
Notes for CSC 2/454, Jan. 28 – Feb. 4, 2025

==
SCANNING

Scanner is responsible for
 tokenizing source
 removing comments
 saving text of identifiers, numbers, strings
 saving source locations (file, line, column) for error messages

 a DFA for identifiers:

Can be built by hand (ad hoc) or automatically from regular expressions (REs)
 ad-hoc generally yields the fastest, most compact code
 by doing lots of special-purpose things
 automatically-generated scanners can come close, though
 and are easy to develop and change

A scanner generator builds a DFA automatically from a set of REs
Specifically, it constructs a machine that accepts the “language”

 identifier | int const | real const | comment | symbol | ...

In other words, a real scanner accepts the alternation of a language's
tokens, with a separate final state for each.
We run the scanner over and over to get one token after another.

(Note that theoreticians use “language” to mean a set of strings --
not nec. the valid programs of a programming language.)

Nearly universal rule:
 always take the longest possible token from the input
 thus foobar is foobar and never f or foo or foob
 more to the point, 3.14159 is a real const and never 3, ., and 14159

An RE generates a regular language; a DFA recognizes it.

The standard Unix lex (flex) outputs C code.
Some other tools produce numeric tables that are read by a separate driver.
The table is the transition function
 two-dimensional array indexed by current state and input character
 entries specify
 next state
 whether to keep scanning, return a token, or announce an error

Longest-possible token rule means we return only when the next
character can't be used to continue the current token.
That next character must generally be saved for the next token.

In some cases you may need to peek at more than one character of
lookahead in order to know whether to proceed.

 In Ruby, when you have a 3 and you see a dot, do you proceed (in
 hopes of getting 3.14) or do you stop (in fear of getting 3..5 or 3...5)?

 In messier cases, you may not be able to get by with any fixed amount of
 lookahead. In Fortran IV (c. 1962), for example, one had

 DO 5 I = 1,25 loop
 DO 5 I = 1.25 assignment
 DO 5,I = 1,25 alternate syntax for loop, f77

For most languages it suffices to remember we were in a potentially
final state, and save enough information that we can back up to it if we
get stuck later.
For some languages (famously, Fortran), that isn't enough.
 Sometimes need semantic information in order to scan (yuck).

--
Building a scanner from regular expressions

multi-step process

1) write REs by hand, including for whitespace and comments, but with
identifiers and reserve words (keywords) combined

2) build NFA from REs
3) build DFA from NFA
4) minimize DFA
5) add extra logic to

o implement the longest-possible-token rule, with backup
o discard white space and comments (i.e., start over when you realize

that's what you found)
o distinguish reserve words from identifiers
o save text of “interesting” tokens
o tag returned tokens with location and text
o return an extra $$ token at end-of-file

In most compilers, the parser drives the front end.
The scanner is a subroutine (function) called by the parser.

Step (2) above is inductive. It starts with a trivial DFA to accept a single
character:

Note that this machine has a single start state, a single final state,
no transitions into the start state, and no transitions out of the final
state. We'll maintain these invariants in three inductive steps:

Concatenation (A B):

Alternation (A | B):

Kleene closure (A*):

Step (3) uses what's called a “set of subsets” construction.
Step (4) divides the states of an initial DFA into progressively finer
equivalences classes, until it can prove that additional refinement
makes no difference.

Example 1 (in the book): real numbers (no exponential notation)

 RN = d*(.d|d.)d*

 14-state NFA results from construction
 5-state subset DFA
 4-state minimal DFA

Example 2: character strings with optional backslash-escaped quotes

 S = “ ([^\”] | \a)* “ “a” for anything; “[^\”]” for anything but \ and “

 11-state NFA results from construction
 6-state subset DFA
 4-state minimal DFA

NB:
 (1) There’s nothing magic about the characters we choose to consider as

 possible reasons to split a group. In a mechanical tool, we’d simply
 iterate over all characters in the alphabet. Many wouldn’t teach us
 anything.

(2) Real scanner accepts alternation of tokens, with a separate final state
 for each. Scanner generator

• starts with NFAs for all the separate tokens
• creates a new start state with an Ε-transition to the start state of

each token NFA

• turns that into a DFA
• runs the minimization algorithm starting not with two classes (final

and non-final) but with K+1: non-final, final for token T1, final for
token T2, ..., final for token TK.

Suggestion: try Exercise 2.5 in the book: extend Examples 1.13-15 to build a
minimal DFA for integers and decimals together.

