
Notes for CSC 254, 18 and 20 Mar. 2025

==
Type Systems

We have all developed an intuitive notion of what types are.

What’s behind the intuition -- what is a type?
 - collection of values from a “domain”
 (the mathematical/denotational approach)
 - equivalence class of objects (the implementor’s approach)
 - internal structure of a bunch of data, described down to the level
 of a small set of fundamental types (the structural approach)
 - collection of well-defined operations that can be applied to objects
 of that type (the abstraction approach)

What are types good for?
 implicit context (resolution of polymorphism and overloading)
 checking -- make sure that certain meaningless operations do not
 occur. Type checking cannot prevent all meaningless operations,
 but it catches enough of them to be useful.
 readability
 performance optimization

Strong typing means, informally, that the language prevents you from
applying an operation to data on which it is not appropriate.

Static typing means that the compiler can do all or most of the checking at compile
time. Lisp dialects are strongly typed, but not statically typed. Rust is statically typed;
Python is dynamically typed (and both are strongly typed). ML dialects are statically
typed with inference. C is statically but not strongly typed. Java is strongly typed, with a
non-trivial mix of things that can be checked statically and things that have to be
checked dynamically.

(Recall from Chap. 4 that static type checking simply serves to catch errors early. It
needs to be sound — everything it finds must be consistent with what would otherwise
be fully dynamic semantics. It’s formalized with inference rules.)

To a large (but not exclusive!) extent, static checking adds complexity to the
programmer’s task in return for better performance and earlier error detection.

A type system has rules for
- type equivalence (when are the types of two values the same? -- that is, what

exactly are the types in the program?)
- type compatibility (when can a value of type A be used in a context that expects

type B?) Note that this is directional. One might, for example, be allowed to use an
integer everywhere a real is expected, but not vice versa.

- type inference (what is the type of an expression, given the types of the operands
[and maybe the surrounding context]?)

--
Type equivalence, subtyping, and type compatibility

Compatibility is the practical concept: it tells you what you can do.
Most languages say type A is compatible with (can be used in a context that expects)
type B if A is equivalent to B, A is a subtype of B, or if A can be coerced to B.

Two major approaches to equivalence: structural equivalence and name equivalence.
Name equivalence is based on declarations. Structural equivalence is based on some
notion of meaning behind those declarations. Name equivalence is more fashionable
these days, but not universal.

Structural equivalence depends on recursive comparison of type descriptions
 Substitute out all names; expand all the way to built-in types.
 Original types are equivalent if the expanded type descriptions are the same.

(Pointers complicate matters, but the Algol folks figured out how to handle it in the
late 1960’s. The correct approach is to apply a “set of subsets” algorithm to the
graph of types that point to each other, the same way one turns a non-deterministic
FSM into an equivalent deterministic FSM.)

Name equivalence depends on actual occurrences of declarations in the source code.
Example:
 struct person { string name; string address; }
 struct school { string name; string address; }

These are structurally equivalent but not name equivalent. Depending on your
language, the following might also be structurally equivalent to the above:
 struct part { string manufacturer; string description; }

Depending on your language, the following alias types might or might not be name
equivalent:
 type fahrenheit = integer;
 type celsius = integer;

We probably don’t want those to be, but if we declare
 type score = integer;

then maybe integer and score should be equivalent -- the word “score” might just be
for documentation purposes.

This is strict v. loose name equivalence. Ada lets you choose:
 type score is integer;

 type fahrenheit is new integer;
 type celsius is new integer;

Algol-68 used structural equivalence, as did many early Pascal implementations (the ISO
standard uses name equivalence). Java uses name equivalence. ML-family languages
are more-or-less structural (see below). C uses a hybrid (structural except, ironically, for
structs).

Both forms of type equivalence have nontrivial implementation issues for
separate compilation.
 timestamp header files?
 checksum header files?
 avoid comments, format?
 how handle compatible upgrades?
 finer grain?
“name mangling” -- enforce with standard linker

--
Coercion
 When an expression of one type is used in a context where a different
 type is expected, one normally gets a type error. But what about

 var a : integer; b, c : real;
 ...
 c := a + b;

Many languages allow things like this, and coerce an expression to be of the proper
type. Coercion can be based just on types of operands, or can take into account
expected type from surrounding context as well.

