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=============================== 
Stack management 
 
Recall allocation strategies: static, stack, heap 
 
Maintaining the Run-Time stack 
 Contents of a stack frame 
  bookkeeping: return PC (dynamic link), saved registers, static link, 
   (rarely) alignment or interrupt mask information 
  arguments and return value(s) 
  local variables 
  temporaries 
 Maintenance of stack is responsibility of “calling sequence” 
 and subroutine “prologue” and “epilogue”. 
  space is saved by doing as much work as possible in the prologue and epilogue 
  time may be saved by doing work in the caller instead, where more 
   information may be known.  E.g., there may be fewer registers 
   in use at the point of call than are used somewhere in the callee. 
  common strategy is to divide registers into “caller-saves” and 
   “callee-saves” sets. 
   Caller uses the “callee-saves” registers first; 
    “caller-saves” registers if necessary. 
   Callee uses the “caller-saves” registers first; 
    “callee-saves” registers if necessary. 
 

Local variables, parameters, and temporaries are assigned fixed offsets from the 
frame pointer or stack pointer at compile time 

 
Variable-length locals and parameters are handled with descriptors (dope vectors—
covered in Chapter 8).  The descriptors are at known offsets.  For locals, they are 
accompanied by a pointer to space higher up in the frame.  For value arguments, 
the pointer points down in the frame. 

 
Stack layout varies significantly from machine to machine and, to some degree, from 
compiler to compiler.  Many compilers, for example, access everything relative to the 



stack pointer when they can, so the frame pointer can be used for something else.  This 
is not possible w/ variable-sized data in the frame. 
 
Typical modern compiler aims to minimize memory accesses and to rely on simple 
instructions: 
 - no special instructions other than jsr or call 
 - most arguments passed through registers (but space reserved on stack) 
 - often skip frame pointer 
 - relatively stable sp (arg build area) 
 - simple leaf routines make no use of memory at all 
 
Older compilers often used the stack more, and leveraged complex, special-purpose 
instructions: 
 - special subroutine-calling instructions to save and update the frame pointer, save 
   registers, branch, and allocate space for the frame, all in one or two instructions 
 - special push and pop operations to load/store and update sp in one instruction 
 - (usually) all arguments passed on the stack 
 - (usually) real frame pointer 
 - (usually) sp moves up and down as arguments are pushed and popped. 
   Convenient for function calls embedded in argument lists. 
   No longer done this way on x86, however—x86-64, esp., makes more 
   use of (now more numerous) registers. 
 
---------------------------------------- 
Case study 
 
The text presents LLVM on ARM-32 (e.g., iPhone) and GCC on x86 (32 & 64).  I’ll focus 
here on GCC on x86-64. 
 
register usage 
 16 64-bit integer registers, 16 128-bit FP/SSE registers 
  (various other legacy registers that are not commonly used) 
 naming of registers is complicated, due to evolution of the ISA over the years 

  rsp       stack pointer; callee-saved 
  rbp       frame pointer (if used); callee-saved 
  rdi , rsi , rdx , rcx , r8, and r9 (in that order) 
         first 6 integer arguments; caller-saved 



  rbx, r12, r13, r14, r15  callee-saves temporaries 
  rax, r10, r11    caller-saves temporaries 
 
  static link (if needed) is passed in r10. 

  rax and (if needed) rdx are used to return function value 

  rax and rdx are over-written by division operation 
   several other similar special cases—non-orthogonal architecture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: In previous incarnations of x86 ABI, SP points to last used location. 
 On some machines/OSes, it points to first unused location.  Beware! 
  