--

In our two examples, the DFA was smaller than the original NFA.
Is that always the case?

No! Quite the contrary.

Example 3: subset of (a|b|c)* in which some letter appears at least 3 times.

 RE (one possibility):
 (a|b|c)* ((a|b)*c(a|b)*c(a|b)*c(a|b)*
 | (c|b)*a(c|b)*a(c|b)*a(c|b)*
 | (a|c)*b(a|c)*b(a|c)*b(a|c)*) (a|b|c)*
 exists an 8-state NFA
 minimal DFA has 28 states

 See the PLP Companion Site, Sec. 2.4.1

That NFA, of course, doesn't come from the standard construction.
Are there any that do, and for which the DFA is bigger yet?
Absolutely!

Example 4: subset of (0|1|2|3|4|5|6|7|8|9)* in which some digit appears
at least 10 times.

 minimal DFA has 10,000,000,001 states
 one RE is

(0|1|2|3|4|5|6|7|8|9)*
(
 ((1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)* 0
 (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)* 0
 (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)* 0
 (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)* 0
 (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)*)
 |
 ((0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)* 1
 (0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)* 1
 (0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)* 1
 (0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)* 1
 (0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)*)
 | ...
 |
 ((0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)* 9
 (0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)* 9
 (0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)* 9
 (0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)* 9
 (0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)*)
)
(0|1|2|3|4|5|6|7|8|9)*

 anybody believe the automatically constructed NFA for that has 10
 billion states?

--

We can also build a RE from a DFA (as shown in Section 2.4.1 on the PLP
companion site). This completes a proof that the two notations are
equally powerful. Nobody does this in practice, however; it amounts to
converting the computer-friendly notation into a human-friendly
notation, and we usually want to go the other way.

--

In a real compiler, the input may have errors, including lexical errors.
 Consider, in Java or C, the input

 int myVaria$ble

 That dollar sign isn't supposed to be there.

What should a scanner do?

Generally suffices to
 return the longest token that starts at the beginning of the
 remaining part of the input program
 (after deleting white space and comments)
 or, if there isn't a valid token starting there, delete characters until there is,
 print an error message reporting the deletion, and return the token found

In our Java example, that will return myVaria, complain and delete the $, and
then return ble. That’s not the “right” fix, but the rest of the compiler will deal.

Pseudocode for a table-driver scanner can be found in the text.

==
CONTEXT FREE GRAMMARS

Here's a grammar for a simple desk calculator language
(from the intro lecture notes):

 1 pgm → stmt_list $$
 2 stmt_list → stmt_list stmt | ε
 3 stmt → id := expr | read id | write expr
 4 expr → term | expr add_op term
 5 term → factor | term mult_op factor
 6 factor → (expr) | id | lit
 7 add_op → + | -
 8 mult_op → * | /

[This happens to be a “bottom-up” grammar -- one of the two kinds that
are easy to parse.]

Terminology:
 CF grammar
 symbols
 terminals (tokens)
 non-terminals
 start symbol

 production
 derivation (see example below)
 left-most
 right-most (canonical)
 sentential form

[Useless symbols: non-terminals that can't derive a token string, or tokens that
can't be derived. We will assume we have none of these. They can be detected
and removed automatically and efficiently.]

Consider the program
 read A
 read B
 sum := A + B
 write sum
 write sum / 2

Derivation using the above grammar:

program
stmt_list $$
stmt_list stmt $$
stmt_list write expr $$
stmt_list write term $$
stmt_list write term mult_op factor $$
stmt_list write term mult_op lit $$
stmt_list write term / lit $$
stmt_list write factor / lit $$
stmt_list write id / lit $$
stmt_list stmt write id / lit $$
stmt_list write expr write id / lit $$
stmt_list write term write id / lit $$
stmt_list write factor write id / lit $$
stmt_list write id write id / lit $$
stmt_list stmt write id write id / lit $$
stmt_list id := expr write id write id / lit $$
stmt_list id := expr add_op term write id write id / lit $$
stmt_list id := expr add_op factor write id write id / lit $$
stmt_list id := expr add_op id write id write id / lit $$
stmt_list id := expr + id write id write id / lit $$
stmt_list id := term + id write id write id / lit $$
stmt_list id := factor + id write id write id / lit $$
stmt_list id := id + id write id write id / lit $$
stmt_list stmt id := id + id write id write id / lit $$
stmt_list read id id := id + id write id write id / lit $$
stmt_list stmt read id id := id + id write id write id / lit $$
stmt_list read id read id id := id + id write id write id / lit $$
read id read id id := id + id write id write id / lit $$

Each line is a sentential form. By definition that's a string of grammar symbols
that occurs in the derivation of some string of terminals from the start symbol.

