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============================================================== 
Type Systems 
 
We have all developed an intuitive notion of what types are. 
 
What’s behind the intuition -- what is a type? 
  - collection of values from a “domain” 
  (the mathematical/denotational approach) 
  - equivalence class of objects (the implementor’s approach) 
  - internal structure of a bunch of data, described down to the level 
  of a small set of fundamental types (the structural approach) 
  - collection of well-defined operations that can be applied to objects 
  of that type (the abstraction approach) 
 
What are types good for? 
 implicit context (resolution of polymorphism and overloading) 
 checking -- make sure that certain meaningless operations do not 
  occur. Type checking cannot prevent all meaningless operations, 
  but it catches enough of them to be useful. 
 readability 
 performance optimization  
 
Strong typing means, informally, that the language prevents you from 
applying an operation to data on which it is not appropriate. 
 
Static typing means that the compiler can do all or most of the checking at compile 
time.  Lisp dialects are strongly typed, but not statically typed.  Rust is statically typed; 
Python is dynamically typed (and both are strongly typed).  ML dialects are statically 
typed with inference.  C is statically but not strongly typed.  Java is strongly typed, with a 
non-trivial mix of things that can be checked statically and things that have to be 
checked dynamically. 
 
(Recall from Chap. 4 that static type checking simply serves to catch errors early.  It 
needs to be sound — everything it finds must be consistent with what would otherwise 
be fully dynamic semantics.  It’s formalized with inference rules.) 



 
To a large (but not exclusive!) extent, static checking adds complexity to the 
programmer’s task in return for better performance and earlier error detection. 

A type system has rules for 
- type equivalence (when are the types of two values the same? -- that is, what 

exactly are the types in the program?) 
- type compatibility (when can a value of type A be used in a context that expects 

type B?)  Note that this is directional.  One might, for example, be allowed to use an 
integer everywhere a real is expected, but not vice versa. 

- type inference (what is the type of an expression, given the types of the operands 
[and maybe the surrounding context]?) 

 
---------------------------------------- 
Type equivalence, subtyping, and type compatibility 
 
Compatibility is the practical concept: it tells you what you can do. 
Most languages say type A is compatible with (can be used in a context that expects) 
type B if A is equivalent to B, A is a subtype of B, or if A can be coerced to B. 
 
Two major approaches to equivalence: structural equivalence and name equivalence.  
Name equivalence is based on declarations.  Structural equivalence is based on some 
notion of meaning behind those declarations.  Name equivalence is more fashionable 
these days, but not universal. 
 
Structural equivalence depends on recursive comparison of type descriptions 
 Substitute out all names; expand all the way to built-in types. 
 Original types are equivalent if the expanded type descriptions are the same. 

(Pointers complicate matters, but the Algol folks figured out how to handle it in the 
late 1960’s.  The correct approach is to apply a “set of subsets” algorithm to the 
graph of types that point to each other, the same way one turns a non-deterministic 
FSM into an equivalent deterministic FSM.) 

 
Name equivalence depends on actual occurrences of declarations in the source code. 
Example: 
 struct person { string name; string address; } 
 struct school { string name; string address; } 



These are structurally equivalent but not name equivalent. Depending on your 
language, the following might also be structurally equivalent to the above: 
 struct part { string manufacturer; string description; } 
 
Depending on your language, the following alias types might or might not be name 
equivalent: 
 type fahrenheit = integer; 
 type celsius = integer; 
 
We probably don’t want those to be, but if we declare 
 type score = integer; 

then maybe integer and score should be equivalent -- the word “score” might just be 
for documentation purposes. 
 
This is strict v. loose name equivalence.  Ada lets you choose: 
 type score is integer; 
 
 type fahrenheit is new integer; 
 type celsius is new integer; 
 
Algol-68 used structural equivalence, as did many early Pascal implementations (the ISO 
standard uses name equivalence).  Java uses name equivalence.  ML-family languages 
are more-or-less structural (see below).  C uses a hybrid (structural except, ironically, for 
structs). 