Actual calling sequence 
 Caller 
  1) saves caller-saves registers into temporary locations in 
   current frame, if necessary 
  2) puts args into registers and (if necessary) the build area at 
   the top of the current frame 
  3) puts static link in r10 (skipped for C, or for level-0 callees) 
  4) executes call 
 
 In prologue, Callee 
  1) pushes fp (decrementing sp by 8) 
  2) copies sp into fp, creating new fp 
  3) pushes callee-saves regs, if necessary 
  4) subtracts rest of frame size from sp 
 
 In epilogue, Callee 
  1) sets return value, if any 
  2) restores callee-saved regs, if any 
  3) copies fp into sp, deallocating frame 
  4) pops fp off stack 
  5) returns 
 

Steps 3) and 4) can be combined into a one-byte ‘leave’ instruction.  It’s never 
been entirely clear to me why compilers sometimes generate it and sometimes 
don’t—perhaps details of timing on particular processor implementations. 

 
 After call, Caller 
  1) moves return value from register to wherever it’s needed (if appropriate) 
  2) restores caller-saves registers lazily over time, as their values are needed 
 
 Many parts of sequence can be elided in special cases. 
 In particular 
   - many routines get by w/out fp 
   - red zone lets small leaf routines avoid updating sp 
  



---------------------------------------- 
Access to non-local variables via static links 
 
Each frame points to the frame of the (correct instance of) the routine inside which it 
was declared.  In the absence of formal subroutines, “correct” means closest to the top 
of the stack. 
 
You access a variable in a scope k levels out by following k static links and then using the 
known offset within the frame thus found. 
 
You set up static links as follows: 
 case 1: callee is nested (directly) inside you 
  callee’s static link is pointer to your frame 
 case 2: callee is k scopes out (k may be 0) 
  callee’s static link is found by indirecting off your own static link k times 
 
Procedures as parameters:  When you form the closure, you figure out a static link just 
as if you were going to call the routine directly; the closure consists of the routine’s 
address and the static link. 
 
======================================== 
Parameter passing 
 
Three basic implementations: 
 value, value/result (copying—when you have a value model of variables) 
 reference (aliasing—maybe even if you normally have a value model) 
 closure 
  
Closures used not only for formal subroutines, but also name (lazy) parameters and 
(ancient) label parameters (Algol 60, 68) 
 
Some languages (e.g., Pascal) have provided val and ref directly. 
Problem: pass big thing by val or ref? —speed v. safety tradeoff 
Solution? (Modula-2): ‘const’ mode that is read-only but passed by reference 

but then val and const for small things are ~semantically redundant 
 
  



Ada went for semantics: who can do what 
 in   formal initialized; actual not modified 
 out   formal not initialized; actual modified 
 in out  formal initialized; actual modified 
 
Ada in out is always implemented as value/result for scalars, and either value/result or 
reference for structured objects.  The language manual says your program is 
“erroneous” if it can tell the difference. 
 
Call by reference is the only option in Fortran.  If you pass a constant, the compiler 
creates a temporary location to hold it.  If you modify the temporary, who cares? 
 
In a language with a reference model of variables (Lisp, ML, etc.), the obvious approach 
is to make the formal parameter refer to the same thing as the actual parameter.  I like 
the name call by sharing for this, because it isn’t clear whether to think of it as value 
(formal parameter is a copy of the actual) or reference (formal parameter is a reference, 
and can change from caller’s perspective).  Note that with call by sharing you can 
change the value of the referred-to thing (assuming it isn’t immutable), but you can’t 
change which thing is referred to. 
 
Call-by-name is an old Algol technique.  Think of it as call by textual substitution (a 
procedure with all name parameters works like a macro).  What you pass are hidden 
procedures called thunks. 
 
Jensen’s device example: 
 
 function sum (expr, index : name real; low, high : const integer) 
  returns answer : real; 
 begin 
  answer := 0; 
  for i in low..high loop 
   index := i; 
   answer +:= expr; 
  end loop; 
 end sum; 
 
 S := sum (A[2*i-1], i, 1, 10); 
 



(Curiously, it doesn’t seem to be possible to write a general-purpose swap routine with 
name parameters.) 
 
