
Notes for CSC 254, 20 and 25 Feb. 2025

==
Control flow mechanisms and their implementation

Order of execution matters for statements, and for expressions with side effects.
Ordering for statements is control flow.

[Expressions have values; statements don’t. Statements are evaluated for their side
effects. Expressions may have side effects, but don’t necessarily (and it’s often
considered bad style).]

Principal paradigms for control flow:
 sequencing
 selection
 iteration
 subroutines, recursion (and related control abstractions—e.g., iterators)
 nondeterminacy
 concurrency

Expression evaluation

Operators are built-in functions with, often
 special non-identifier names (+, -, %, ...)
 infix syntax (as opposed to prefix for most functions)
 precedence and associativity
 C has 15 levels -- too many to remember
 Pascal has 3 levels -- too few for good semantics
 Fortran has 8; Ada has 6
 I don’t like the rules in any of these (Fortran probably closest)
 Ada puts and, or at same level
 Pascal misgroups if a = b or c = d then
 Lesson: when unsure, use parentheses!

evaluation order matters
 consider f(a+b, c, d(e, h), h)

 d might have side effects
 reordering might improve register allocation
 some arguments might already be available in registers
 on old machines with old compilers, last-to-first would optimize stack access

 Most languages say order of evaluation of arguments is undefined.

 Likewise, most leave operand evaluation order undefined
 e.g., in f(a, b) + g(c, d)

arithmetic identities work in math class; not always on a computer
 commutativity of + and * is usually safe
 associativity is not
 (a + b) + c works if a ~= minint and b ~= maxint and c is small
 a + (b + c) may not (esp. in floating point)

 Compilers generally respect parentheses; if in doubt, use them

short-circuiting
 if (b != 0 && a/b == c) ...
 if (*p && p->foo) ...
 if (f || messy()) ...

 connection to lazy evaluation of arguments -- e.g., in Haskell

 Not all languages evaluate and and or lazily -- beware!

Variables as values v. variables as references
 value-oriented languages
 C, Ada
 reference-oriented languages
 most functional languages (Lisp/Scheme, SML/OCaml/Haskell)
 Smalltalk
 Java deliberately in-between
 built-in types are values
 user-defined types are objects -- references
 C# similar, though user can choose which object variables are values
 (“expanded”, in Eiffel terminology) and which are references

 Rust is also in-between, but in a different way.
Roughly, the owner variable is a value; other variables are references.

Assignment
 statement (or expression) executed for its side effect(s)

 assignment operators (+=, -=, etc)
 handy
 avoid redundant work (or need for optimization)
 perform side effects exactly once
 A[f()] += 1 is not the same as A[f()] = A[f()] + 1

 C --, ++
 prefix v. postfix semantics
 postfix more than syntactic sugar
 A[++i] = 3 is the same as A[i += 1] = 3
 A[i++] = 3 is much harder to emulate

Initialization v. assignment
 esp. important in OO languages

 foo b;
 // calls no-arg constructor foo::foo()
 foo f = b;
 // calls one-arg “copy constructor” foo::foo(&foo)
 // This is syntactic sugar for foo f(b)

 foo b, f;
 // calls no-arg constructor
 f = b;
 // calls foo::operator=(&foo)

 also matters in other languages:
 globals can be statically initialized
 requiring (or defaulting) initialization avoids use of garbage
 also avoids some races in parallel programs, but has costs

Side Effects
 often discussed in the context of functions
 a side effect is some permanent state change caused by execution of
 function -- some noticeable effect of call other than return value.
 in a more general sense, assignment statements provide the ultimate
 example of side effects. They change the value of a variable.

 Side effects are fundamental to imperative computing

In (pure) functional, logic, and dataflow languages, there are no such changes.
These languages are called single-assignment languages. They might better be
called “simple definition” languages.

==
Sequencing
 execute one statement after another
 very straightforward; very imperative

--
Selection

sequential if statements
 if ... then ... else

 if ... then ... elsif ... else

 (cond
 (C1) (E1)
 (C2) (E2)
 ...
 (Cn) (En)
 (T) (Et)
)

 match e with
 | pat1 when cond1 ->
 | pat2 when cond2 ->
 | ...
 | patN when condN ->
 | _ ->

 value of explicit terminators or begin/end (or {}) brackets
 need for elsif (elif)

jump code
 When translating
 if A < B then ... else ... fi
 one might evaluate the condition to get a Boolean value in a register,
 then branch depending on its value.
 That’s often more instructions than needed:

 r1 := A
 r2 := B
 r1 := r1 < r2
 if !r1 goto L1
 <then clause>
 goto L2
 L1:
 <else clause>
 L2:
 v.
 r1 := A
 r2 := B
 if r1 >= r2 goto L1
 <then clause>
 goto L2
 L1:
 <else clause>
 L2:

 For expressions with short-circuiting, the difference is more
 compelling (Example 6.49 in the text):

 if ((A > B) and (C > D)) or (E <> F) then
 then_clause
 else
 else_clause

 w/out short-circuiting (as in, e.g., Pascal):

 r1 := A -- load
 r2 := B

 r1 := r1 > r2
 r2 := C
 r3 := D
 r2 := r2 > r3
 r1 := r1 & r2
 r2 := E
 r3 := F
 r2 := r2 <> r3
 r1 := r1 | r2
 if r1 = 0 goto L2
 L1: <then clause> -- label not actually used
 goto L3
 L2: <else clause>
 L3:

 with short-circuiting (as in, e.g., C):

 r1 := A
 r2 := B
 if r1 <= r2 goto L4
 r1 := C
 r2 := D
 if r1 > r2 goto L1
 L4: r1 := E
 r2 := F
 if r1 = r2 goto L2
 L1: then_clause
 goto L3
 L2: else_clause
 L3:

Note that this not only avoids performing unnecessary comparisons; it also
avoids the and and or instructions.

guarded commands (example of non-determinacy)

 if
 cond1 -> stmt1
 [] cond2 -> stmt2
 ...
 [] condN -> stmtN
 fi

 similar version for loops

case/switch (introduced in Algol-W)
 labels normally required to be disjoint

compiler will detect this case in Rust and a few other languages with
 more general selection constructs
 what should happen if there isn’t a matching label for value?
 Ada: forbid at compile time
 C: no-op
 Pascal: dynamic semantic error

case implementation
 sequential testing
 small number of choices, non-dense range
 characteristic array (jump table)
 dense range
 hashing
 non-dense range w/out range labels
 binary search
 large range, range labels
 (probably don’t need search tree, except perhaps if the key
 distribution is highly nonuniform and we want better pivots than
 we get with mean)

 Should ranges be allowed in the label list?
 they make it easy to state things for which a jump table or
 hash table is awful: can be done efficiently (O(log n)) with
 binary search

 examples:
 3: 1: 1: 1..48:
 5: 2: 59: 97..283:
 7: 3: 187: 900..1024:
 9:
 100: 1000000: 12345..67890:

==
Iteration

logically controlled v. enumeration controlled
“while condition is true” v. “for every element of set”
In the latter case, the number of elements (and their identities) are known before we
even start the loop (and in general, we don’t want the values we iterate over to depend
on anything we do in early iterations).

--
Logically-controlled loops

pre-test (while)
post-test (repeat)
mod-test (one-and-a-half loops — loop with exit)
 labels for non-closest exit?

implementation options:

 L1:
 r1 := <condition>
 if !r1 goto L2
 <loop body>
 goto L1
 L2:

That has two branches in every iteration.

 r1 := <condition>
 if !r1 goto L2
 L1:
 <loop body>
 r1 := <condition>
 if r1 goto L1
 L2:

That evaluates the condition in two different places.
Not a big deal if it doesn’t bloat code size.
If it’s complicated (long code) we can do this instead:

 goto L2
 L1:
 <loop body>
 test:
 r1 := <condition>
 if r1 goto L1

That has one extra jump, but only one copy of the test.

C-style for loop
 semantically clean, but not really a for loop
 hard to apply the various optimizations possible for “real” for loops

 for (int i = first; i <= last; i+= step) {
 ...
 }

~=

 {
 int i = first;
 while (i <= last) {
 ...
 i += step;
 }
 }

--
Enumeration-controlled loops

 for v in my_set /* in my favorite order */ do
 ...
 end

Arithmetic progressions are a common case:

 /* Modula-2 syntax */
 i : integer;
 ...
 for i := first to last by step do
 ...
 end

Several natural questions: what should happen if
• the bounds are empty
• the loop body changes the index variable or variables that contribute to the end

test
• control jumps in or out
• the index variable is accessed afterward

Modern languages make the index variable local to the loop, calculate step and bounds
once, in advance, make the index variable read-only, and forbid jumps in.