Both forms of type equivalence have nontrivial implementation issues for 
separate compilation. 
 timestamp header files? 
 checksum header files? 
  avoid comments, format? 
  how handle compatible upgrades? 
 finer grain? 
“name mangling” -- enforce with standard linker 
 
---------------------------------------- 
Coercion 
 When an expression of one type is used in a context where a different 
 type is expected, one normally gets a type error.  But what about 



  var a : integer; b, c : real; 
  ... 
  c := a + b; 

 
Many languages allow things like this, and coerce an expression to be of the proper 
type.  Coercion can be based just on types of operands, or can take into account 
expected type from surrounding context as well. 

 
 Fortran and C have lots of coercion, all based on operand type. 
 Here’s an abbreviated version of the C rules: 
  if either operand is long double, the other is converted if 
   necessary, and the result is long double 
  else similarly if either is double 
  else similarly if either is float 
  else both are integral: 
   if they’re the same, the result matches 
   else if both are signed or both unsigned, the one with lower 
    “rank” is converted to the one with higher rank, and the 
    result matches 
   else one is signed and the other is unsigned: 
    if the unsigned has greater or equal rank, the signed 
     one is converted and the result has the unsigned type 
    else if the signed type can hold all possible values of 
     the unsigned type, the unsigned one is converted and 
     the result has the signed type 
    else both are converted to the unsigned type corresponding 
     to the signed type, and that’s also the type of the result 
 if necessary, precision is removed when assigning into LHS 
 

In effect, coercion is a relaxation of type checking.  Some languages (e.g. Modula-2 
and Ada) forbid it.  C++, by contrast, goes hog-wild with coercion.  It’s one of several 
parts of the language that programmers often find hard to understand. 
 

Make sure you understand the difference between 
 type conversions (explicit) 
 type coercions (implicit) 
 non-converting type casts (breaking the typing rules) 
 Sometimes the word ‘cast’ is used for conversions, which is unfortunate. 



(C is guilty here.) 
 
Some authors also vary the meanings of “conversion” and “coercion” -- e.g., to 
distinguish between cases that do or do not entail run-time code.  I think that’s a bad 
idea: I use the terms to indicate semantics; implementation is orthogonal.  In particular, 
a conversion may or may not require run-time code. 
 
---------------------------------------- 
Type inference and polymorphism 
 
simple case: local-only.  Esp. useful for declarations. 
 
 var pi = 3.14;  // C# 
 auto pi = 3.14;  // C++11 
or 
 auto o = new very_long_type_name<X, Y, Z>(args); 
 
similarly 
 var/val/def  in Scala   (mutable / constant / method) 
 var/let   in Swift   (mutable / constant) 
 var/:=   in Go   (in inner scopes, := is sugar) 
 
complicated case: ML (OCaml), Miranda, Haskell (Hindley-Milner type inference) 
1 -- fib :: int -> int 
2 let fib n = 
3   let rec helper f1 f2 i = 
4  if i = n then f2 
5  else helper f2 (f1 + f2) (i + 1) in 
6   helper 0 1 0;; 
 
i is int, because it is added to 1 at line 5 
n is int, because it is compared to i at line 4 
all three args at line 6 are int consts, and that’s the only use of 
 helper (given scope of let), so f1 and f2 are int 
also, the 3rd argument is consistent with the known int type of i (good!) 
and the types of the arguments to the recursive call at line 5 are 
 similarly consistent 
since helper returns f2 (known to be int) at line 4, the result of 
 the call at line 6 will be int 

J. Roger Hindley [1969]; 
rediscovered by 
Robin Milner [1978] 
 



Since fib immediately returns this result as its own result, 
 the return type of fib is int 
 
(Note that the limited scope of the let construct allows the compiler to use the types of 
helper’s actual parameters to deduce helper’s own types -- something it can’t do at 
the global level.) 
 
