
Notes for CSC 254, 17 Apr. 2025
===============================
Data Abstraction and Object Orientation

Recall discussion of scoping and encapsulation from Chap. 3
Historical development of abstraction mechanisms is roughly:

 static set of variables Basic
 locals Fortran
 statics Fortran, Algol 60, C
 modules Modula-2, Ada 83
 module types Euclid
 objects Smalltalk, C++, Eiffel, Java, C#, Scala,
 Swift, Ruby, Python, ...
 object-based Self, JavaScript
 type extensions Oberon, Modula-3, Ada 95

Except that objects originated with Simula 67 but were otherwise ignored for most of
the ‘70s, while people continued to refine modules (Simula 67 didn’t have data hiding).

--
The 3 key factors in OO programming (as codified by Wegner):

 encapsulation (data hiding)

modules do this, too—e.g., packages in Java and namespases in C++—but they
don’t usually give you multiple instances

 inheritance
 dynamic method binding

this is crucial and often doesn’t get looked at carefully—and the default in C++ is
different from what you may be used to in Java

--
Visibility rules

Public and Private parts of an object declaration/definition.

(Some other options in some languages—e.g., package in Java or
 protected in Java or C++ [which treat them slightly differently])

C++ distinguishes among
 public visible to anybody
 protected visible only to this class and its descendants
 private visible only to this class
Default is public for structs and private for classes.

C++ base classes can also be public, private, or protected. E.g.
 class circle : public shape { ...
 anybody can convert (assign) a circle* into a shape*
 class circle : protected shape { ...
 only members and friends of circle or its derived classes can
 convert (assign) a circle* into a shape*
 class circle : private shape { ...
 only members and friends of circle can convert (assign) a
 circle* into a shape*

Java rules are slightly different:
 public: visible to anybody
 (package) visible only to this class and classes in the same package
 protected visible only to this class, its descendants, and classes
 in the same package
 private visible only to this class
Package is the default; it’s what you get with no specifier (‘package’ isn’t a keyword).

Recall that a declaration introduces a name, and enough information about it to allow it
to be used, at least in limited contexts. A definition provides enough information for
the compiler to implement the object.

2 reasons to put things in the declaration:

(1) so programmers know how to use the object

Many module-based languages separate modules into pieces: one for the
declaration and one for the definition, usually placed in separate files for the
purpose of separate compilation.

Declaration modules may be compiled into symbol table data, or they may be
textually “included” into user and definition modules. The latter option is a more
structured, formal version of the typical “.h” and “.c” files of C.

(2) so the compiler knows how to generate code for uses of the object

At the very least the compiler needs to know how to invoke the methods of the
object. If it must allocate space for the object it also needs to know its size (this is a
particular challenge in languages with a value model of variables). To figure out the
size, the compiler will often need to know information that the programmer does
not need to know, such as the types (sizes) of private data members.

This can get awkward. It’s part of the reason why some newer languages (e.g., Java
& C#) dispense with separate declaration and implementation modules. The
compiler peruses the single body of code and extracts what users of it need. If you
want teams to develop in parallel, you start by creating skeleton versions, which
each team uses as an interface specification while they flesh out their own part.

A few C++ and Java features you may not have learned:

 C++ destructors

These are the opposite of constructors. Mostly they’re needed for explicit space
management. Java can get by without them because it has garbage collection.
Given the availability of destructors, C++ and Rust programmers have invented
other clever uses for them, e.g. for locking:

 std::mutex my_lock;
 ...
 {
 std::lock_guard m(&my_lock);
 // m is a dummy object whose constructor acquires
 // the lock passed as an argument, and then keeps a
 // pointer to this lock in a private data member.

 // code that we’d like to have executed atomically
 // at end of scope, m’s destructor automatically releases my_lock
 }
 This idiom is sometimes called RAII: resource acquisition is initialization.

unexpected constructor calls

Constructors are relatively straightforward in a language with a reference model
of variables. With a value model, however, we have to arrange to call them at
elaboration time for declared objects and sometimes (for temporaries) in the
middle of expressions as well.

 Consider an object constructed in an argument list:

 void foo(my_class o) { ... }
 ...
 my_class o2(args); // constructed here
 foo(o2); // passed by value
 foo(my_class(args)); // constructed w/in arg list

Because foo’s argument is passed by value, the calling sequence needs to
invoke the copy constructor. In the first call, this makes good sense. In the
second call it seems like a shame, because what’s being copied is a temporary
that will be destroyed immediately after being passed. (If you put print
statements or other side effects in the constructor and destructor [bad idea!],
you may be able to see this happen. Or not: the compiler is allowed to elide
calls to copy constructors when the copied object will never be used again.)