Call-by-name is a naive implementation of normal-order evaluation.  Call-by-need does 
memoization.  It’s used in Haskell, which is purely functional, and in R, which is not.  
Both call-by-name and call-by-need are considered “lazy evaluation” by the functional 
programming community (there’s some inconsistency of nomenclature here—compiler 
people sometimes use “lazy” only for call-by-need). 
 
In a pure functional language call by name and call by need are semantically 
indistinguishable; with side effects they aren’t. 
 
Note that passing dynamic arrays by value is tricky.  The actual parameter list on the 
stack contains a fixed-size dope vector and a pointer, but where does the data go? 
Most likely option is below the arguments. 
 
Summary: 
 

 
  
 
* Behavior is undefined if the program attempts to use an r-value argument after the call. 
† Changes to arguments passed by need in R will happen only on the first use; changes in Haskell are not 
permitted. 
 



 
Other parameter issues 

• conformant arrays—variable-size array parameters in a language that otherwise 
doesn’t support variable-size arrays 

• default (optional) parameters—don’t avoid cost 
• named parameters—great for long parameter lists 
• variable number of parameters—typesafe? 

 
Function returns 
 
Pascal and Fortran return values from functions by assigning to the function identifier. 
User cannot re-use the name of a function inside.  Later languages tend to have an 
explicit ‘return’ statement (as in C or Ada), or a named return value (as in Algol 68, 
above, or Go). 
 
Another advantage of named returns is that you can use the name inside expressions: 
 
 -- Ada 
 type int_array is array (integer range <>) of integer; 
  -- array of integers with unspecified integer bounds 
 function A_max (A : int_array) return integer is 
 rtn : integer; 
 begin 
  rtn := integer’first; 
  for i in A’first .. A’last loop 
   if A(i) > rtn then rtn := A(i); end if; 
  end loop 
  return rtn; 
 end A_max; 
 
 
 -- Go 
 func A_max(A []int) (rtn int) { 
  rtn = A[0] 
  for i := 1; i < len(A); i++ { 
   if A[i] > rtn { rtn = A[i] } 
  } 
  return 
 } 
 
  



======================================== 
Exceptions and Events 
 
What is an exception? 
   -  an unusual condition detected at run time 
 Examples: 
    -  arithmetic overflow 
    -  end-of-file on input 
    -  wrong type for input data 
    -  user-defined conditions (not necessarily errors) 
  -  error v. nonlocal return—different mechanisms?  (Common Lisp) 

What is an exception handler? 
- code executed when exception occurs 
- may need a different handler for each type of exception 

Why design in exception handling facilities? 
- allow user to explicitly handle errors in a uniform manner 
- allow user to handle errors without having to check these conditions explicitly in the 

program everywhere they might occur 

Downsides 
- may discourage careful checking of boundary conditions (laziness) 
- introduces brittleness: caller has to be prepared to handle error 
- Some companies (e.g., Google) have banned the use of exceptions in their code; 

Rust chose not to provide them 

Consider handling of errors in a (large) recursive-descent compiler.  It’s something of 
pain in languages without exceptions: need extra parameters and checks in every 
procedure.  May be simpler to be able to back out to exactly where you want to. 
 

Pioneers: 

 PL/I: dynamically scoped 
 CLU: statically scoped, procedure/abstraction oriented 
  (can’t handle locally) 

Convergence in modern languages on built-in, statically scoped, “replacement” 
model: Ada, C++/Java/C#, ML, Common Lisp, Swift/Kotlin/Scala, Python/PHP/Ruby 
Discussion here is for C++/Java. 
 



Handlers local to code in which exception is raised 
 
 try { 
  ... 
   // throw obj; 
  ... 
 } catch (end_of_file) { 
  ... 
 } catch (io_error e) { 
  ... 
 } catch (...) { 
  ...      // catch-all 
 } 
 
Handlers must be at the end of a block of code (but can put blocks around any 
statement).  ML and Common Lisp allow handlers on arbitrary expressions. 
 
Notion of matching an exception.  Arguments as members of object. 
(Ada has no arguments; ML makes them look like variant fields.) 
 