This is a “canonical” (right-most) derivation: at each step we have expanded the
right-most non-terminal in the current sentential form. So each line is a “right
sentential form.”

Bottom-up parsers that read their input left-to-right to discover
right-most derivations.
Top-down parsers that read their input left-to-right discover
left-most derivations.

--
A Little Theory

A context-free grammar (CFG) is a generator for a CF language.
A parser is a language recognizer.

There is an infinite number of grammars for every context-free language.
But not all grammars are equal!

For any CFG we can create a parser that runs in O(n^3) time.
 Early's algorithm (~emulation of an NPDA)
 Cocke-Younger-Kasami (CYK) algorithm (dynamic programming)
O(n^3) time is clearly unacceptable for a parser in a compiler.

There are large classes of grammars for which we can build parsers that
run in linear time. The two most important classes are called LL and LR.

 LL stands for 'Left-to-right, Leftmost derivation'.
 LR stands for 'Left-to-right, Rightmost derivation'.

We'll focus on LL parsing, which is what you're going to be using in
your next assignment. The LR class is larger, but
 - most programming languages have LL grammars
 (or something close enough to use with a couple hacks)
 - LL parsing is generally simpler and easier to understand.

You commonly see LL or LR (or whatever) written with a number in
parentheses after it. This number indicates how many tokens of
look-ahead are required in order to parse. Most but not all real
compilers use one token of lookahead.
 Some compilers (e.g., for Fortran) have hacks to get more lookahead
 in special cases.
 The open-source compiler-compiler ANTLR is LL(k).

LL parsers are also called 'top-down', or 'predictive' parsers.
LR parsers are also called 'bottom-up', or 'shift-reduce' parsers.
More on this in the next lecture.

There are several important sub-classes of LR parsers, including SLR and
LALR. See Sec. 2.3.4 in the text (unassigned) if you're curious.

What makes a grammar “nice”?

It's particularly important that it be unambiguous -- no two parse trees
for the same string. Consider what would have happened if bottom-up
productions 4 and 5 (right) were instead

 expr → factor | expr op expr

This gives us two parse trees for A - B - C :

 expr → term | expr add_op term
 term → factor | term mult_op factor

Also nice if the parse trees reflect semantic structure, but that's not
essential. Our bottom-up calculator grammar nicely captures the notion
of precedence:

Here's a bottom-up parse
tree for 3 + 4 * 5 :

Consider what would have happened if productions 4 and 5 in the
bottom-up grammar were

 expr → factor | expr op factor

This gives us a different parse
tree for 3 + 4 * 5 :

There is nothing wrong with this grammar or this tree, but you can see
why the first one might be easier to translate into a syntax tree.

Our grammar also captures the notion
of left associativity. Here's a bottom-up
parse tree for 10 - 4 - 3 :

Consider what would have happened if production 4 was

 expr → term | term add_op expr

This gives us a different
parse tree for 10 - 4 - 3 :

Again, there is nothing wrong with this grammar or this tree, but you
can see why the first one might be easier to translate into a syntax tree.

Here is an LL(1) (top-down) grammar for the same language:

 1 pgm → stmt_list $$
 2 stmt_list → stmt stmt_list | ε
 3 stmt → id := expr | read id | write expr
 4 expr → term term_tail
 5 term_tail → add_op term term_tail | ε
 6 term → factor fact_tail
 7 fact_tail → mult_op factor fact_tail | ε
 8 factor → (expr) | id | lit
 9 add_op → + | -
 10 mult_op → * | /

Like the bottom-up grammar, the top-down one captures precedence, but
most people don't find it as pretty. Operands of a given operator
aren't in a RHS together, and the resulting parse trees look a bit
strange.

Here's a top-down parse
tree for 3 + 4 * 5 :

It still seems to suggest that multiplication groups more tightly than
addition, but in a lopsided sort of way.

The simplicity of the parsing algorithm makes up for this weakness, in
my opinion. As we'll see later, top-down parsing also makes it easier
to handle special cases and to produce good error messages when the

input program has syntax errors.
 gcc switched from bottom-up to top-down parsing around 2005
 LLVM's clang front end also uses top-down parsing

Also note that the top-down grammar doesn't capture associativity: in
order to parse top-down left-to-right, we end up with a tree that tends
to associate to the right.

