       E   →  T  TT 
                                       TT →  ao  T  TT  |  ε 
    read A                             T   →  F  FT 
    read B                             FT →  mo  F  FT  |  ε 
    sum := A + B                      F   →  ( E )  |  id  |  lit 
    write sum                         ao  →  + | - 
    write sum / 2                     mo  →  * | / 
 
 
Let's build a parse tree: 
 

 
Notice that at every step along the way, it was clear (unambiguous) what to do. 
 



We can also get a sense of the bottom-up case with an example, but it won't be 
as obvious what's going on. 
 
    Just as a scanner is based on a finite automaton, 
    a parser is based on a pushdown automaton 
      - basically a finte automaton with a stack 
      - makes a decision based on input, state, and top-of-stack symbol 
      - chooses a new state and may push or pop the stack 
 
    A top-down parser has a trivial state machine. 
      - makes all decisions based on input and top-of-stack symbol 
        until it sees end-of-file, at which point it switches to a final 
        state if the stack looks right (more on this later) 
 
    A bottom-up parser has a complex state machine. 
      - uses current state to make decisions 
      - I won't be showing you the state machine in this example 
 
Consider our example program again, together w/ the bottom-up grammar: 
 
                             P  →  SL $$ 
                             SL →  SL S | ε 
                             S  →  id := E | read id | write E 
    read A                   E  →  T | E ao T 
    read B                   T  →  F | T mo F 
    sum := A + B             F  →  ( E ) | id | lit 
    write sum                ao →  + | - 
    write sum / 2            mo →  * | / 
 
Let's build a parse tree: 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The power of bottom-up parsing comes from its ability to recognize things “after 
the fact,” rather than predicting them up front.  This same power explains why 
error messages and special-case hacks are harder to implement in the bottom-
up-case: the parser isn't always sure what's going on until after it's finished. 
 
NB: I claimed earlier that a bottom-up parser discovers a rightmost derivation.  
We can see that in the example above.  The parser starts with the last line of the 
derivation (the string of tokens).  It then repeatedly finds the previous line, which 
glues together the leftmost not-glued together stuff.  That means the top lines of 
the derivation, once discovered, are expanding the rightmost stuff. 
 
 
 
 
 
 
 



======================================== 
LL PARSING and RECURSIVE DESCENT 
 
We can implement top-down parsing in two ways: 
  - recursive descent parser 
      - written by hand or automatically 
  - parse table and a driver 
      - written automatically 
 
We'll consider the table-driven option more in a bit. 
If you took 173 you probably saw recursive descent; this is a review. 
 
Key idea: set of mutually recursive subroutine, one for each nonterminal. 
Each such routine is responsible for discovering a subtree of the parse 
tree, rooted at the symbol for which it is named. 
 
Also need a match routine: 
    takes a token name as argument and reads a matching token from the 
    input stream, or announces an error if it can't. 
 
(How to handle errors comes in the next lecture.  For now, let's assume 
we just quit.) 
 
Consider recursive descent routines for the calculator language: 
 
The parser begins by calling the following subroutine: 
 
    procedure pgm 
      case input_token of 
          id, read, write, $$ : stmt_list; match($$) 
          else                  error 
 
Other subroutines include: 
 
    procedure stmt_list 
        case input_token of 
            id, read, write : stmt; stmt_list 
            $$              : skip // epsilon 
            else              error 



 
    procedure stmt 
        case input_token of 
            id    : match(id); match(:=); expr 
            read  : match(read); match(id) 
            write : match(write); expr 
            else    error 
 
    procedure expr 
        case input_token of 
            id, literal, ( : term; term_tail 
            else             error 
 
    procedure term 
        case input_token of 
            id, literal, ( : factor; fact_tail 
            else             error 
 
    procedure term_tail 
        case input_token of 
            +, -                   : add_op; term; term_tail 
            ), id, read, write, $$ : skip // epsilon 
            else                     error 
 
    etc. 
 