 A similar situation happens when returning:

 foo e; foo f(args) {
 ... foo rtn;
 e = f(args); // copy? ...
 return rtn; // copy?

Returning rtn from f may entail 0, 1, or 2 copies, depending on how smart the
compiler is. The copies at both ends can be eliminated “for sure” in C++11 using
move constructors, which use rvalue references (indicated in the argument list
of the constructor itself with a double ampersand &&). A move constructor will
be used whenever the compiler knows that the copied-from object will never be
used again. Typically that constructor will modify the copied-from object’s state
so that its destructor won’t free stuff we still need.

rvalue references are also used for move assignment methods. Programmers
are free to use them for for other purposes, as well, but this requires great
care—it’s easy to end up with bugs analogous to dangling references.

 initialization

Straightforward in Java because all object-typed variables are references.
Data members of object types are simply initialized to null; you specify
arguments to the constructors when you call new, explicitly. Arguments for the
superclass constructor, if any, can be provided in a pseudo-call, which must be
the first statement of the constructor:

 public child(a, b, c) {
 super(a, b);
 ...

If you don’t provide the super() call, the compiler inserts a call to the zero-arg
constructor (which must exist).

Harder in C++ (or Eiffel, or Ada, ...) because of expanded (elaborated) objects—
not referenced w/ pointers: actually there, “in place”.

C++ requires that every object be initialized by a call to a constructor. The rules
for doing this for expanded objects are quite complex. For example:

 objects as members
 foo::foo(args) : base(args0),
 member1(args1), member2(args2) { ... // C++

args0, args1, args2, etc. need to be specified in terms of args. The
reason these things end up in the header of foo is that they get executed
before foo’s constructor does, and the designers consider it good style to
make that clear in the header of foo::foo.

 Commonly the arg lists are singletons (for copy constructors),
 and you might be tempted to replace the code

 foo::foo(a, b, c) : member1(a), member2(b) { ...

with

 foo::foo(a, b, c) {
 member1 = a;
 member2 = b;

 but this is not the same: the latter option calls zero-arg
 constructors for member1 and member2 before calling foo::foo(),
 and then calls operator=.

Note that the constructors for base classes are called before the constructors
for children (with multiple inheritance, they’re called in the order the specified
in the header of the child). Destructors for base classes are called after the
destructors for children.

In general, the C++ compiler will generate default versions of any needed zero-
arg, copy, and move constructors (and operator=) that weren’t provided by the
programmer. These just construct their sub-members and, for the copy case,
copy members of built-in types. Automatic generation can be disabled by
explicitly deleting the constructor:

 class glarch {
 public:
 glarch() = delete;

In this case, if a zero-arg constructor is needed, the compiler will produce a
compile-time error message.

 initialization v. assignment — not the same!

 foo::operator=(&foo) v. foo::foo(&foo)

 foo b;
 // calls no-arg constructor
 foo f = b;
 // calls one-arg “copy constructor”.
 // This is syntactic sugar for foo f(b);

 foo b, f; // calls no-arg constructor
 f = b; // calls operator=

 classes as members

 Called “inner” classes in Java.

Q: if Inner is a member of Outer, can Inner’s methods see Outer’s members,
and if so, which instance do they see?

 class A {
 int i;
 class B {
 method foo()
 i := 3 // is this allowed?

C++ and C# say no, inner classes can see only static fields of the parent. Java
says yes, instances of inner class belong to an instance of the outer class, and
can access data members of that class. This capability provides much (most?) of
the power of nested subroutines, which C++ and Java lack.

Java can be thought of as having four kinds of inner classes. Static inner classes
are are only “sorta” inner: they have limited visibility, but they don’t need an
outer class instance to exist.
Member classes (class instance within a class instance) contain a hidden
reference to the parent object.
Local classes (class instance within a method of a class instance) contain the
hidden reference AND copies of the method’s parameters and final locals (but
not the non-final locals—so there’s still no static chain).
Anonymous inner classes are like local classes, but can have only one instance.

 virtual functions

Virtual functions provide C++’s dynamic method binding: you don’t know at
compile time what type the object referred to by a variable will be at run time.

Simula also had virtual functions (all of which were abstract). In most modern
OO languages, (Java, C#, Scala, Ruby, Python, ...) all member functions are
virtual, so you don’t need the keyword.