fib itself is of type int -> int 
helper is of type int -> int -> int -> int 
 
Side note: named types in OCaml introduce new types, even if their internal structure 
matches.  So the language is mostly structural but with a bit of name equivalence as 
well.  If two types have constructors with the same name, the inference engine can get 
confused (in OCaml, in the case of ambiguity, it arbitrarily guesses the most recently 
declared type with a matching constructor).  You can resolve the confusion/ambiguity 
with explicit type declarations (e.g.,  let foo:t = Bar a b c;;) 
 
Polymorphism results when the compiler finds it doesn’t need to know certain things.  
For example: 
 
 let compare x p q = 
   if x = p then if x = q then "both" else "first" 
   else if x = q then "second" else "neither";; 
   (* note use of deep equality *) 
 
compare has type ‘a -> ‘a -> ‘a -> string 
‘a is a type variable, so compare is polymorphic. 
 
Any time the ML or Haskell compiler determines that A and B have to have the same 
type, it tries to unify them.  For example, in the expression 
 
 if x then e1 else e2 
 
x has to be of type bool, and e1 and e2 have to be of the same type.  If e1 is (so far) 
known to be of type ‘a * int (a 2-element tuple) and e2 is known (so far) to be of type 
char list * ‘b, then ‘a is char list and ‘b is int, and the expression as a whole is 
of type char list * int. 
 



Like Lisp, ML-family languages make heavy use of lists, but ML’s lists are homogeneous 
— all elements have to have the same type.  Ex: 
 
 let append l1 l2 = 
  match l1 with 
  [] -> l2 
  h::t -> h :: append t l2;; 
 
The append function has type ‘a list -> ‘a list -> ‘a list. 
The :: operator has type ‘a -> ‘a list -> ‘a list. 
 
Unification, by the way, is a powerful technique, used for a variety of purposes in 
programming languages.  It’s the basis of computation in Prolog, which tries to unify 
RHS’s of rules with LHS’s of things that might imply them. 
 In Prolog, unification assigns values to variables 
 In ML, it assigns types to type variables 
 
Unification is also used to type-check C++ templates. 
 
---------------------------------------- 
Advanced Topics 
 
Types can be the subject of a whole class on their own. 
A certain amount of advanced material gets covered in 255. 
Here are a couple examples. 
 
Type classes and Higher-level types (kinds) 

Type classes are sort of like interfaces in an object-oriented language, but built into 
the compiler. 

 
In Haskell, for example, a type that supports equality and inequality operators (== 
and /=) is of class Eq. 
A type that also supports < , > , <= , and >= is of class Ord. 
Ord is a subclass of Eq: you can use an Ord type anywhere an Eq type is expected. 

 
Like OCaml, Haskell provides ML-family type inference. But where OCaml defines 
ordering operations on every type for simplicity, Haskell infers that any values to  
which you apply < or > operators must be of a type in class Ord. 



 
You can define your own type classes. 

 
There is also a notion of type kinds, which impose structure on type constructors 
like tuples, records, variants, and functions. 

 
Typestate 

A few languages capture, in the compiler, the notion that objects of a class can be in 
any of several states, that certain methods apply only when the object is in a certain 
state, and the certain methods transform the object from one state to another.  
This allows certain kinds of errors to be caught by the compiler. 
 
An object of type file, for example, might only support read and write operations 
after it has been opened.  A typestate compiler might catch “file has not been 
opened” errors at compile time. 
 
You can think of definite assignment in Java and C# as a very limited form of 
typestate.  Ownership in Rust is a more complicated subcase. 

 
Lifetime analysis 

Rust incorporates the notion of lifetime into types, to avoid dangling references and 
storage leaks without run-time garbage collection. 
 
By default, a dynamically allocated mutable (non-constant) object in Rust can be 
accessed through only one variable at a time.  When desired, the programmer can 
create multiple read-only references to (“borrows” of) a variable.  The compiler can 
always tell when the last reference to a variable goes away, and can generate code 
to reclaim its space. 
 