Each routine knows that it's expecting to see—the yield of the symbol for which 
it is named.  It needs to 

(1) choose a production with which to generate the symbol's children in the 
parse tree 
- makes this choice based on the upcoming token from the scanner 

(2) parse those children one by one 
- match any that are terminals 
- call the appropriate RD routine to parse any that are nonterminals 

 
So how exactly do we know (in a complicated grammar) which production to 
use, given an expected nonterminal (root of to-be-fleshed-out subtree) 
and upcoming token? 
That is, how to label the arms of the switch statements? 
 
 
 



------------------------------------------- 
PREDICT Sets 
 
If a RHS can start with a given token (directly or indirectly), the 
appearance of that token predicts its rhs. 
 
If the rhs is epsilon (or something that can derive epsilon), any token that can 
follow the LHS anywhere in the grammar predicts the epsilon production. 
 
An LL(1) parser generator constructs these “predict sets” for you.  We'll consider 
the algorithm a bit later.  It depends on the following definitions: 
 

FIRST(α) ≡ {c : α ⇒* c β} 
FOLLOW(A) ≡ {c : S ⇒+ α A c β} 
PREDICT(A → α) ≡ FIRST(α) U (if α ⇒* ε then FOLLOW(A) else ∅) 

 
Here → is the familiar “goes to” symbol used in productions. 
⇒  means “derives” — can be replaced by.  Note that its LHS doesn't have 
       to be a single symbol. 
⇒* means “derives in zero or more steps” 
⇒+ means “derives in one or more steps” 
 
NB: conventional notation uses 
    lower case letters near the beginning of the alphabet for terminals 
    lower case letters near the end of the alphabet for strings of terminals 
    upper case letters near the beginning of the alphabet for non-terminals 
    upper case letters near the end of the alphabet for arbitrary symbols 
    Greek letters for arbitrary strings of symbols 
 
*** In a recursive descent parser, if c ∈ PREDICT(A → α), then the RD 
        routine for A will predict A → α when it sees c on the input. 
 
FIRST sets capture the “RHS can start with 'c'“ case. 
FOLLOW sets capture the “RHS can generate ε” case. 
Consider, for example, a TT node of an under-construction parse tree in our 
calculator language. 



We should predict TT → ao T TT if the upcoming 
token from the scanner is a + or −, which can go 
in the lower circle in the pic—that’s the FIRST 
case.  It can happen if the question mark is S and 
the stuff to the left is “write” or “id :=”.   
 
We should predict TT → ε if the upcoming token 
from the scanner is a ‘)’, which can go in the 
other circle (the first leaf to the right of the TT—
that’s the FOLLOW case.  It can happen if the 
question mark is F and the stuff to the left is “(”. 

 
The calculator language is simple enough that one can figure out PREDICT sets 
more or less by inspection.  “Real” languages are too complex for that 
to be a reasonable task.  We need an algorithm (stay tuned). 
 
Note the implicit assumption that the choice among productions A → α  and 
A → β  is always uniquely determined.  What if there is more than one 
production w/ a LHS of A and a RHSs that can start w/ the same nonterminal? 
Or two RHSs than can generate epsilon?  Or a RHS that can start with c and a RHS 
that generate ε, when c is in FOLLOW(A)? 
 
In this case the grammar is not LL(1) — by definition. 
 
It turns out most programming languages have LL(1) grammars — or are close 
enough that the wrinkles can be handled with hand-written kludges. 
A famous example was the if-then-else statements of Algol-60 and Pascal (see 
the text for details — fixed in modern languages with terminator keywords). 
 
Also see the text for more on creating a grammar that’s LL(1). 
 
======================================== 
SYNTAX ERROR RECOVERY 
 
Not ok to announce a single syntax error and stop parsing. 
Have to recover and continue, to find additional errors. 
 