 Fortran and C have lots of coercion, all based on operand type.
 Here’s an abbreviated version of the C rules:
 if either operand is long double, the other is converted if
 necessary, and the result is long double
 else similarly if either is double
 else similarly if either is float
 else both are integral:
 if they’re the same, the result matches
 else if both are signed or both unsigned, the one with lower
 “rank” is converted to the one with higher rank, and the
 result matches
 else one is signed and the other is unsigned:
 if the unsigned has greater or equal rank, the signed
 one is converted and the result has the unsigned type
 else if the signed type can hold all possible values of
 the unsigned type, the unsigned one is converted and
 the result has the signed type
 else both are converted to the unsigned type corresponding
 to the signed type, and that’s also the type of the result
 if necessary, precision is removed when assigning into LHS

In effect, coercion is a relaxation of type checking. Some languages (e.g. Modula-2
and Ada) forbid it. C++, by contrast, goes hog-wild with coercion. It’s one of several
parts of the language that programmers often find hard to understand.

Make sure you understand the difference between
 type conversions (explicit)
 type coercions (implicit)
 non-converting type casts (breaking the typing rules)
 Sometimes the word ‘cast’ is used for conversions, which is unfortunate.

(C is guilty here.)

Some authors also vary the meanings of “conversion” and “coercion” -- e.g., to
distinguish between cases that do or do not entail run-time code. I think that’s a bad
idea: I use the terms to indicate semantics; implementation is orthogonal. In particular,
a conversion may or may not require run-time code.

--
Type inference and polymorphism

simple case: local-only. Esp. useful for declarations.

 var pi = 3.14; // C#
 auto pi = 3.14; // C++11
or
 auto o = new very_long_type_name<X, Y, Z>(args);

similarly
 var/val/def in Scala (mutable / constant / method)
 var/let in Swift (mutable / constant)
 var/:= in Go (in inner scopes, := is sugar)

complicated case: ML (OCaml), Miranda, Haskell (Hindley-Milner type inference)
1 -- fib :: int -> int
2 let fib n =
3 let rec helper f1 f2 i =
4 if i = n then f2
5 else helper f2 (f1 + f2) (i + 1) in
6 helper 0 1 0;;

i is int, because it is added to 1 at line 5
n is int, because it is compared to i at line 4
all three args at line 6 are int consts, and that’s the only use of
 helper (given scope of let), so f1 and f2 are int
also, the 3rd argument is consistent with the known int type of i (good!)
and the types of the arguments to the recursive call at line 5 are
 similarly consistent
since helper returns f2 (known to be int) at line 4, the result of
 the call at line 6 will be int

J. Roger Hindley [1969];
rediscovered by
Robin Milner [1978]

Since fib immediately returns this result as its own result,
 the return type of fib is int

(Note that the limited scope of the let construct allows the compiler to use the types of
helper’s actual parameters to deduce helper’s own types -- something it can’t do at
the global level.)

fib itself is of type int -> int
helper is of type int -> int -> int -> int

Side note: named types in OCaml introduce new types, even if their internal structure
matches. So the language is mostly structural but with a bit of name equivalence as
well. If two types have constructors with the same name, the inference engine can get
confused (in OCaml, in the case of ambiguity, it arbitrarily guesses the most recently
declared type with a matching constructor). You can resolve the confusion/ambiguity
with explicit type declarations (e.g., let foo:t = Bar a b c;;)

Polymorphism results when the compiler finds it doesn’t need to know certain things.
For example:

 let compare x p q =
 if x = p then if x = q then "both" else "first"
 else if x = q then "second" else "neither";;
 (* note use of deep equality *)

compare has type ‘a -> ‘a -> ‘a -> string
‘a is a type variable, so compare is polymorphic.

Any time the ML or Haskell compiler determines that A and B have to have the same
type, it tries to unify them. For example, in the expression

 if x then e1 else e2

x has to be of type bool, and e1 and e2 have to be of the same type. If e1 is (so far)
known to be of type ‘a * int (a 2-element tuple) and e2 is known (so far) to be of type
char list * ‘b, then ‘a is char list and ‘b is int, and the expression as a whole is
of type char list * int.

Like Lisp, ML-family languages make heavy use of lists, but ML’s lists are homogeneous
— all elements have to have the same type. Ex:

 let append l1 l2 =
 match l1 with
 [] -> l2
 h::t -> h :: append t l2;;

The append function has type ‘a list -> ‘a list -> ‘a list.
The :: operator has type ‘a -> ‘a list -> ‘a list.