The rules are complicated, however, and have not yet been successfully formalized.  
Moreover, many standard container classes have to break the rules in order to 
produce code that is both fast and fully functional.  One has to trust that this 
“unsafe” code is correct -- or perhaps some day prove it. 

 
 
 
 



============================================================== 
Polymorphism and Generics 
 
Recall from chapter 3: 

 ad hoc polymorphism: fancy name for overloading 
 

subtype polymorphism in OO languages allows code to do the “right thing” when a 
ref of parent type refers to an object of child type 

  implemented with vtables (to be discussed in chapter 10) 
 
 parametric polymorphism 
  type is a parameter of the code, implicitly or explicitly 
 
  implicit (true) 
   language implementation figures out what code requires of object 
    at compile-time, as in ML or Haskell 
    at run-time, as in Lisp, Smalltalk, or Python 
   lets you apply operation to object only if object has 
    everything the code requires 
   
  explicit (generics) 
   programmer specifies the type parameters explicitly 
   introduced by Clu; mainstreamed in Ada; ubiquitous today 

(C++, Eiffel, Java, C#, Rust, Scala, Swift, Kotlin, … 
   mostly what I want to talk about today 
 
---------------------------------------- 
C++ calls its generics templates. 
They allow you, for example, to create a single stack abstraction, and instantiate it for 
stacks of integers, stacks of strings, stacks of employee records, ... 
 
 template <class T> 
 class stack { 
  T[100] contents; 
  int tos = 0;   // first unused location 
  public: 
  T pop(); 
  void push(T); 
  ... 



 } 
 ... 
 stack<double> S; 
 
I could, of course, do 
 
 class stack { 
  void*[100] contents; 
  int tos = 0; 
  public: 
  void* pop(); 
  void push(void *); 
  ... 
 } 
 
But then I have to use type casts all over the place.  Inconvenient and, in C++, unsafe. 
 
Lots of containers (stacks, queues, sets, mappings, ...) in the C++ standard library. 
 
Similarly rich libraries exist for Java and C#.  (Also for Python and Ruby, but those use 
implicit parametric polymorphism with run-time checking.) 
 
---------------------------------------- 
Some languages (e.g. Ada and C++) allow things other than types to be passed as 
template arguments.  This is particularly important with a value model of variables: 
 
 template <class T, int N> 
 class stack { 
  T[N] contents; 
  int tos = 0; 
  public: 
  T pop(); 
  void push(T); 
  ... 
 } 
 ... 
 stack<double, 100> S; 
 
  



---------------------------------------- 
Implementation 
 
C# generics do run-time instantiation (reification), at least in the general case.  When 
you first elaborate stack<foo>, the VM invokes the JIT compiler and generates the 
appropriate code.  Doesn’t box native types if it doesn’t need to—more efficient. 
 
Java doesn’t do run-time instantiation.  Internally everything is stack<Object>.  You 
avoid the casts in the source code, but you have to pay for boxing of native types.  And 
since the designers were unwilling (for backward compatibility reasons) to modify the 
VM, you’re stuck with the casts in the generated code (automatically inserted by the 
compiler) -- even though the compiler knows they’re going to succeed—because the 
JVM won’t accept the byte code otherwise: it will think it’s unsafe.  Also, because 
everything is an Object internally, reflection doesn’t work, and you can’t say new T(), 
where T is generic parameter, because Java doesn’t know what to create. 
 
The Java implementation strategy is known as erasure -- the type parameters are simply 
erased by the compiler, 
 
C++ does compile-time instantiation; more below. 
C# may do compile-time instantiation in some cases, as an optimization. 
 
---------------------------------------- 
Constraints 
 
The problem: 

 If I’m writing a sorting routine, how do I insist that the elements 
 in the to-be-sorted list support a less_than() method or < operator? 

 If I’m writing a hash table, how do I insist that the keys support a 
 hash() method? 

 If I’m writing output formatting code, how do I insist that objects 
 support a to_string() method? 
 
Related question: 

Do I (can I) type-check the generic code, independent of any particular instantiation, 
or do I type-check the instantiations individually? 