Here's a top-down parse
tree for 10 - 4 - 3 :

There's no getting around this in the parser. Have to take care (by hand) to
make sure that the syntax tree reflects associativity correctly.

===
TOP-DOWN AND BOTTOM-UP PARSING

*** An LL family parser builds a leftmost derivation from the top down.
*** An LR family parser builds a rightmost derivation from the bottom up.

How do we parse a string with the top-down grammar? You can get the general
idea by building the parse tree incrementally by hand:

 Start at the top and *predict* needed productions on the basis of
 the current left-most non-terminal in the tree and the current input
 token.

Consider our example program again, together w/ the top-down grammar:

 P → SL $$
 SL → S SL | ε
 S → id := E | read id | write E
 E → T TT
 TT → ao T TT | ε
 read A T → F FT
 read B FT → mo F FT | ε
 sum := A + B F → (E) | id | lit
 write sum ao → + | -
 write sum / 2 mo → * | /

Let's build a parse tree:

Notice that at every step along the way, it was clear (unambiguous) what to do.

We can also get a sense of the bottom-up case with an example, but it won't be
as obvious what's going on.

 Just as a scanner is based on a finite automaton,
 a parser is based on a pushdown automaton
 - basically a finte automaton with a stack
 - makes a decision based on input, state, and top-of-stack symbol
 - chooses a new state and may push or pop the stack

 A top-down parser has a trivial state machine.
 - makes all decisions based on input and top-of-stack symbol
 until it sees end-of-file, at which point it switches to a final
 state if the stack looks right (more on this later)

 A bottom-up parser has a complex state machine.
 - uses current state to make decisions
 - I won't be showing you the state machine in this example

Consider our example program again, together w/ the bottom-up grammar:

 P → SL $$
 SL → SL S | ε
 S → id := E | read id | write E
 read A E → T | E ao T
 read B T → F | T mo F
 sum := A + B F → (E) | id | lit
 write sum ao → + | -
 write sum / 2 mo → * | /

Let's build a parse tree:

The power of bottom-up parsing comes from its ability to recognize things “after
the fact,” rather than predicting them up front. This same power explains why
error messages and special-case hacks are harder to implement in the bottom-
up-case: the parser isn't always sure what's going on until after it's finished.

NB: I claimed earlier that a bottom-up parser discovers a rightmost derivation.
We can see that in the example above. The parser starts with the last line of the
derivation (the string of tokens). It then repeatedly finds the previous line, which
glues together the leftmost not-glued together stuff. That means the top lines of
the derivation, once discovered, are expanding the rightmost stuff.

==
LL PARSING and RECURSIVE DESCENT

We can implement top-down parsing in two ways:
 - recursive descent parser
 - written by hand or automatically
 - parse table and a driver
 - written automatically

We'll consider the table-driven option more in a bit.
If you took 173 you probably saw recursive descent; this is a review.

Key idea: set of mutually recursive subroutine, one for each nonterminal.
Each such routine is responsible for discovering a subtree of the parse
tree, rooted at the symbol for which it is named.

Also need a match routine:
 takes a token name as argument and reads a matching token from the
 input stream, or announces an error if it can't.

(How to handle errors comes in the next lecture. For now, let's assume
we just quit.)

Consider recursive descent routines for the calculator language:

The parser begins by calling the following subroutine:

 procedure pgm
 case input_token of
 id, read, write, $$: stmt_list; match($$)
 else error

Other subroutines include:

 procedure stmt_list
 case input_token of
 id, read, write : stmt; stmt_list
 $$: skip // epsilon
 else error

 procedure stmt
 case input_token of
 id : match(id); match(:=); expr
 read : match(read); match(id)
 write : match(write); expr
 else error

 procedure expr
 case input_token of
 id, literal, (: term; term_tail
 else error

 procedure term
 case input_token of
 id, literal, (: factor; fact_tail
 else error

 procedure term_tail
 case input_token of
 +, - : add_op; term; term_tail
), id, read, write, $$: skip // epsilon
 else error

 etc.

Each routine knows that it's expecting to see—the yield of the symbol for which
it is named. It needs to

(1) choose a production with which to generate the symbol's children in the
parse tree
- makes this choice based on the upcoming token from the scanner

(2) parse those children one by one
- match any that are terminals
- call the appropriate RD routine to parse any that are nonterminals

So how exactly do we know (in a complicated grammar) which production to
use, given an expected nonterminal (root of to-be-fleshed-out subtree)
and upcoming token?
That is, how to label the arms of the switch statements?

