
Notes for CSC 254, 20 and 25 Feb. 2025 
 
============================================================== 
Control flow mechanisms and their implementation  
 
Order of execution matters for statements, and for expressions with side effects.  
Ordering for statements is control flow. 
 
[Expressions have values; statements don’t.  Statements are evaluated for their side 
effects.  Expressions may have side effects, but don’t necessarily (and it’s often 
considered bad style).] 
 
Principal paradigms for control flow: 
 sequencing 
 selection 
 iteration 
 subroutines, recursion (and related control abstractions—e.g., iterators) 
 nondeterminacy 
 concurrency 
 
---------------------------- 
Expression evaluation 
 
Operators are built-in functions with, often 
 special non-identifier names (+, -, %, ...) 
 infix syntax (as opposed to prefix for most functions) 
 precedence and associativity 
  C has 15 levels -- too many to remember 
  Pascal has 3 levels -- too few for good semantics 
  Fortran has 8; Ada has 6 
  I don’t like the rules in any of these (Fortran probably closest) 
   Ada puts and, or at same level 
   Pascal misgroups  if a = b or c = d then 
  Lesson: when unsure, use parentheses! 
 
evaluation order matters 
 consider f(a+b, c, d(e, h), h) 



  d might have side effects 
  reordering might improve register allocation 
  some arguments might already be available in registers 
  on old machines with old compilers, last-to-first would optimize stack access 
 
 Most languages say order of evaluation of arguments is undefined. 
 
 Likewise, most leave operand evaluation order undefined 
  e.g., in  f(a, b) + g(c, d) 
 
arithmetic identities work in math class; not always on a computer 
 commutativity of + and * is usually safe 
 associativity is not 
  (a + b) + c  works if a ~= minint and b ~= maxint and c is small 
  a + (b + c)  may not (esp. in floating point) 
 
 Compilers generally respect parentheses; if in doubt, use them 
 
short-circuiting 
 if (b != 0 && a/b == c) ... 
 if (*p && p->foo) ... 
 if (f || messy()) ... 
 
 connection to lazy evaluation of arguments -- e.g., in Haskell 
 
 Not all languages evaluate and and or lazily -- beware! 
 
Variables as values v. variables as references 
 value-oriented languages 
  C, Ada 
 reference-oriented languages 
  most functional languages (Lisp/Scheme, SML/OCaml/Haskell) 
  Smalltalk 
 Java deliberately in-between 
  built-in types are values 
  user-defined types are objects -- references 
 C# similar, though user can choose which object variables are values 
  (“expanded”, in Eiffel terminology) and which are references 



 Rust is also in-between, but in a different way. 
Roughly, the owner variable is a value; other variables are references. 

 
Assignment 
 statement (or expression) executed for its side effect(s) 
  
 assignment operators (+=, -=, etc) 
  handy 
  avoid redundant work (or need for optimization) 
  perform side effects exactly once 
    A[f()] += 1   is not the same as   A[f()] = A[f()] + 1 
  
 C --, ++ 
  prefix v. postfix semantics 
  postfix more than syntactic sugar 
   A[++i] = 3 is the same as  A[i += 1] = 3 
   A[i++] = 3 is much harder to emulate 
 
Initialization v. assignment 
 esp. important in OO languages 
 
  foo b; 
   // calls no-arg constructor foo::foo() 
  foo f = b; 
   // calls one-arg “copy constructor” foo::foo(&foo) 
   // This is syntactic sugar for  foo f(b) 
 
  foo b, f; 
   // calls no-arg constructor 
  f = b; 
   // calls foo::operator=(&foo) 
 
 also matters in other languages: 
  globals can be statically initialized 
  requiring (or defaulting) initialization avoids use of garbage 
  also avoids some races in parallel programs, but has costs 
 
 



Side Effects 
 often discussed in the context of functions 
  a side effect is some permanent state change caused by execution of 
  function -- some noticeable effect of call other than return value. 
 in a more general sense, assignment statements provide the ultimate 
  example of side effects.  They change the value of a variable. 
 
 Side effects are fundamental to imperative computing 
 

In (pure) functional, logic, and dataflow languages, there are no such changes.  
These languages are called single-assignment languages.  They might better be 
called “simple definition” languages. 