Tradeoffs are nicely illustrated by comparing Java, C#, and C++. 
 
C++ is very flexible: every instantiation is individually type-checked.  Constraints are 
implicit: if we try to instantiate a template for a type that doesn’t support needed 
operations, the instance won’t type-check.  This has led, historically, to really messy 
error messages.  Also introduces complications for separate compilation: suppose the 
code is in module A but the use that requires instantiation is in module B?  In practice, 
most templates are put in header files, and the implementation elides duplicate 
instantiations at link time.  It’s also possible to manually instantiate particular versions in 
the module that has the code, but that’s arguably a violation of abstraction. 
 
Most other languages type-check the generic itself, so you don’t get any instantiation-
specific error messages.  To support this, they require that the operations supported by 
generic parameter types be explicitly specified somehow.  Java and C# leverage 
interfaces for this purpose.  C++ has used “named requirements” in the standard library 
for a while now; C++20 adds concepts, which provide a more general (but optional, for 
backward compatibility) superset of the functionality found in Java and C#.  They mostly 
(but not completely) supersede named requirements. 
 
Java example: 
 
 public static <T implements Comparable<T>> void sort(T A[]) { 
  ... 
  if (A[i].compareTo(A[j]) >= 0) ... 
  ... 
 } 
 ... 
 Integer[] myArray = new Integer[50]; 
 ... 
 sort(myArray); 
 
Unlike C++, Java puts the type parameters right in front of the return type of the 
function, rather than in a preceding “template” clause.  Comparable is a standard 
library interface that includes the compareTo() method.  Wrapper class Integer 
implements Comparable<Integer>. 
 
C# syntax is similar: 
 
 



 static void sort<T>(T[] A) where T : IComparable { 
  ... 
  if (A[i].compareTo(A[j]) >= 0) ... 
  ... 
 } 
 ... 
 int[] myArray = new int[50]; 
 ... 
 sort(myArray); 
 
C# puts the type parameter between the function name and the parameter list and the 
constraints after the parameter list.   Java won’t let you use int as a generic parameter, 
but C# is happy to; it creates a custom version of sort for ints.  (NB: Java will auto 
box/unbox when assigning or passing as a parameter.) 
 
C++ doesn’t require that constraints be explicit: 
 template <class T> 
 void sort(T A[], int A_size) {... 
 
(C++ can’t figure out the size of an array, so you have to pass it in. 
Alternatively, you could make it another generic parameter.) 
 
Bad things happen if a parameter “accidentally” supports a needed operation, in the 
“wrong way”.  If we instantiate sort on an array of C strings (char* s), for example, we 
get sorting by location in memory, not lexicographic order (C++ string objects compare 
lexicographically). 
 
Historically, C++ constraints could be specified explicitly by convention: 

 make a function parameter inherit from a standard base class 
  e.g., sort<foo>(SortableVector<foo> A), where SortableVector<T> 
   inherits from both Vector<T> and Comparator<T> 
 provide required operations as generic parameters 
  e.g. sort<foo, comparator<foo>>(foo* A, int len) 
 provide required operations as ordinary parameters 
  e.g. sort<foo>(foo* A, int len, bool (*less_than<foo>)()) 
 make sort the operator() of a class for which less_than() is a 
  constructor argument 
  e.g. sort = new Sorter(bool (*less_than<foo>)()), 
  where Sorter has an operator() 



Concepts change this: 
 
  template <typename T> 
    concept Comparable = requires(T a, T b) { a < b; }; 
 
    template <Comparable T> 
    void sort(T A[], int A_size) {... 
 
---------------------------------------- 
Implicit Function Instantiation 

Several languages, including C++, Java, and C#, will instantiate generic functions (not 
classes) as you need them, using roughly the same resolution mechanism used for 
overloading.  (Actually, in C++ it requires unification, because of the generality of 
generic parameters, including nested templates and specialization.) 
 