PREDICT Sets

If a RHS can start with a given token (directly or indirectly), the
appearance of that token predicts its rhs.

If the rhs is epsilon (or something that can derive epsilon), any token that can
follow the LHS anywhere in the grammar predicts the epsilon production.

An LL(1) parser generator constructs these “predict sets” for you. We'll consider
the algorithm a bit later. It depends on the following definitions:

FIRST(α) ≡ {c : α ⇒* c β}
FOLLOW(A) ≡ {c : S ⇒+ α A c β}
PREDICT(A → α) ≡ FIRST(α) U (if α ⇒* ε then FOLLOW(A) else ∅)

Here → is the familiar “goes to” symbol used in productions.
⇒ means “derives” — can be replaced by. Note that its LHS doesn't have
 to be a single symbol.
⇒* means “derives in zero or more steps”
⇒+ means “derives in one or more steps”

NB: conventional notation uses
 lower case letters near the beginning of the alphabet for terminals
 lower case letters near the end of the alphabet for strings of terminals
 upper case letters near the beginning of the alphabet for non-terminals
 upper case letters near the end of the alphabet for arbitrary symbols
 Greek letters for arbitrary strings of symbols

*** In a recursive descent parser, if c ∈ PREDICT(A → α), then the RD
 routine for A will predict A → α when it sees c on the input.

FIRST sets capture the “RHS can start with 'c'“ case.
FOLLOW sets capture the “RHS can generate ε” case.
Consider, for example, a TT node of an under-construction parse tree in our
calculator language.

We should predict TT → ao T TT if the upcoming
token from the scanner is a + or −, which can go
in the lower circle in the pic—that’s the FIRST
case. It can happen if the question mark is S and
the stuff to the left is “write” or “id :=”.

We should predict TT → ε if the upcoming token
from the scanner is a ‘)’, which can go in the
other circle (the first leaf to the right of the TT—
that’s the FOLLOW case. It can happen if the
question mark is F and the stuff to the left is “(”.

The calculator language is simple enough that one can figure out PREDICT sets
more or less by inspection. “Real” languages are too complex for that
to be a reasonable task. We need an algorithm (stay tuned).

Note the implicit assumption that the choice among productions A → α and
A → β is always uniquely determined. What if there is more than one
production w/ a LHS of A and a RHSs that can start w/ the same nonterminal?
Or two RHSs than can generate epsilon? Or a RHS that can start with c and a RHS
that generate ε, when c is in FOLLOW(A)?

In this case the grammar is not LL(1) — by definition.

It turns out most programming languages have LL(1) grammars — or are close
enough that the wrinkles can be handled with hand-written kludges.
A famous example was the if-then-else statements of Algol-60 and Pascal (see
the text for details — fixed in modern languages with terminator keywords).

Also see the text for more on creating a grammar that’s LL(1).

==
SYNTAX ERROR RECOVERY

Not ok to announce a single syntax error and stop parsing.
Have to recover and continue, to find additional errors.

Wirth's formalization for recursive descent:
 - On a token mismatch, insert what you expect and print an error message
 - On a null prediction in the RD routine for nonterminal A
 (no matching label in switch)
 delete tokens until you see something in FIRST(A) or FOLLOW(A)
 (also stop if you see $$)
 if the FIRST case, restart the current routine
 - assume what we saw was garbage and can be ignored
 if the FOLLOW case, return
 - assume what we saw was the desired nonterminal, garbled
So the RD routine for statements might be

 procedure stmt
 if not (input_token ∈ FIRST(stmt)) // NB: stmt cannot derive ε
 report_error()
 repeat
 get_next_token()
 until input_token ∈ (FIRST(stmt) U FOLLOW(stmt) U {$$})
 case input_token of
 id : match(id); match(:=); expr()
 read : match(read); match(id)
 write : match(write); expr()
 // no else clause needed

That initial if clause can of course be abstracted out into a routine that is then
called at the top of each RD routine:

 procedure check_for_error(sym)
 if not (input_token ∈ FIRST(sym)
 or (sym ⇒+ ε and input_token ∈ FOLLOW(sym))
 report_error()
 repeat
 get_next_token()
 until input_token ∈ (FIRST(sym) U FOLLOW(sym) U {$$})

Simpler strategies are possible (some use exceptions, and limit recovery to major
constructs like statements and top-level expressions)—but Wirth’s algorithm is
actually pretty simple, and works well.