 
============================================================== 
Sequencing 
 execute one statement after another 
 very straightforward; very imperative 
 
---------------------------------------- 
Selection 
 
sequential if statements 
 if ... then ... else 
 
 if ... then ... elsif ... else 
 
 (cond 
  (C1) (E1) 
  (C2) (E2) 
  ... 
  (Cn) (En) 
  (T)  (Et) 
 ) 
 
 match e with 
 | pat1 when cond1 -> 
 | pat2 when cond2 -> 
 | ... 
 | patN when condN -> 
 | _      -> 
 



 value of explicit terminators or begin/end (or {}) brackets 
 need for elsif (elif) 
 
jump code 
 When translating 
  if A < B then ... else ... fi 
 one might evaluate the condition to get a Boolean value in a register, 
  then branch depending on its value. 
 That’s often more instructions than needed: 
 
  r1 := A 
  r2 := B 
  r1 := r1 < r2 
  if !r1 goto L1 
   <then clause> 
   goto L2 
  L1: 
   <else clause> 
  L2: 
    v. 
  r1 := A 
  r2 := B 
  if r1 >= r2 goto L1 
   <then clause> 
   goto L2 
  L1: 
   <else clause> 
  L2: 
 
 For expressions with short-circuiting, the difference is more 
 compelling (Example 6.49 in the text): 
 
  if ((A > B) and (C > D)) or (E <> F) then 
    then_clause 
  else 
    else_clause 
 
  w/out short-circuiting (as in, e.g., Pascal): 
 
   r1 := A    -- load 
   r2 := B 



   r1 := r1 > r2 
   r2 := C 
   r3 := D 
   r2 := r2 > r3 
   r1 := r1 & r2 
   r2 := E 
   r3 := F 
   r2 := r2 <> r3 
   r1 := r1 | r2 
   if r1 = 0 goto L2 
  L1: <then clause>  -- label not actually used 
   goto L3 
  L2: <else clause> 
  L3: 
 
  with short-circuiting (as in, e.g., C): 
 
   r1 := A 
   r2 := B 
   if r1 <= r2 goto L4 
   r1 := C 
   r2 := D 
   if r1 > r2 goto L1 
  L4: r1 := E 
   r2 := F 
   if r1 = r2 goto L2 
  L1: then_clause 
   goto L3 
  L2: else_clause 
  L3: 
 

Note that this not only avoids performing unnecessary comparisons; it also 
avoids the and and or instructions. 

 
guarded commands (example of non-determinacy) 
 
  if 
   cond1 -> stmt1 
  [] cond2 -> stmt2 
   ... 
  [] condN -> stmtN 
  fi 
 
 similar version for loops 



case/switch (introduced in Algol-W) 
 labels normally required to be disjoint 

compiler will detect this case in Rust and a few other languages with 
  more general selection constructs 
 what should happen if there isn’t a matching label for value? 
  Ada: forbid at compile time 
  C: no-op 
  Pascal: dynamic semantic error 
 
case implementation 
 sequential testing 
  small number of choices, non-dense range 
 characteristic array (jump table) 
  dense range 
 hashing 
  non-dense range w/out range labels 
 binary search 
  large range, range labels 
 (probably don’t need search tree, except perhaps if the key 
 distribution is highly nonuniform and we want better pivots than 
 we get with mean) 
 
 Should ranges be allowed in the label list? 
  they make it easy to state things for which a jump table or 
  hash table is awful: can be done efficiently (O(log n)) with 
  binary search 
 
 examples: 
  3:  1:  1:   1..48: 
  5:  2:  59:   97..283: 
  7:  3:  187:  900..1024: 
  9:  ...  ...   ... 
    100: 1000000: 12345..67890: 
  
 
 
 



============================================================== 
Iteration 
 
logically controlled  v.  enumeration controlled 
“while condition is true” v. “for every element of set” 
In the latter case, the number of elements (and their identities) are known before we 
even start the loop (and in general, we don’t want the values we iterate over to depend 
on anything we do in early iterations). 
 