Unification, by the way, is a powerful technique, used for a variety of purposes in
programming languages. It’s the basis of computation in Prolog, which tries to unify
RHS’s of rules with LHS’s of things that might imply them.
 In Prolog, unification assigns values to variables
 In ML, it assigns types to type variables

Unification is also used to type-check C++ templates.

--
Advanced Topics

Types can be the subject of a whole class on their own.
A certain amount of advanced material gets covered in 255.
Here are a couple examples.

Type classes and Higher-level types (kinds)

Type classes are sort of like interfaces in an object-oriented language, but built into
the compiler.

In Haskell, for example, a type that supports equality and inequality operators (==
and /=) is of class Eq.
A type that also supports < , > , <= , and >= is of class Ord.
Ord is a subclass of Eq: you can use an Ord type anywhere an Eq type is expected.

Like OCaml, Haskell provides ML-family type inference. But where OCaml defines
ordering operations on every type for simplicity, Haskell infers that any values to
which you apply < or > operators must be of a type in class Ord.

You can define your own type classes.

There is also a notion of type kinds, which impose structure on type constructors
like tuples, records, variants, and functions.

Typestate

A few languages capture, in the compiler, the notion that objects of a class can be in
any of several states, that certain methods apply only when the object is in a certain
state, and the certain methods transform the object from one state to another.
This allows certain kinds of errors to be caught by the compiler.

An object of type file, for example, might only support read and write operations
after it has been opened. A typestate compiler might catch “file has not been
opened” errors at compile time.

You can think of definite assignment in Java and C# as a very limited form of
typestate. Ownership in Rust is a more complicated subcase.

Lifetime analysis

Rust incorporates the notion of lifetime into types, to avoid dangling references and
storage leaks without run-time garbage collection.

By default, a dynamically allocated mutable (non-constant) object in Rust can be
accessed through only one variable at a time. When desired, the programmer can
create multiple read-only references to (“borrows” of) a variable. The compiler can
always tell when the last reference to a variable goes away, and can generate code
to reclaim its space.

The rules are complicated, however, and have not yet been successfully formalized.
Moreover, many standard container classes have to break the rules in order to
produce code that is both fast and fully functional. One has to trust that this
“unsafe” code is correct -- or perhaps some day prove it.

==
Polymorphism and Generics

Recall from chapter 3:

 ad hoc polymorphism: fancy name for overloading

subtype polymorphism in OO languages allows code to do the “right thing” when a
ref of parent type refers to an object of child type

 implemented with vtables (to be discussed in chapter 10)

 parametric polymorphism
 type is a parameter of the code, implicitly or explicitly

 implicit (true)
 language implementation figures out what code requires of object
 at compile-time, as in ML or Haskell
 at run-time, as in Lisp, Smalltalk, or Python
 lets you apply operation to object only if object has
 everything the code requires

 explicit (generics)
 programmer specifies the type parameters explicitly
 introduced by Clu; mainstreamed in Ada; ubiquitous today

(C++, Eiffel, Java, C#, Rust, Scala, Swift, Kotlin, …
 mostly what I want to talk about today

--
C++ calls its generics templates.
They allow you, for example, to create a single stack abstraction, and instantiate it for
stacks of integers, stacks of strings, stacks of employee records, ...

 template <class T>
 class stack {
 T[100] contents;
 int tos = 0; // first unused location
 public:
 T pop();
 void push(T);
 ...

 }
 ...
 stack<double> S;

I could, of course, do

 class stack {
 void*[100] contents;
 int tos = 0;
 public:
 void* pop();
 void push(void *);
 ...
 }

But then I have to use type casts all over the place. Inconvenient and, in C++, unsafe.

Lots of containers (stacks, queues, sets, mappings, ...) in the C++ standard library.

Similarly rich libraries exist for Java and C#. (Also for Python and Ruby, but those use
implicit parametric polymorphism with run-time checking.)

--
Some languages (e.g. Ada and C++) allow things other than types to be passed as
template arguments. This is particularly important with a value model of variables:

 template <class T, int N>
 class stack {
 T[N] contents;
 int tos = 0;
 public:
 T pop();
 void push(T);
 ...
 }
 ...
 stack<double, 100> S;

--
Implementation

C# generics do run-time instantiation (reification), at least in the general case. When
you first elaborate stack<foo>, the VM invokes the JIT compiler and generates the
appropriate code. Doesn’t box native types if it doesn’t need to—more efficient.