Fancier strategies are also possible. Fischer, Milton, and Quiring

developed a particularly pretty “tunable”, locally-least-cost recovery
mechanism for table-driven LL(1) (see the book).

The immediate error detection problem and context-sensitive follow sets

Several error-recovery mechanisms, including the version of Wirth's
described above, will sometimes predict an epsilon production when
calling routines are doomed to discover an error.
 Arguably, we should detect the error before generating epsilon.
 That way we have more context with which to craft recovery.

Example from the book, in the calculator language:

Y := (A * X X*X) + (B * X*X) + (C * X)
 ^ There's a problem here (missing '*' in polynomial).
 Can we tell?

When we're at the point shown in the parse, what recursive descent
routines are active?

 (dot shows where we are inside)
 program P → . SL $$
 stmt_list SL → . S SL
 stmt S → id := . E
 expr E → . T TT
 term T → . F FT
 factor F → (. E)
 expr E → . T TT
 term T → F . FT
 factor_tail FT → * F . FT
 factor_tail FT → ?

Now ID can follow expr in some programs (e.g. A := B C := D), and an expr
can end with a factor_tail, so ID is in FOLLOW of factor_tail. And since factor_tail
and term_tail can generate epsilon, the “obvious” thing is to return from FT
twice, return from T (which thinks it's done); call from E to TT; return from TT;
and return to F all without detecting an error of any kind. At this point we'll

(finally) get a mismatch between ID and). Unfortunately we won't have much
information to work with at that point, and won't be able to make as good a
recovery as we would have liked.

Specifically: match will insert a right paren, allowing F to complete and return. T
will call FT, which will see X on the input, which is in FOLLOW(FT), so it will
predict and epsilon production and return, allowing T to return. E will likewise
call TT, which predicts epsilon and returns, allowing E to return, at which point S
will complete and return, allowing SL to make a recursive call. Now we have

 X*X) + (B * X*X) + (C * X)

on the input, but we've left the context in which we could continue to parse
more pieces of an expression.

SL will predict S → id := E. We'll match id (X), insert :=, call E, T, and then F.
F will predict F → id, match X, then return all the way back to

 SL → S . SL

at which point we'll make another recursive call to SL and run into trouble with)
on the input. We'll delete the), predict S → id := E, and soon run into trouble
again when we see * instead of := on the input. When the dust settles, our final
“correction” will be

 Y := (A * X) X := X B := X * X C := X

If we were smarter, when FT saw X way back at the beginning it would know that
an ID can't follow a factor_tail in this particular context (where we're inside a
parenthesized expression, not at the end of an assignment). Good error
recovery algorithms take this into account. Wirth showed how to do it in the
(better version of) his error-recovery algorithm for recursive descent. He adds a
context-sensitive follow set parameter to every R.D. subroutine, and uses these,
rather than global FOLLOW, to predict epsilon productions.

So, for example, when F calls E in the example above, it would pass as E's follow
set only { ')' }. When E calls T it would pass that same set, plus FIRST(TT) -- i.e.,

{ ')', '+', '−' }. When T calls FT it would pass what it, itself, was given, namely { ')',
'+', '−' }. When FT calls itself recursively it would pass this same set yet again.
When the nested FT sees 'id' on the input, it would know there was a problem.
It would delete the id. The subsequent * is in FIRST(FT), so all would be well at
that point.

In the general case, context-sensitive FOLLOW sets are surprisingly easy to
compute. The augmenting production passes {$$} to the routine for the start
symbol (e.g., program). When calling a routine in the middle of an arm of a
switch statement, we pass FIRST(α), where α comprises the symbols remaining
to be parsed in this arm of the switch. If α ⇒* ε, then we pass FIRST(α) unioned
with the context-specific FOLLOW set we ourselves were passed.

In the example above, early detection of the error allows the parser to,
effectively, “correct” the input into

 Y := (A * X*X) + (B * X*X) + (C * X)

That’s not “right”, but it’s certainly better than what we got with delayed
detection.

Generalizing, our top-of-routine error checker now looks like this:

 procedure check_for_error(sym, CSFset)
 if not (input_token ∈ FIRST(sym)
 or (sym ⇒+ ε and input_token ∈ CSFset)
 report_error()
 repeat
 get_next_token()
 until input_token ∈ (FIRST(sym) U CSFset U {$$})

One can do something similar in table-driven parsers, but for these there's an
even easier alternative (more on this below).