---------------------------------------- 
Interaction with Subtype Polymorphism 

These two play nicely together.  If I derive queue from list, I want subclasses.  But I 
may also want generics: derive queue<T> from list<T>. 

The subtle part is conformance of argument and return types.  Suppose I want to be 
able to sort things in Java that don’t implement Comparable themselves.  I could make 
the comparator be a constructor argument instead of a generic argument (the 4th by-
convention option in C++ above): 
 
 interface Comparator<T> { 
  public Boolean ordered(T a, T b); 
 } 
 class Sorter<T> { 
  Comparator<T> comp; 
 
  public Sorter(Comparator<T> c) { // constructor 
   comp = c; 
  } 
 
  public void sort(T A[]) { 
   ... 
   if (comp.ordered(A[i], A[j])) ... 
   ... 
  } 
 } 



 class IntComp implements Comparator<Integer> { 
  public Boolean ordered(Integer a, Integer b) { 
   return a < b; 
  } 
 } 
 Sorter<Integer> s = new Sorter<Integer>(new IntComp()); 
 s.sort(myArray); 
 
This works fine, but it breaks if I try 
 class ObjComp implements Comparator<Object> { 
  public Boolean ordered(Object a, Object b) { 
   return a.toString().compareTo(b.toString()) < 0; 
  } 
 } 
 Sorter<Integer> s = new Sorter<Integer>(new ObjComp()); 
 s.sort(myArray); 
 
The call to new causes the compiler to generate a type clash message, because we’re 
passing a Comparator<Object> rather than a Comparator<Integer>.  This is fixed in 
Java using type wildcards: 
 class Sorter<T> { 
  Comparator<? super T> comp; 
  public Sorter(Comparator<? super T> c) { 
   comp = c; 
  } 
 
In general, you use <? super T> when you expect to pass objects into a method that 
might be willing to take something more general (and you never expect to accept such 
objects in return). 

There’s also <? extends T> syntax, for when you expect something back out of a 
context that might in fact give you something more specific (and you never expect to 
pass such objects in). 

In effect, these super and extends keywords serve to control type compatibility for 
generics.  Given a generic Foo<T>, we must ask: if C is derived from P (and thus C can be 
used in any context that expects a P), can Foo<C> be used in any context that expects 
Foo<P>?  If so, we say Foo<T> is covariant in T. 

 Covariance typically happens in the case where T objects are returned 
  from Foo methods, but never passed into them as parameters. 
  



For example, I can probably pass a Generator<C> object to anybody 
  who expects a Generator<P> object: 
    - They expect to use the generator to conjure up P objects. 
    - If the generator gives them a C instead, they’re happy. 
 
Conversely (and more commonly), there are times when a Foo<P> object 
can be used in a context that expects Foo<C>.  When this happens, we say Foo<T> is 
contravariant in T. 

 Contravariance typically happens when T objects are passed to Foo methods, 
  but never returned from them. 
 In our example above, I can pass a Comparator<P> object to anybody 
  who expects a Comparator<C>. 
    - They’re only going to give it C objects. 
    - Since the Comparator is willing to take a P object, it’s happy. 
 
C# simplifies (and restricts) all this.  Instead of labeling parameters and field names, we 
label the interface: 
 
    interface Comparator<in T> { 
        public Boolean ordered(T a, T b); 
    } 
    interface Generator<out O> { 
        O create(...); 
    } 
 
In Java you can pass someone an interface in which some methods pass in and others 
pass out, so long as they only use methods that go the "right way" according to your 
super or extends parameter labels.  In C# you can't mix and match that way. 
 
In summary: 

covariance:  C is a P  →  Foo<C> is a Foo<P>  
methods of Foo<T> return instances of T   C#  out  Java  extends 

contravariance:  C is a P  →  Foo<P> is a Foo<C> 
methods of Foo<T> take T-type arguments   C# in    Java  super 

invariance: C is a P but Foo<C> and Foo<P> are incomparable 
 instances of T are passed both ways 

 
The Wikipedia page on covariance & contravariance has even more detail. 