Wirth's formalization for recursive descent: 
  - On a token mismatch, insert what you expect and print an error message 
  - On a null prediction in the RD routine for nonterminal A 
    (no matching label in switch) 
    delete tokens until you see something in FIRST(A) or FOLLOW(A) 
            (also stop if you see $$) 
        if the FIRST case, restart the current routine 
          - assume what we saw was garbage and can be ignored 
        if the FOLLOW case, return 
          - assume what we saw was the desired nonterminal, garbled 
So the RD routine for statements might be 
 
  procedure stmt 
      if not (input_token ∈ FIRST(stmt))  // NB: stmt cannot derive ε 
          report_error() 
          repeat 
              get_next_token() 
          until input_token ∈ (FIRST(stmt) U FOLLOW(stmt) U {$$}) 
      case input_token of 
          id    : match(id); match(:=); expr() 
          read  : match(read); match(id) 
          write : match(write); expr() 
          // no else clause needed 
 
That initial if clause can of course be abstracted out into a routine that is then 
called at the top of each RD routine: 
 
    procedure check_for_error(sym) 
        if not (input_token ∈ FIRST(sym) 
                or (sym ⇒+ ε and input_token ∈ FOLLOW(sym)) 
            report_error() 
            repeat 
                get_next_token() 
            until input_token ∈ (FIRST(sym) U FOLLOW(sym) U {$$}) 
 
Simpler strategies are possible (some use exceptions, and limit recovery to major 
constructs like statements and top-level expressions)—but Wirth’s algorithm is 
actually pretty simple, and works well. 
 
Fancier strategies are also possible.  Fischer, Milton, and Quiring 



developed a particularly pretty “tunable”, locally-least-cost recovery 
mechanism for table-driven LL(1) (see the book). 
 
------------------------------------------- 
The immediate error detection problem and context-sensitive follow sets 
 
Several error-recovery mechanisms, including the version of Wirth's 
described above, will sometimes predict an epsilon production when 
calling routines are doomed to discover an error. 
    Arguably, we should detect the error before generating epsilon. 
    That way we have more context with which to craft recovery. 
 
Example from the book, in the calculator language: 
 
Y := (A * X X*X) + (B * X*X) + (C * X) 
           ^ There's a problem here (missing '*' in polynomial). 
             Can we tell? 
 
When we're at the point shown in the parse, what recursive descent 
routines are active? 
 
                    (dot shows where we are inside) 
    program                 P → . SL $$ 
    stmt_list               SL → . S SL 
    stmt                    S → id := . E 
    expr                    E → . T TT 
    term                    T → . F FT 
    factor                  F → ( . E ) 
    expr                    E → . T TT 
    term                    T → F . FT 
    factor_tail             FT → * F . FT 
    factor_tail             FT → ? 
 
Now ID can follow expr in some programs (e.g. A := B C := D), and an expr 
can end with a factor_tail, so ID is in FOLLOW of factor_tail.  And since factor_tail 
and term_tail can generate epsilon, the “obvious” thing is to return from FT 
twice, return from T (which thinks it's done); call from E to TT; return from TT; 
and return to F all without detecting an error of any kind.  At this point we'll 



(finally) get a mismatch between ID and ).  Unfortunately we won't have much 
information to work with at that point, and won't be able to make as good a 
recovery as we would have liked. 
 
Specifically: match will insert a right paren, allowing F to complete and return.  T 
will call FT, which will see X on the input, which is in FOLLOW(FT), so it will 
predict and epsilon production and return, allowing T to return.  E will likewise 
call TT, which predicts epsilon and returns, allowing E to return, at which point S 
will complete and return, allowing SL to make a recursive call.  Now we have 
 
    X*X) + (B * X*X) + (C * X) 
 
on the input, but we've left the context in which we could continue to parse 
more pieces of an expression. 
 
SL will predict S → id := E.  We'll match id (X), insert :=, call E, T, and then F. 
F will predict F → id, match X, then return all the way back to 
 
    SL → S . SL 
 
at which point we'll make another recursive call to SL and run into trouble with ) 
on the input.  We'll delete the ), predict S → id := E, and soon run into trouble 
again when we see * instead of := on the input.  When the dust settles, our final 
“correction” will be 
 
    Y := (A * X)  X := X  B := X * X  C := X 
 
If we were smarter, when FT saw X way back at the beginning it would know that 
an ID can't follow a factor_tail in this particular context (where we're inside a 
parenthesized expression, not at the end of an assignment).  Good error 
recovery algorithms take this into account.  Wirth showed how to do it in the 
(better version of) his error-recovery algorithm for recursive descent.  He adds a 
context-sensitive follow set parameter to every R.D. subroutine, and uses these, 
rather than global FOLLOW, to predict epsilon productions. 
 