---------------------------------------- 
Logically-controlled loops 
 
pre-test (while) 
post-test (repeat) 
mod-test (one-and-a-half loops — loop with exit) 
 labels for non-closest exit? 
 
implementation options: 
 
 L1: 
  r1 := <condition> 
  if !r1 goto L2 
  <loop body> 
  goto L1 
 L2: 
 
That has two branches in every iteration. 
 
  r1 := <condition> 
  if !r1 goto L2 
 L1: 
  <loop body> 
  r1 := <condition> 
  if r1 goto L1 
 L2: 
 
That evaluates the condition in two different places. 
Not a big deal if it doesn’t bloat code size. 
If it’s complicated (long code) we can do this instead: 



 
  goto L2 
 L1: 
  <loop body> 
 test: 
  r1 := <condition> 
  if r1 goto L1 
 
That has one extra jump, but only one copy of the test. 
 
C-style for loop 
 semantically clean, but not really a for loop 
 hard to apply the various optimizations possible for “real” for loops 
 
 for (int i = first; i <= last; i+= step) { 
  ... 
 } 
 
~= 
 
 { 
  int i = first; 
  while (i <= last) { 
   ... 
   i += step; 
  } 
 } 
 
---------------------------------------- 
Enumeration-controlled loops 

 for v in my_set /* in my favorite order */ do 
  ... 
 end 
 
Arithmetic progressions are a common case: 

 /* Modula-2 syntax */ 
 i : integer; 
 ... 
 for i := first to last by step do 
  ... 
 end 



Several natural questions: what should happen if 
• the bounds are empty 
• the loop body changes the index variable or variables that contribute to the end 

test 
• control jumps in or out 
• the index variable is accessed afterward 

 
Modern languages make the index variable local to the loop, calculate step and bounds 
once, in advance, make the index variable read-only, and forbid jumps in. 
 
Naïve implementation: 
 
  i := first 
  goto L2 
  L1: ... 
  i += step 
  L2: if i <= last goto L1 
 
Big problem is the direction of the test at the bottom. 
Better implementation uses an iteration count, supported by “dec. and branch if 
nonzero” instruction on many machines: 
 
   r1 := first 
   r2 := step 
   r3 := last 
   r3 := ⌊(r3-r1+r2)/r2⌋ 
   if r3 ≤ 0 goto L2 
  L1: <loop body> 
   r1 +:= r2 
   if r3 > 0 goto L1 
  L2: 
 
 
============================================================== 
Iterators 
 
 supply a for loop with the members of a set 
 abstraction/generalization of the “from A to B by C” sorts of 
  stuff you see built-in in older languages 
 



 pioneered by Clu: 
  for i in <iterator> do ... end 
  built-in iterators for from_to, from_to_by, etc. 
 
 wonderful for iterating over arbitrary user-defined sets 
  very good for abstraction; for loop doesn’t have to know 
  whether set is a linked list, hash table, dense array, etc. 
 

may be true iterators (as in Clu, C#, Icon, Python, Ruby) or interface-based 
approximation (“iterator objects,” as in Euclid, Java, Rust, and C++) 

 
Iterator objects (Euclid, C++, Java, Rust) 
 
 Standard interface for abstraction to drive for loops. 

Supported in Java with special loop syntax, and in C++ through clever use of 
standard constructor and operator overload mechanisms. 
 

In Java: 
  List<foo> myList = ...; 
 
  for (foo o : myList) { 
   // use object o 
  } 
 

requires that the to-be-iterated class (here, List) implements the Iterable 
interface, which exports a method 

  public Iterator<T> iterator() 
 where Iterator is an interface exporting methods 
  public boolean hasNext() 
 and 
  public T next() 
 
 The for loop is syntactic sugar for 
  for (Iterator<foo> i = myList.iterator(); i.hasNext();) { 
   foo o = i.next(); 
   // use object o 
  } 



 
 C++ version looks like 
  list<foo> my_list; 
  ... 
  for (list<foo>::const_iterator i = my_list.begin(); 
    i != my_list.end(); i++) { 
   // make use of *i or i->field_name 
  } 
 

Don’t have to have an equivalent of the Iterator interface (it’s just a convention), 
because C++ individually type-checks every use of a generic (template). 