Key question: if child is derived from parent and I have a parent* p (or a
parent& p) that points (refers) to an object that’s actually a child, what
member function do I get when I call p->f (p.f)? By default in C++ I get p’s f,
because p’s type is parent*. But if f is a virtual function, I get c’s f. In most OO
languages, all methods are virtual.

Also note: If a C++ virtual function has a “0” body in the parent class, then the
function is said to be a “pure” virtual function and the parent class is said to be
“abstract”. In Java you prepend the method declaration with the “abstract”
keyword. You can’t declare objects of an abstract class; you have to declare
them to be of derived classes. Moreover any derived class must provide a body
for the pure virtual function(s) (unless it too is supposed to be abstract).

BTW: note that inheritance does not obviate the need for generics. You might think:
hey, I can define an abstract list class and then derive int_list, person_list, etc.
from it, but the problem is you won’t be able to talk about the elements because you
won’t know their types. That’s what generics are for: abstracting over types. See the
lecture on polymorphism (generics).

==
Implementation of classes

Data members of classes are implemented just like structs (records). With (single)
inheritance, derived classes have extra fields at the end. A pointer to the parent and a
pointer to the child contain the same address—the child just knows that the struct goes
farther than the parent does.

Non-virtual functions require no extra space at run time; the compiler just calls the
appropriate version, based on type of variable. Member functions are passed an extra,
hidden, initial parameter: ‘this’ (called ‘current’ in Eiffel and ‘self’ in Smalltalk).

Virtual functions are the only thing that requires any trickiness. They are implemented
by creating a dispatch table (“vtable”) for the class and putting a pointer to that table in
the data of the object. Objects of a derived class have a different vtable. In that table,
functions defined in the parent come first, though some of the pointers point to
overridden versions. You could put the whole vtable table in the object itself. That
would save a little time, but potentially waste a lot of space.

The C++ philosophy is to avoid run-time overhead whenever possible. (Sort of the
legacy from C). That’s why non-virtual functions are the default. Most other OO
languages have much more run-time support.

Note that if you can query the type of an object, then you need to be able to get from
the object to run-time type info. The standard implementation technique is to put a
pointer to the type info at the beginning of the vtable. Of course you only have a vtable
in C++ if your class has virtual functions. That’s why you can’t do a dynamic_cast on a
pointer whose static type doesn’t have virtual functions.

--
Interface (trait, mix-in) inheritance

Simpler to implement than true multiple inheritance. Each class can have one “real”
parent and an arbitrary number of interfaces, each of which is fully abstract: no data
members (other than statics); no non-pure-virtual methods.

In a dynamic language like Python or Ruby, interface routines are simply included in the
(dynamically searched) method table. In a compiled language, the most common
implementation adds a dictionary of interface methods to the end of the vtable (or to an
itable pointed at by the vtable). The first call through a given call site does a (slow)
lookup in the table and then modifies static data to cache a guess of the lookup, for use
next time. If the this parameter is in r1, call site code then looks something like this,
where pcc is a PC-specific cache of class and method address:

r2 := *r1 -- vtable address
r3 := pcc.class
if r2 = r3 goto cache_hit
call dispatch(r1, iface, method, &pcc, args)

 -- slow path; modifies pcc
goto next

cache_hit:
 r2 := pcc.method
 call *r2(r1, args)
next:

The book describes an alternative mechanism that avoids slow lookups but is slightly
slower in the common case of cache hits.

NB: classic Java also allows static fields in Interfaces.
Starting with Java 8, Interfaces can have
 static methods
 Straightforward: no access to this
 default methods
 Designed to allow extension of an interface without rewriting
 all existing uses of that interface.
 Implementation is a little tricky.
 no access to members other than the methods and static fields
 of the interface itself

does need access to vtable, however: for each class that needs the default
code, the compiler generates a static, class-specific forwarding routine
to set up the right this parameter.

For true multiple inheritance, see the PLP companion site.

==
Smalltalk and Scripting Languages

Long considered the canonical object-oriented language. Based on the thesis work of
Alan Kay at Utah in the late 1960’s. Went through 5 generations at Xerox PARC, where
Kay worked after graduating. Active development ended with Smalltalk-80.

Smalltalk is interesting in its own right, and also for historical reasons. It carried the OO
torch from the Simula of the 60s to the C++ of the 80s and 90s and the Java, C#, Python,
Ruby, etc. of the 90s and 00s. Smalltalk is HEAVILY integrated into its programming
environment. Things like typefaces are part of the syntax of the language.