So, for example, when F calls E in the example above, it would pass as E's follow 
set only { ')' }.  When E calls T it would pass that same set, plus FIRST(TT) -- i.e., 



{ ')', '+', '−' }.  When T calls FT it would pass what it, itself, was given, namely { ')', 
'+', '−' }.  When FT calls itself recursively it would pass this same set yet again. 
When the nested FT sees 'id' on the input, it would know there was a problem.  
It would delete the id.  The subsequent * is in FIRST(FT), so all would be well at 
that point. 
 
In the general case, context-sensitive FOLLOW sets are surprisingly easy to 
compute.  The augmenting production passes {$$} to the routine for the start 
symbol (e.g., program).  When calling a routine in the middle of an arm of a 
switch statement, we pass FIRST(α), where α comprises the symbols remaining 
to be parsed in this arm of the switch.  If α ⇒* ε, then we pass FIRST(α) unioned 
with the context-specific FOLLOW set we ourselves were passed. 
 
In the example above, early detection of the error allows the parser to, 
effectively, “correct” the input into 
 
    Y := (A * X*X) + (B * X*X) + (C * X) 
 
That’s not “right”, but it’s certainly better than what we got with delayed 
detection. 
 
Generalizing, our top-of-routine error checker now looks like this: 
 
    procedure check_for_error(sym, CSFset) 
        if not (input_token ∈ FIRST(sym) 
                or (sym ⇒+ ε and input_token ∈ CSFset) 
            report_error() 
            repeat 
                get_next_token() 
            until input_token ∈ (FIRST(sym) U CSFset U {$$}) 
 
 
One can do something similar in table-driven parsers, but for these there's an 
even easier alternative (more on this below). 
 
ANTLR, by default, uses global FOLLOW sets and Java/C++/C# exception 
handlers, but the compiler writer can (by hand) write smarter handlers. 
 



=========================================== 
TABLE-DRIVEN LL PARSING 
 
Table-driven LL parsing is essentially a different way to think about 
recursive descent.  You have a big loop in which you repeatedly look up 
an action in a two-dimensional table based on current leftmost 
non-terminal and current input token.  The actions are (1) match a 
terminal, (2) predict a production, or (3) announce a syntax error. 
 
  - When you predict a production, you replace its LHS (currently at top 
    of stack) with the symbols of the RHS, so the new TOS is the first 
    symbol of the RHS. 
 
  - This means the stack always contains what you expect to see in the 
    future. 
 
                    grammar:                                                 
                       program       → stmt_list $$                       
                       stmt_list     → stmt stmt_list | Ε                 
                       stmt          → ID := expr | READ ID | WRITE expr  
                       expr          → term term_tail                     
program:               term_tail     → add_op term term_tail | Ε          
    read A             term          → factor fact_tail                   
    read B             fact_tail     → mult_op factor fact_tail | Ε       
    sum := A + B       factor        → ( expr ) | ID | LITERAL            
    write sum          add_op        → + | -                              
    write sum / 2      mult_op       → * | /                              
 
stack                                       remaining input 
-----                                       --------------- 
pgm                                         read A read B sum ... 
stmt_list $$                                read A read B sum ... 
stmt stmt_list $$                           read A read B sum ... 
READ ID stmt_list $$                        A read B sum := A ... 
ID stmt_list $$                             read B sum := A + ... 
stmt_list $$                                read B sum := A + ... 
stmt stmt_list $$                           read B sum := A + ... 
READ ID stmt_list $$                        B sum := A + B ... 
ID stmt_list $$                             sum := A + B write ... 
stmt_list $$                                sum := A + B write ... 