Java doesn’t do run-time instantiation. Internally everything is stack<Object>. You
avoid the casts in the source code, but you have to pay for boxing of native types. And
since the designers were unwilling (for backward compatibility reasons) to modify the
VM, you’re stuck with the casts in the generated code (automatically inserted by the
compiler) -- even though the compiler knows they’re going to succeed—because the
JVM won’t accept the byte code otherwise: it will think it’s unsafe. Also, because
everything is an Object internally, reflection doesn’t work, and you can’t say new T(),
where T is generic parameter, because Java doesn’t know what to create.

The Java implementation strategy is known as erasure -- the type parameters are simply
erased by the compiler,

C++ does compile-time instantiation; more below.
C# may do compile-time instantiation in some cases, as an optimization.

--
Constraints

The problem:

 If I’m writing a sorting routine, how do I insist that the elements
 in the to-be-sorted list support a less_than() method or < operator?

 If I’m writing a hash table, how do I insist that the keys support a
 hash() method?

 If I’m writing output formatting code, how do I insist that objects
 support a to_string() method?

Related question:

Do I (can I) type-check the generic code, independent of any particular instantiation,
or do I type-check the instantiations individually?

Tradeoffs are nicely illustrated by comparing Java, C#, and C++.

C++ is very flexible: every instantiation is individually type-checked. Constraints are
implicit: if we try to instantiate a template for a type that doesn’t support needed
operations, the instance won’t type-check. This has led, historically, to really messy
error messages. Also introduces complications for separate compilation: suppose the
code is in module A but the use that requires instantiation is in module B? In practice,
most templates are put in header files, and the implementation elides duplicate
instantiations at link time. It’s also possible to manually instantiate particular versions in
the module that has the code, but that’s arguably a violation of abstraction.

Most other languages type-check the generic itself, so you don’t get any instantiation-
specific error messages. To support this, they require that the operations supported by
generic parameter types be explicitly specified somehow. Java and C# leverage
interfaces for this purpose. C++ has used “named requirements” in the standard library
for a while now; C++20 adds concepts, which provide a more general (but optional, for
backward compatibility) superset of the functionality found in Java and C#. They mostly
(but not completely) supersede named requirements.

Java example:

 public static <T implements Comparable<T>> void sort(T A[]) {
 ...
 if (A[i].compareTo(A[j]) >= 0) ...
 ...
 }
 ...
 Integer[] myArray = new Integer[50];
 ...
 sort(myArray);

Unlike C++, Java puts the type parameters right in front of the return type of the
function, rather than in a preceding “template” clause. Comparable is a standard
library interface that includes the compareTo() method. Wrapper class Integer
implements Comparable<Integer>.

C# syntax is similar:

 static void sort<T>(T[] A) where T : IComparable {
 ...
 if (A[i].compareTo(A[j]) >= 0) ...
 ...
 }
 ...
 int[] myArray = new int[50];
 ...
 sort(myArray);

C# puts the type parameter between the function name and the parameter list and the
constraints after the parameter list. Java won’t let you use int as a generic parameter,
but C# is happy to; it creates a custom version of sort for ints. (NB: Java will auto
box/unbox when assigning or passing as a parameter.)

C++ doesn’t require that constraints be explicit:
 template <class T>
 void sort(T A[], int A_size) {...

(C++ can’t figure out the size of an array, so you have to pass it in.
Alternatively, you could make it another generic parameter.)

Bad things happen if a parameter “accidentally” supports a needed operation, in the
“wrong way”. If we instantiate sort on an array of C strings (char* s), for example, we
get sorting by location in memory, not lexicographic order (C++ string objects compare
lexicographically).

Historically, C++ constraints could be specified explicitly by convention:

 make a function parameter inherit from a standard base class
 e.g., sort<foo>(SortableVector<foo> A), where SortableVector<T>
 inherits from both Vector<T> and Comparator<T>
 provide required operations as generic parameters
 e.g. sort<foo, comparator<foo>>(foo* A, int len)
 provide required operations as ordinary parameters
 e.g. sort<foo>(foo* A, int len, bool (*less_than<foo>)())
 make sort the operator() of a class for which less_than() is a
 constructor argument
 e.g. sort = new Sorter(bool (*less_than<foo>)()),
 where Sorter has an operator()

Concepts change this:

 template <typename T>
 concept Comparable = requires(T a, T b) { a < b; };

 template <Comparable T>
 void sort(T A[], int A_size) {...