ANTLR, by default, uses global FOLLOW sets and Java/C++/C# exception
handlers, but the compiler writer can (by hand) write smarter handlers.

===
TABLE-DRIVEN LL PARSING

Table-driven LL parsing is essentially a different way to think about
recursive descent. You have a big loop in which you repeatedly look up
an action in a two-dimensional table based on current leftmost
non-terminal and current input token. The actions are (1) match a
terminal, (2) predict a production, or (3) announce a syntax error.

 - When you predict a production, you replace its LHS (currently at top
 of stack) with the symbols of the RHS, so the new TOS is the first
 symbol of the RHS.

 - This means the stack always contains what you expect to see in the
 future.

 grammar:
 program → stmt_list $$
 stmt_list → stmt stmt_list | Ε
 stmt → ID := expr | READ ID | WRITE expr
 expr → term term_tail
program: term_tail → add_op term term_tail | Ε
 read A term → factor fact_tail
 read B fact_tail → mult_op factor fact_tail | Ε
 sum := A + B factor → (expr) | ID | LITERAL
 write sum add_op → + | -
 write sum / 2 mult_op → * | /

stack remaining input
----- ---------------
pgm read A read B sum ...
stmt_list $$ read A read B sum ...
stmt stmt_list $$ read A read B sum ...
READ ID stmt_list $$ A read B sum := A ...
ID stmt_list $$ read B sum := A + ...
stmt_list $$ read B sum := A + ...
stmt stmt_list $$ read B sum := A + ...
READ ID stmt_list $$ B sum := A + B ...
ID stmt_list $$ sum := A + B write ...
stmt_list $$ sum := A + B write ...

stmt stmt_list $$ sum := A + B write ...
ID := expr stmt_list $$:= A + B write sum ...
:= expr stmt_list $$ A + B write sum ...
expr stmt_list $$ A + B write sum ...
term term_tail stmt_list $$ A + B write sum ...
factor fact_tail term_tail stmt_list $$ A + B write sum ...
ID fact_tail term_tail stmt_list $$ + B write sum / 2 $$
fact_tail term_tail stmt_list $$ + B write sum / 2 $$
term_tail stmt_list $$ + B write sum / 2 $$
add_op term term_tail stmt_list $$ + B write sum / 2 $$
+ term term_tail stmt_list $$ B write sum / 2 $$
term term_tail stmt_list $$ B write sum / 2 $$
factor fact_tail term_tail stmt_list $$ B write sum / 2 $$
ID fact_tail term_tail stmt_list $$ write sum / 2 $$
fact_tail term_tail stmt_list $$ write sum / 2 $$
term_tail stmt_list $$ write sum / 2 $$
stmt_list $$ write sum / 2 $$
stmt stmt_list $$ write sum / 2 $$
WRITE expr stmt_list $$ sum / 2 $$

... etc

stmt_list $$ $$
$$

Remember: the stack contains all the stuff you expect to see between now and
the end of the program—what you predict you will see.

These correspond in a recursive descent parser to
the concatenation of the remainders of the current
case arm in all the RD routines on the
current call chain.

--
LL PARSER GENERATORS

The algorithm to build PREDICT sets is tedious (for a “real” sized
grammar), but relatively simple.

(1) compute FIRST sets and EPS values for symbols
(2) compute FOLLOW sets for non-terminals

(this requires computing FIRST sets and EPS values for some strings)
(3) compute PREDICT sets for productions

(this also requires FIRST and EPS for some strings)

where

 EPS(α) == if α ⇒* ε then true else false
 FIRST(α) == {c : α ⇒* c β}
 FOLLOW(A) == {c : S ⇒+ α A c β}
 PREDICT(A → α) == FIRST(α) U (if EPS(α) then FOLLOW(A) ELSE ∅)

Steps (1), (2), and (3) begin with “obvious” facts, and use them to
deduce more facts, until nothing new is learned in a full pass through
the grammar.

What is obvious? At a minimum:
 If A → ε, then EPS(A) = true
 c in FIRST(c)

How to deduce?
 If EPS(α) = true and A → α, then EPS(A) = true
 If A → B β, then FIRST(A) ⊃	FIRST(B)
 If A → α B β, then FOLLOW(B) ⊃ FIRST(β)
 If A → α B (or A → α B β and EPS(β) = true)
 then FOLLOW(B) ⊃ FOLLOW(A)

This last one is tricky. It's not true the other way around.
That is, A → α B does not imply that FOLLOW(A) ⊃ FOLLOW(B).