Naïve implementation:

 i := first
 goto L2
 L1: ...
 i += step
 L2: if i <= last goto L1

Big problem is the direction of the test at the bottom.
Better implementation uses an iteration count, supported by “dec. and branch if
nonzero” instruction on many machines:

 r1 := first
 r2 := step
 r3 := last
 r3 := ⌊(r3-r1+r2)/r2⌋
 if r3 ≤ 0 goto L2
 L1: <loop body>
 r1 +:= r2
 if r3 > 0 goto L1
 L2:

==
Iterators

 supply a for loop with the members of a set
 abstraction/generalization of the “from A to B by C” sorts of
 stuff you see built-in in older languages

 pioneered by Clu:
 for i in <iterator> do ... end
 built-in iterators for from_to, from_to_by, etc.

 wonderful for iterating over arbitrary user-defined sets
 very good for abstraction; for loop doesn’t have to know
 whether set is a linked list, hash table, dense array, etc.

may be true iterators (as in Clu, C#, Icon, Python, Ruby) or interface-based
approximation (“iterator objects,” as in Euclid, Java, Rust, and C++)

Iterator objects (Euclid, C++, Java, Rust)

 Standard interface for abstraction to drive for loops.

Supported in Java with special loop syntax, and in C++ through clever use of
standard constructor and operator overload mechanisms.

In Java:
 List<foo> myList = ...;

 for (foo o : myList) {
 // use object o
 }

requires that the to-be-iterated class (here, List) implements the Iterable
interface, which exports a method

 public Iterator<T> iterator()
 where Iterator is an interface exporting methods
 public boolean hasNext()
 and
 public T next()

 The for loop is syntactic sugar for
 for (Iterator<foo> i = myList.iterator(); i.hasNext();) {
 foo o = i.next();
 // use object o
 }

 C++ version looks like
 list<foo> my_list;
 ...
 for (list<foo>::const_iterator i = my_list.begin();
 i != my_list.end(); i++) {
 // make use of *i or i->field_name
 }

Don’t have to have an equivalent of the Iterator interface (it’s just a convention),
because C++ individually type-checks every use of a generic (template).

 Note the different conceptual model:
 Java has a special for loop syntax that uses methods of a
 special class
 C++ standard library defines iterators as “pointer-like” objects
 with increment operations to drive ordinary for loops

All the standard library collection/container classes support iterators, in both
languages.

True iterators (Clu, Icon, C#, Python)

 iterator itself looks like a procedure, except it can include
 “yield” statements that produce intermediate values.
 when the iterator returns, the loop terminates

 in Python:

 def uptoby(lo, hi, step):
 while True:
 if (step > 0 and lo > hi) \
 or (step < 0 and lo < hi): return
 yield lo
 lo += step # ignore overflow

 for i in uptoby(1, 20, 2):
 print (i)

 C# for loop resembles that of Java:

 foreach (foo o in myList) {
 // use object o
 }

 This is syntactic sugar for

 for (IEnumerator<foo> i =
 myList.GetEnumerator(); i.MoveNext()) {
 foo o = i.Current;
 // use object o
 }

 Current is an accessor -- a special method supporting field-like access:

 public object Current {
 get {
 return ...;
 }
 set {
 ... = value;
 }
 }

In contrast to Java, you don’t need to hand-create the hasNext()[MoveNext()] and
next() [Current] methods. The compiler does this automatically when your class
implements the IEnumerable interface and has an iterator—a method containing
“yield return” statements and “returning” an IEnumerator:

 class List : IEnumerable {
 ...
 public IEnumerator GetEnumerator() {
 node n = head;
 while (n != null) {
 yield return n.content;
 n = n.next;
 } // NB: no return statement
 }
 }

If you want to be able to have multiple iteration orders, your class can have multiple
methods that each return an IEnumerator. Then you can say, e.g.

 foreach (object o in myTree.InPreOrder) { ...

 foreach (object o in myTree.InPostOrder) { ...

 detail:
 IEnumerator implements MoveNext and Current (also Reset)
 IEnumerable implements GetEnumerator, which returns an IEnumerator

Loop body as lambda (Smalltalk, Scheme, ML, Ruby, ~Rust, ...)

 OCaml:
 open Printf;;
 let show n = printf "%d\n" n;;

 let upto lo hi =
 fun f -> let rec helper i =
 if i > hi then ()
 else (f i ; helper (i + 1)) in
 helper lo;;

 upto 1 10 show;; =>
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 - : unit = ()

 Ruby:

 sum = 0 => 0
 [1, 2, 3].each { |i| sum += i } => [1, 2, 3] # array itself
 sum => 6

 Here the (parameterized) brace-enclosed block is passed to the each
 method as a parameter.

 There’s also more conventional-looking syntax:

 sum = 0
 for i in [1, 2, 3] do # ‘do’ is optional
 sum += i
 end
 sum

 The for loop is syntactic sugar for a call to each.