 
 Note the different conceptual model: 
  Java has a special for loop syntax that uses methods of a 
   special class 
  C++ standard library defines iterators as “pointer-like” objects 
   with increment operations to drive ordinary for loops 
 

All the standard library collection/container classes support iterators, in both 
languages. 

 
True iterators (Clu, Icon, C#, Python) 
 
 iterator itself looks like a procedure, except it can include 
  “yield” statements that produce intermediate values. 
 when the iterator returns, the loop terminates 
 
 in Python: 
 
  def uptoby(lo, hi, step): 
   while True: 
    if (step > 0 and lo > hi) \ 
     or (step < 0 and lo < hi): return 
    yield lo 
    lo += step # ignore overflow 
 
  for i in uptoby(1, 20, 2): 
   print (i) 
 



 C# for loop resembles that of Java: 
 
  foreach (foo o in myList) { 
   // use object o 
  } 
 
 This is syntactic sugar for 
 
  for (IEnumerator<foo> i = 
    myList.GetEnumerator(); i.MoveNext()) { 
   foo o = i.Current; 
   // use object o 
  } 
 
 Current is an accessor -- a special method supporting field-like access: 
 
  public object Current { 
   get { 
    return ...; 
   } 
   set { 
    ... = value; 
   } 
  } 
 

In contrast to Java, you don’t need to hand-create the hasNext()[MoveNext()] and 
next() [Current] methods.  The compiler does this automatically when your class 
implements the IEnumerable interface and has an iterator—a method containing 
“yield return” statements and “returning” an IEnumerator: 

 
  class List : IEnumerable { 
   ... 
   public IEnumerator GetEnumerator() { 
    node n = head; 
    while (n != null) { 
     yield return n.content; 
     n = n.next; 
    }     // NB: no return statement 
   } 
  } 
 



If you want to be able to have multiple iteration orders, your class can have multiple 
methods that each return an IEnumerator.  Then you can say, e.g. 

 
  foreach (object o in myTree.InPreOrder) { ... 
 
  foreach (object o in myTree.InPostOrder) { ... 
 
 detail: 
  IEnumerator implements MoveNext and Current (also Reset) 
  IEnumerable implements GetEnumerator, which returns an IEnumerator 
 
Loop body as lambda (Smalltalk, Scheme, ML, Ruby, ~Rust, ...) 
 
 OCaml: 
  open Printf;; 
  let show n = printf "%d\n" n;; 
 
  let upto lo hi = 
    fun f -> let rec helper i = 
      if i > hi then () 
      else (f i ; helper (i + 1)) in 
    helper lo;; 
 
  upto 1 10 show;;   => 
   1 
   2 
   3 
   4 
   5 
   6 
   7 
   8 
   9 
   10 
   - : unit = () 
 
 Ruby: 
 
  sum = 0          => 0 
  [ 1, 2, 3 ].each { |i| sum += i }  => [1, 2, 3]  # array itself 
  sum            => 6 
 



  Here the (parameterized) brace-enclosed block is passed to the each 
  method as a parameter. 
 
  There’s also more conventional-looking syntax: 
 
   sum = 0 
   for i in [1, 2, 3] do  # ‘do’ is optional 
    sum += i 
   end 
   sum 
 
  The for loop is syntactic sugar for a call to each. 
 
  Here’s a more object-oriented alternative: 
 
   sum = 0 
   1.upto 3 {|i| sum += i} 
   sum 
 
  or instead of using braces: 
 
   sum = 0 
   i.upto 3 do |i| sum += i end 
   sum 
 
  You can write your own iterators using ‘yield’. 
 
   class Array  
   def find  
    for i in 0...size  
     value = self[i]  
     return value if yield(value)  
    end  
    return nil  
   end  
   end  
   ... 
   [1, 3, 5, 7, 9].find {|v| v*v > 30 }   => 7  
 

Think of yield as invoking the block that was juxtaposed (“associated”) with 
the call to the iterator. 



 
(FWIW, the array class already has a find method in Ruby, but we can redefine 
it, and it probably looks like this anyway.) 