Static (nested) binding within subroutine, then propagate up dynamic chain. 
All functions that the exception propagated out of are terminated. 
C++ executes destructors as appropriate on the way out. 
Execution continues after handler code (which is always at the end of a block) 
 
---------------------------------------- 
Implementation of statically-scoped exceptions 
 

(1) Push handler address when entering a protected block, pop when leave.  
Sometimes implemented this way in C++, probably to minimize size and 
complexity of the run-time library. 

(2) Do everything via lookup in tables produced by the compiler.  This is the “right” 
way to do it. 

(3) Can sort of fake it in C with setjmp() and longjmp().  These take state snapshot 
and restore on throw.  Doesn’t work right for non-volatile local variables.  Very 
expensive. 

 
 
 



---------------------------------------- 
Events 
 
Commonly used in interactive programs.  In Java: 
 class PauseListener implements ActionListener { 
  public void actionPerformed(ActionEvent e) { 
   // do whatever needs doing 
  } 
 } 
 ... 
 JButton pauseButton = new JButton(“pause”); 
 pauseButton.addActionListener(new PauseListener());  
 
Or, with anonymous inner classes: 
 pauseButton.addActionListener(new ActionListener() { 
  public void actionPerformed(ActionEvent e) { 
   // do whatever needs doing 
  } 
 }); 
 
This is a little ugly because Java insists on making everything a class.  What you really 
want is a lambda expression to be executed when the event occurs. 

In C# you have object closures, which function fort of like lambdas.  They’re actually 
more like Runnables in Java or objects with an operator() method in C++.  They are 
supported by a syntactic mechanism that C# calls delegates—sort of syntactic sugar for 
single-method interfaces: 
 
 void Paused(object sender, EventArgs a) { 
  // do whatever needs doing when the pause button is pushed 
 } 
 ... 
 Button pauseButton = new Button(“pause”); 
 pauseButton.Clicked += new EventHandler(Paused); 
 
or 
 
 pauseButton.Clicked += delegate(object sender, EventArgs a) { 
  // do whatever needs doing 
 } 
 



Paused matches the pattern established by a delegate declaration in the library.  Can be 
a static method or a method of a particular object—even a nested object.  In the latter 
case, C# (like C++) allows access to static members of the surrounding class only.  
Java allows access to nonstatic members, but doesn’t have delegate sugar. 
 
---------------------------------------- 
Signal handlers 
 
In Swing, as in many GUI packages, events are handled by separate threads, managed by 
the runtime.  If they access data for which consistency is an issue, you have to use 
explicit synchronization. 
 
In other languages, event handling can happen in the currently running thread, as if it 
were a spontaneous subroutine call.  Because the caller doesn’t actually make the call, 
we need extra machinery, called a trampoline, to fake the calling the sequence: 
 
 main program 
        | 
        ‘-----------------------------------------> kernel 
                                                      | 
                    event       signal  <-------------’ 
                    handler     trampoline         rti 
                                   | 
                        <----------’ 
                        | 
                        ‘--------->, 
                                   | 
         ,<------------------------’ 
         | 
 
 
Note that because the main program and signal handler run on the same thread, they 
can’t use scheduler-based locks to synchronize access to shared data structures.  Rather 
(as we saw in the implementation of  thread scheduling in Chap. 13), the main program 
needs to turn off signals while manipulating data that may also be accessed in a handler. 
 
Note also that the word “signal” is used in Chap. 13 for a second, unrelated purpose—
the signal and wait operations of Java monitors.  Don’t let that confuse you. 
 
 



---------------------------------------- 
Asynchronous programming 
 
Allow a single thread to maintain, and switch among, multiple execution contexts. 
For the purpose of accommodating waits for asynchronous (external) events like I/O, 
subprogram completion, or timers.  Commonly used to structure multi-step activities: 
 get a request 
 look something up in a database 
 interact with a credit card or shipping agency 
 ... 
 send response 
 
The standard event-handling mechanism of JavaScript/TypeScript. 
Also supported in C#, F#, C++, Haskell, Rust, Kotlin, Swift, Python, ... 
 