stmt stmt_list $$                           sum := A + B write ... 
ID := expr stmt_list $$                     := A + B write sum ... 
:= expr stmt_list $$                        A + B write sum ... 
expr stmt_list $$                           A + B write sum ... 
term term_tail stmt_list $$                 A + B write sum ... 
factor fact_tail term_tail stmt_list $$     A + B write sum ... 
ID fact_tail term_tail stmt_list $$         + B write sum / 2 $$ 
fact_tail term_tail stmt_list $$            + B write sum / 2 $$ 
term_tail stmt_list $$                      + B write sum / 2 $$ 
add_op term term_tail stmt_list $$          + B write sum / 2 $$ 
+ term term_tail stmt_list $$               B write sum / 2 $$ 
term term_tail stmt_list $$                 B write sum / 2 $$ 
factor fact_tail term_tail stmt_list $$     B write sum / 2 $$ 
ID fact_tail term_tail stmt_list $$         write sum / 2 $$ 
fact_tail term_tail stmt_list $$            write sum / 2 $$ 
term_tail stmt_list $$                      write sum / 2 $$ 
stmt_list $$                                write sum / 2 $$ 
stmt stmt_list $$                           write sum / 2 $$ 
WRITE expr stmt_list $$                     sum / 2 $$ 
 
...     etc 
 
stmt_list $$                                $$ 
$$ 
 
Remember: the stack contains all the stuff you expect to see between now and 
the end of the program—what you predict you will see. 
 
These correspond in a recursive descent parser to 
the concatenation of the remainders of the current 
case arm in all the RD routines on the 
current call chain. 
 
 
 
 
 
 
 
 



 
------------------------------------------------ 
LL PARSER GENERATORS 
 
The algorithm to build PREDICT sets is tedious (for a “real” sized 
grammar), but relatively simple. 
 

(1) compute FIRST sets and EPS values for symbols 
(2) compute FOLLOW sets for non-terminals 

(this requires computing FIRST sets and EPS values for some strings) 
(3) compute PREDICT sets for productions 

(this also requires FIRST and EPS for some strings) 
 
where 
 
    EPS(α) == if α ⇒* ε then true else false 
    FIRST(α) == {c : α ⇒* c β} 
    FOLLOW(A) == {c : S ⇒+ α A c β} 
    PREDICT(A → α) == FIRST(α) U (if EPS(α) then FOLLOW(A) ELSE ∅) 
 
Steps (1), (2), and (3) begin with “obvious” facts, and use them to 
deduce more facts, until nothing new is learned in a full pass through 
the grammar. 
 
What is obvious?  At a minimum: 
    If A → ε, then EPS(A) = true 
    c in FIRST(c) 
 
How to deduce? 
    If EPS(α) = true and A → α, then EPS(A) = true 
    If A → B β, then FIRST(A) ⊃	FIRST(B) 
    If A → α B β, then FOLLOW(B) ⊃ FIRST(β) 
    If A → α B (or A → α B β and EPS(β) = true) 
        then FOLLOW(B) ⊃ FOLLOW(A) 
 
This last one is tricky.  It's not true the other way around. 
That is, A → α B does not imply that FOLLOW(A) ⊃ FOLLOW(B). 



Consider our calculator grammar. 
    ')' is in FOLLOW(E), because F → ( E ) 
    $$ is in FOLLOW(S), because P → SL $$,  SL → S SL,  and SL → ε 
 
Now consider the production S → write E. 
The fact that $$ is in FOLLOW(S) means than $$ is in FOLLOW(E). 
But the fact that ')' is in FOLLOW(E) does not mean that 
')' is in FOLLOW(S). 
 
Put another way, ')' is in FOLLOW(E) in the context where E was 
generated from F, but not necessarily in the context where E was 
generated from S. 
 
If any token belongs to the PREDICT set of more than one production 
with the same lhs, then the grammar is not LL(1). 
A conflict can arise because 
    some token c can begin more than one rhs, or 
    c can begin one rhs and can also appear after the LHS in some 
        valid program, and one possible RHS is epsilon. 
 