 
  Blocks can also be turned into first-class closures, with unlimited extent: 
 
   def nTimes(aThing) 
    # Ruby, like most scripting languages, is dynamically typed 
    return proc { |n| aThing * n } 
   end 
 
   In recent Ruby, -> is a synonym for proc 
 
   p1 = nTimes(3) 
   p2 = nTimes("foo") 
   p1.call(4)    => 12 
   p2.call(4)    => "foofoofoofoo" 
 
  This lets us build higher-level functions. Here’s reduction for arrays: 
 
    class Array 
   def reduce(n) 
    each { |value| n = yield n, value }   # that’s self.each 
     # yield invokes (just once) the block associated 
     # with the call to reduce.  Note the lack of parens: 
     # "yield (n, value)" would pass a single tuple. 
    n # return value 
   end 
   def sum 
    reduce(0) { |a, v| a + v } 
   end 
   def product 
    reduce(1) { |a, v| a * v } 
   end 
    end 
 
   [2, 4, 6].sum   => 12 
   [2, 4, 6].product  => 48 
 
  All in all Ruby is pretty cool.  Check it out. 
  (I do wish it let you associate more than one block with a call.) 



 
 
Implementation of true iterators (section 9.5.3-CS) 
 
 coroutines or threads 
  overkill 
 
 single-stack 
  used in Clu 
  works, but would confuse a standard debugger, and not compatible 
   with some conventions for argument passing 
 
 implicit iterator object   
  kinda cool; used in C# and Python 
  same mechanism supports async in C# and JavaScript 
 
 block as lambda expression (Ruby, functional languages) 
 
============================================================== 
Recursion 

 equally powerful to iteration, and as efficient when you can use tail recursion. 
 mechanical transformations back and forth 
 often more intuitive (sometimes less) 
 naive implementation less efficient 
 no special syntax required 
 fundamental to functional languages like Scheme 
 
 tail recursion 
 
  (* OCaml: *) 
  let rec gcd b c = 
    if b = c then b 
    else if b < c then gcd b (c - b) 
    else gcd (b - c) c;; 
  
  implemented as 
  
   gcd (b c) 



   start: 
    if b = c 
     return b 
    if b < c 
     c := c - b 
     goto start 
    if b > c 
     b := b - c 
     goto start 
      
 changes to create tail recursion (e.g. pass along an accumulator) 
 
  (* OCaml: *) 
  let rec summation f low high = 
    if low == high then f low 
    else f low + summation f (low+1) high;; 

 becomes 
  let rec summation2 f low high st = 
    if low == high then st + f low 
    else summation2 f (low+1) high (st + f low);; 

 and then 
  let summation3 f low high = 
    let rec helper low st = 
   let new_st = st + f low in 
   if low == high then new_st 
   else helper (low+1) new_st in 
    helper low 0;;  
  
 More generally (absent an associative operator), pass along a continuation. 
  

This is perfectly natural to someone used to programming in a functional language.  
Note that the summation example depends for correctness on the associativity of 
addition.  To sum the elements in the same order we could have counted down 
from high instead of up from low, but that makes a more drastic change to the 
structure of the recursive calls. 

  
There is no perfectly general algorithm to discover tail-recursive versions of 
functions, but compilers for functional languages recognize all sorts of common 
cases. 

  



 Sisal and pH have “iterative” syntax for tail recursion: 
  
  function sum (f : function (n : integer returns integer), 
       low : integer, high : integer returns integer) 
  for initial 
   st := f (low); 
  while low <= high 
   low := old low + 1 
   st := old st + f (low) 
  returns value of st 
  end for 
  end function 
  
 The Sisal compiler was really good at finding tail recursive forms. 
 
Concurrency 
 specifies that statements are to occur (at least logically) concurrently 
 concurrency is fundamental to probably half the research in computer 
  science today 
 subject of chapter 13 
 
Nondeterminacy 
 choice “doesn’t matter” 
 periodically popular, promoted by Dijkstra for use with selection 
  (guarded command syntax) 
 can apply to execution order as well 
 useful for certain kinds of concurrency, inc. event-driven code 
  

process server 
  do 
   receive read request -> 
   reply with data 
  [] 
   receive write request -> 
   update data and reply 
  od 
 
 also nice for certain axiomatic proof schemes 
 raises issues of “randomness”, “fairness”, “liveness”, etc. 