Consider JavaScript as an example.  Early (still supported) syntax: 
 
   function callbacks(e) { 
       let n = 0; 
       setTimeout(a => { 
           e.putInt(++n); 
           setTimeout((b) => { 
               e.putInt(b); 
               setTimeout((c) => { 
                   e.putInt(c) 
               }, 2000, b+1) 
           }, 2000, a+1) 
       }, 2000, n+1) 
   } 
 
The setTimeout routine takes a lambda as argument, which will be executed after the 
timeout (2nd arg) expires.  The third arg is the parameter to be sent to the callback.  Note 
that setTimeout returns immediately; the callback is scheduled for the future.  A 
similar callback might be triggered not by a timer but by the response to a query sent to 
some remote server.  (Note that we didn’t really need a, b, and c in the code above, 
since n is visible. If the callbacks were separate outermost functions, n wouldn’t have 
been visible to them all.  In subsequent examples I’ll omit this third [optional] arg.) 
 
So how does this execute?  There’s a single thread of control in the JavaScript runtime.  
It keeps executing until it runs off the end of its code.  Then it returns into the runtime 



system.  If any callbacks have been created, the runtime waits until one or more of them 
are triggered, and uses the single thread to execute them, possibly scheduling additional 
callbacks.  At the end of every handler, the thread returns to the runtime and the cycle 
continues. 
 
Callback-based code tends to be a mess of spaghetti.  To clarify the connections among 
related functions, ECMAScript 2015 introduced Promises: 
 
    function twoSecDelay() { 
        return new Promise((resolve, reject) => { 
            setTimeout(() => resolve(), 2000)}); 
    } 
     
    function promises(e) { 
        let n = 0; 
        twoSecDelay().then(() => { 
            e.putInt(++n);  return twoSecDelay (); 
        }).then(() => { 
            e.putInt(++n);  return twoSecDelay (); 
        }).then(() => { 
            e.putInt(++n) 
        }) 
    } 
 
A Promise is an object that represents the value to be generated by an asynchronous 
action (e.g., the expected response from a server).  Here the twoSecDelay function 
returns a Promise object whose constructor set a timeout.  The then method attaches 
a handler to a list in the Promise.  The timeout handler calls the (built-in) resolve 
function, which calls everything in the list.  In this example, function promises executes 
quickly, without waiting for anything.   
 
The programmer writes the executor function that is passed to the Promise constructor.  
The constructor (internal to the library) calls the executor, passing as parameters a pair 
of (again, internal) functions that the executor should arrange to call when the 
asynchronous action completes: one (resolve) for when it completes successfully 
(passing the action’s value as parameter); one (reject) for when it completes 
unsuccessfully (passing an error message as parameter).  In our code above, timeout 
doesn’t have a failure case: the Promise constructor simply sets a timeout and tells it to 
call resolve when the time has expired.  A second argument to then (not used here) 
attaches handlers to a second, failure-case list in the Promise. 



 
ECMAScript 2017 introduced await.  This builds on Promises, making them even easier: 
 
    async function awaitAsync(e) { 
        let n = 0; 
        await twoSecDelay(); 
        e.putInt(++n); 
        await twoSecDelay(); 
        e.putInt(++n); 
        await twoSecDelay(); 
        e.putInt(++n); 
    } 
 
Note that twoSecDelay returns a Promise, just as it did before.  But instead of attaching 
handlers to it with then, we simply await it.  The continuation of the async, after the 
await, takes the place of the lambda that would be passed to then.  The 
implementation is similar to that of true iterators; it leverages the fact that await can 
occur only in an async routine, just as yield can occur only in an iterator.  This means 
that any stack space used by an async routine is freed before the async waits, so a 
single stack continues suffice for a single-threaded program with an arbitrary number of 
asyncs. 