--
Implicit Function Instantiation

Several languages, including C++, Java, and C#, will instantiate generic functions (not
classes) as you need them, using roughly the same resolution mechanism used for
overloading. (Actually, in C++ it requires unification, because of the generality of
generic parameters, including nested templates and specialization.)

--
Interaction with Subtype Polymorphism

These two play nicely together. If I derive queue from list, I want subclasses. But I
may also want generics: derive queue<T> from list<T>.

The subtle part is conformance of argument and return types. Suppose I want to be
able to sort things in Java that don’t implement Comparable themselves. I could make
the comparator be a constructor argument instead of a generic argument (the 4th by-
convention option in C++ above):

 interface Comparator<T> {
 public Boolean ordered(T a, T b);
 }
 class Sorter<T> {
 Comparator<T> comp;

 public Sorter(Comparator<T> c) { // constructor
 comp = c;
 }

 public void sort(T A[]) {
 ...
 if (comp.ordered(A[i], A[j])) ...
 ...
 }
 }

 class IntComp implements Comparator<Integer> {
 public Boolean ordered(Integer a, Integer b) {
 return a < b;
 }
 }
 Sorter<Integer> s = new Sorter<Integer>(new IntComp());
 s.sort(myArray);

This works fine, but it breaks if I try
 class ObjComp implements Comparator<Object> {
 public Boolean ordered(Object a, Object b) {
 return a.toString().compareTo(b.toString()) < 0;
 }
 }
 Sorter<Integer> s = new Sorter<Integer>(new ObjComp());
 s.sort(myArray);

The call to new causes the compiler to generate a type clash message, because we’re
passing a Comparator<Object> rather than a Comparator<Integer>. This is fixed in
Java using type wildcards:
 class Sorter<T> {
 Comparator<? super T> comp;
 public Sorter(Comparator<? super T> c) {
 comp = c;
 }

In general, you use <? super T> when you expect to pass objects into a method that
might be willing to take something more general (and you never expect to accept such
objects in return).

There’s also <? extends T> syntax, for when you expect something back out of a
context that might in fact give you something more specific (and you never expect to
pass such objects in).

In effect, these super and extends keywords serve to control type compatibility for
generics. Given a generic Foo<T>, we must ask: if C is derived from P (and thus C can be
used in any context that expects a P), can Foo<C> be used in any context that expects
Foo<P>? If so, we say Foo<T> is covariant in T.

 Covariance typically happens in the case where T objects are returned
 from Foo methods, but never passed into them as parameters.

For example, I can probably pass a Generator<C> object to anybody
 who expects a Generator<P> object:
 - They expect to use the generator to conjure up P objects.
 - If the generator gives them a C instead, they’re happy.

Conversely (and more commonly), there are times when a Foo<P> object
can be used in a context that expects Foo<C>. When this happens, we say Foo<T> is
contravariant in T.

 Contravariance typically happens when T objects are passed to Foo methods,
 but never returned from them.
 In our example above, I can pass a Comparator<P> object to anybody
 who expects a Comparator<C>.
 - They’re only going to give it C objects.
 - Since the Comparator is willing to take a P object, it’s happy.

C# simplifies (and restricts) all this. Instead of labeling parameters and field names, we
label the interface:

 interface Comparator<in T> {
 public Boolean ordered(T a, T b);
 }
 interface Generator<out O> {
 O create(...);
 }

In Java you can pass someone an interface in which some methods pass in and others
pass out, so long as they only use methods that go the "right way" according to your
super or extends parameter labels. In C# you can't mix and match that way.

In summary:

covariance: C is a P → Foo<C> is a Foo<P>
methods of Foo<T> return instances of T C# out Java extends

contravariance: C is a P → Foo<P> is a Foo<C>
methods of Foo<T> take T-type arguments C# in Java super

invariance: C is a P but Foo<C> and Foo<P> are incomparable
 instances of T are passed both ways

The Wikipedia page on covariance & contravariance has even more detail.