Consider our calculator grammar.
 ')' is in FOLLOW(E), because F → (E)
 $$ is in FOLLOW(S), because P → SL $$, SL → S SL, and SL → ε

Now consider the production S → write E.
The fact that $$ is in FOLLOW(S) means than $$ is in FOLLOW(E).
But the fact that ')' is in FOLLOW(E) does not mean that
')' is in FOLLOW(S).

Put another way, ')' is in FOLLOW(E) in the context where E was
generated from F, but not necessarily in the context where E was
generated from S.

If any token belongs to the PREDICT set of more than one production
with the same lhs, then the grammar is not LL(1).
A conflict can arise because
 some token c can begin more than one rhs, or
 c can begin one rhs and can also appear after the LHS in some
 valid program, and one possible RHS is epsilon.

Examples 2.33–2.35 in the book work through the generation of a
table-driven parser for the calculator language.

 Fig. 2.22 shows the “obvious” facts in the calculator grammar
 Fig. 2.23 shows the generated FIRST, FOLLOW, and PREDICT sets
 Fig. 2.20 contains the resulting parse table
 Fig. 2.19 contains a parser driver that reads the parse table

Again, the algorithm to generate the parse table

(1) compute FIRST sets and EPS values for symbols
(2) compute FOLLOW sets for non-terminals

(this requires computing FIRST sets and EPS values for some strings)
(3) compute PREDICT sets for productions

(this also requires FIRST and EPS for some strings)

Here are the details:

 -- EPS values and FIRST sets for all symbols:
 for all terminals c
 EPS(c) := false; FIRST(c) := {c}
 for all non-terminals X
 EPS(X) := if X → ε then true else false
 FIRST(X) := ∅
 repeat
 <outer> for all productions X → Y1 Y2 ... Yk
 <inner> for i in 1..k
 add FIRST(Yi) to FIRST(X)
 if not EPS(Yi) (yet) then continue outer loop
 EPS(X) := true
 until no further progress

 -- Subroutines for strings, similar to the inner loop above:
 function string_EPS(X1 X2 ... Xn):
 for i in 1..n
 if not EPS(Xi) then return false
 return true

 function string_FIRST(X1 X2 ... Xn):
 return_value := ∅
 for i in 1..n
 add FIRST(Xi) to return_value
 if not EPS(Xi) then return

 -- FOLLOW sets for all symbols:
 for all symbols X, FOLLOW(X) := ∅
 repeat
 for all productions A → α B β
 add FIRST(β) to FOLLOW(B)
 for all productions A → α B
 or A → α B β, where string_EPS(β) = true
 add FOLLOW(A) to FOLLOW(B)
 until no further progress

 -- PREDICT sets for all productions:
 for all productions A → α
 PREDICT(A → α) := string_FIRST(α)
 U (if string_EPS(α) then FOLLOW(A) else ∅)

At the end, the grammar is LL(1) iff all the PREDICT sets for productions with the
same LHS are disjoint.

--
SYNTAX ERROR RECOVERY (reprise)

Natural adaptation of phrase-level recovery to table-driven top-down parsing:

• When we encounter an error in match (TOS is a token that doesn't match the
input), we print a message and pop the stack (pretend to have seen the
desired token).

• When we encounter an error entry in the table (non-terminal A at TOS), we
delete tokens until we find something in FIRST(A) or FOLLOW(A). If in
FIRST(A), we continue the main loop of the driver. If in FOLLOW(A), we pop
the stack first. ($$ is a special case: if we see that, we print an error message
and die.)

• More generally, we may define a set of “starter symbols” that are too
dangerous to delete (begin, left paren, procedure, ...), because they are likely
to presage subsequent structure. We leave them alone, pop the nonterminal
off the parse stack, and hope that the starter symbol will be in FIRST of
something deeper in the stack. If not, we'll eventually end up with $$ on the
stack and remaining input, at which point we print a message and die.

As in the recursive descent case, we probably want to consider the immediate
error detection problem. Adding context-sensitive follow sets to the stack is a
nuisance, however. Much easier, when we predict an epsilon production, to
remember that we did so, and buffer what we popped off the stack.

• If we accept a new token of real input, we can toss the buffer.

• If we run into an error before then, we put the buffered symbols back on
the stack and initiate error recovery as shown above.

• Indirect epsilon productions (e.g., A → B C, where B → ε and C → ε)
introduce a little extra complication; we have to buffer everything we do
to the stack, not just the pops.