 Here’s a more object-oriented alternative:

 sum = 0
 1.upto 3 {|i| sum += i}
 sum

 or instead of using braces:

 sum = 0
 i.upto 3 do |i| sum += i end
 sum

 You can write your own iterators using ‘yield’.

 class Array
 def find
 for i in 0...size
 value = self[i]
 return value if yield(value)
 end
 return nil
 end
 end
 ...
 [1, 3, 5, 7, 9].find {|v| v*v > 30 } => 7

Think of yield as invoking the block that was juxtaposed (“associated”) with
the call to the iterator.

(FWIW, the array class already has a find method in Ruby, but we can redefine
it, and it probably looks like this anyway.)

 Blocks can also be turned into first-class closures, with unlimited extent:

 def nTimes(aThing)
 # Ruby, like most scripting languages, is dynamically typed
 return proc { |n| aThing * n }
 end

 In recent Ruby, -> is a synonym for proc

 p1 = nTimes(3)
 p2 = nTimes("foo")
 p1.call(4) => 12
 p2.call(4) => "foofoofoofoo"

 This lets us build higher-level functions. Here’s reduction for arrays:

 class Array
 def reduce(n)
 each { |value| n = yield n, value } # that’s self.each
 # yield invokes (just once) the block associated
 # with the call to reduce. Note the lack of parens:
 # "yield (n, value)" would pass a single tuple.
 n # return value
 end
 def sum
 reduce(0) { |a, v| a + v }
 end
 def product
 reduce(1) { |a, v| a * v }
 end
 end

 [2, 4, 6].sum => 12
 [2, 4, 6].product => 48

 All in all Ruby is pretty cool. Check it out.
 (I do wish it let you associate more than one block with a call.)

Implementation of true iterators (section 9.5.3-CS)

 coroutines or threads
 overkill

 single-stack
 used in Clu
 works, but would confuse a standard debugger, and not compatible
 with some conventions for argument passing

 implicit iterator object
 kinda cool; used in C# and Python
 same mechanism supports async in C# and JavaScript

 block as lambda expression (Ruby, functional languages)

==
Recursion

 equally powerful to iteration, and as efficient when you can use tail recursion.
 mechanical transformations back and forth
 often more intuitive (sometimes less)
 naive implementation less efficient
 no special syntax required
 fundamental to functional languages like Scheme

 tail recursion

 (* OCaml: *)
 let rec gcd b c =
 if b = c then b
 else if b < c then gcd b (c - b)
 else gcd (b - c) c;;

 implemented as

 gcd (b c)

 start:
 if b = c
 return b
 if b < c
 c := c - b
 goto start
 if b > c
 b := b - c
 goto start

 changes to create tail recursion (e.g. pass along an accumulator)

 (* OCaml: *)
 let rec summation f low high =
 if low == high then f low
 else f low + summation f (low+1) high;;

 becomes
 let rec summation2 f low high st =
 if low == high then st + f low
 else summation2 f (low+1) high (st + f low);;

 and then
 let summation3 f low high =
 let rec helper low st =
 let new_st = st + f low in
 if low == high then new_st
 else helper (low+1) new_st in
 helper low 0;;

 More generally (absent an associative operator), pass along a continuation.

This is perfectly natural to someone used to programming in a functional language.
Note that the summation example depends for correctness on the associativity of
addition. To sum the elements in the same order we could have counted down
from high instead of up from low, but that makes a more drastic change to the
structure of the recursive calls.

There is no perfectly general algorithm to discover tail-recursive versions of
functions, but compilers for functional languages recognize all sorts of common
cases.

 Sisal and pH have “iterative” syntax for tail recursion:

 function sum (f : function (n : integer returns integer),
 low : integer, high : integer returns integer)
 for initial
 st := f (low);
 while low <= high
 low := old low + 1
 st := old st + f (low)
 returns value of st
 end for
 end function

 The Sisal compiler was really good at finding tail recursive forms.

Concurrency
 specifies that statements are to occur (at least logically) concurrently
 concurrency is fundamental to probably half the research in computer
 science today
 subject of chapter 13

Nondeterminacy
 choice “doesn’t matter”
 periodically popular, promoted by Dijkstra for use with selection
 (guarded command syntax)
 can apply to execution order as well
 useful for certain kinds of concurrency, inc. event-driven code

process server
 do
 receive read request ->
 reply with data
 []
 receive write request ->
 update data and reply
 od

 also nice for certain axiomatic proof schemes
 raises issues of “randomness”, “fairness”, “liveness”, etc.