Examples 2.33–2.35 in the book work through the generation of a 
table-driven parser for the calculator language. 
 
    Fig. 2.22 shows the “obvious” facts in the calculator grammar 
    Fig. 2.23 shows the generated FIRST, FOLLOW, and PREDICT sets 
    Fig. 2.20 contains the resulting parse table 
    Fig. 2.19 contains a parser driver that reads the parse table 
 
Again, the algorithm to generate the parse table 
 

(1) compute FIRST sets and EPS values for symbols 
(2) compute FOLLOW sets for non-terminals 

(this requires computing FIRST sets and EPS values for some strings) 
(3) compute PREDICT sets for productions 

(this also requires FIRST and EPS for some strings) 
 
 



Here are the details: 
 
    -- EPS values and FIRST sets for all symbols: 
        for all terminals c 
            EPS(c) := false;  FIRST(c) := {c} 
        for all non-terminals X 
            EPS(X) := if X → ε then true else false 
            FIRST(X) := ∅ 
        repeat 
            <outer> for all productions X → Y1 Y2 ... Yk 
                <inner> for i in 1..k 
                    add FIRST(Yi) to FIRST(X) 
                    if not EPS(Yi) (yet) then continue outer loop 
                EPS(X) := true 
        until no further progress 
 
    -- Subroutines for strings, similar to the inner loop above: 
        function string_EPS(X1 X2 ... Xn): 
            for i in 1..n 
                if not EPS(Xi) then return false 
            return true 
 
        function string_FIRST(X1 X2 ... Xn): 
            return_value := ∅ 
            for i in 1..n 
                add FIRST(Xi) to return_value 
                if not EPS(Xi) then return 
 
    -- FOLLOW sets for all symbols: 
        for all symbols X, FOLLOW(X) := ∅ 
        repeat 
            for all productions A → α B β 
                add FIRST(β) to FOLLOW(B) 
            for all productions A → α B 
                    or A → α B β, where string_EPS(β) = true 
                add FOLLOW(A) to FOLLOW(B) 
        until no further progress 
 
    -- PREDICT sets for all productions: 
        for all productions A → α 
            PREDICT(A → α) := string_FIRST(α) 
                U (if string_EPS(α) then FOLLOW(A) else ∅) 



 
At the end, the grammar is LL(1) iff all the PREDICT sets for productions with the 
same LHS are disjoint. 
 
---------------------------------------- 
SYNTAX ERROR RECOVERY (reprise) 
 
Natural adaptation of phrase-level recovery to table-driven top-down parsing: 

• When we encounter an error in match (TOS is a token that doesn't match the 
input), we print a message and pop the stack (pretend to have seen the 
desired token). 

• When we encounter an error entry in the table (non-terminal A at TOS), we 
delete tokens until we find something in FIRST(A) or FOLLOW(A).  If in 
FIRST(A), we continue the main loop of the driver.  If in FOLLOW(A), we pop 
the stack first.  ($$ is a special case: if we see that, we print an error message 
and die.) 

• More generally, we may define a set of “starter symbols” that are too 
dangerous to delete (begin, left paren, procedure, ...), because they are likely 
to presage subsequent structure.  We leave them alone, pop the nonterminal 
off the parse stack, and hope that the starter symbol will be in FIRST of 
something deeper in the stack.  If not, we'll eventually end up with $$ on the 
stack and remaining input, at which point we print a message and die. 

As in the recursive descent case, we probably want to consider the immediate 
error detection problem.  Adding context-sensitive follow sets to the stack is a 
nuisance, however.  Much easier, when we predict an epsilon production, to 
remember that we did so, and buffer what we popped off the stack. 

• If we accept a new token of real input, we can toss the buffer. 

• If we run into an error before then, we put the buffered symbols back on 
the stack and initiate error recovery as shown above. 

• Indirect epsilon productions (e.g., A → B C, where B → ε and C → ε) 
introduce a little extra complication; we have to buffer everything we do 
to the stack, not just the pops. 

 