Everything in Smalltalk is anthropomorphized. “3 + 4” is syntax for sending the message
“+ 4” to the object 3, which returns a reference to the object 7. Even control flow is
conceptualized as messages. For example:
 total = 0
 ifTrue: [average <- 0]
 ifFalse: [average <- sum // total]

sends an “= 0” mesasage to the object total, which returns a reference to either the
object TRUE or the object FALSE, which is then passed an “ifTrue: ... ifFalse ...” message.
Similarly

 count <- 0.
 sum <- 0.
 [count <= 20]
 whileTrue: [sum <- sum + count.
 count <- count + 1]

sends a “whileTrue: ...” message to a block that would return TRUE or FALSE if sent a
“value: ...” message. Similarly

 3 timesRepeat: [...]

 1 to: 100 by: 10 do: [:i | total <- total + (a at: i)]

A simple example method for factorial, understood by integers:

 factorial
 self = 0
 ifTrue: [^1].
 self < 0
 ifTrue: [self error ‘Factorial not defined’]
 ifFalse: [^ self * (self-1) factorial]

--
The OO syntax (and semantics) of Objective C, Ruby, and Swift is highly reminiscent of
Smalltalk.

In Ruby the expression

 4 * 3 < 16

is equivalent to

 4.*(3).<(16)

which in turn is equivalent to

 4.send(‘*’, 3).send(‘<‘, 16)

that is,

 send a “‘*’, 3” message to 4
 then send a “‘<‘, 16” message to t,
 where t is what you got back from the first send

Note, however, that this is more than syntactic sugar: message notation evaluates left-
to-right, without regard to traditional notions of precedence. So

 16 > 4 * 3

is equivalent to

 16.>(4).*(3)
or
 16.send(‘>‘, 4).send(‘*’, 3)

which groups as

 (16.>(4)).*(3)
or
 (16.send(‘>‘, 4)).send(‘*’, 3)

which produces a run-time type error (“undefined method `*’ for true:TrueClass”). If
you want the equivalent of the infix evaluation order, you have to parenthesize
explicitly:

 16.>(4.*(3))
or
 16.send(‘>‘, 4.send(‘*’, 3))

As we saw in Chap. 6, Ruby has pass-a-lambda iterators:

 sum = 0 => 0
 [1, 2, 3].each { |i| sum += i } => [1, 2, 3] # array itself

 sum => 6

Here the (parameterized) brace-enclosed block is passed to the each method as a
parameter.
There’s also more conventional-looking syntax:

 sum = 0
 for i in [1, 2, 3] do # ‘do’ is optional
 sum += i
 end
 sum

The for loop is syntactic sugar for a call to each.

Here’s a more OO alternative:

 sum = 0
 1.upto 3 {|i| sum += i}
 sum

or instead of using braces:

 sum = 0
 i.upto 3 do |i| sum += i end
 sum

You can write your own iterators using ‘yield’.

 class Array
 def find
 for i in 0...size
 value = self[i]
 return value if yield(value)
 end
 return nil
 end
 end

 ...
 [1, 3, 5, 7, 9].find {|v| v*v > 30 } => 7

Think of yield as invoking the block that was juxtaposed (“associated”) with the call to
the iterator.

Notice that we’ve defined a new method of the built-in Array class. (Actually, Array
already has a find method, but we can redefine it, and it probably looks like this
anyway.)

Blocks can also be turned into first-class closures, with unlimited extent:

 def nTimes(aThing)
 # note lack of type declaration—dynamically typed, as in Lisp
 return proc { |n| aThing * n }
 end

 In recent Ruby, -> is a synonym for proc

 p1 = nTimes(3)
 p2 = nTimes("foo")
 p1.call(4) => 12
 p2.call(4) => "foofoofoofoo"

--
Object orientation in Perl 5 is kind of a kludge; Perl 6 is supposed to be better

JavaScript has an unusual system based on “prototype objects”. It’s an “object-based”
language, as opposed to object-oriented. (The original object-based language was Self.)

JavaScript, Python, and Ruby all allow new fields to be added to an object at run time.
JavaScript and Ruby allow new methods to be added.
Python and Ruby allow class bodies to be elaborated – conditional compilation. In Ruby:

 class My_class
 def initialize(a, b)
 @a = a; @b = b;

 end
 if expensive_function()
 def get()
 return @a
 end
 else
 def get()
 return @b
 end
 end
 end

--
type extensions
 build on structs/records
 language already has modules
 Ada 95, Modula-3, Oberon
 single inheritance
 no constructors or destructors
 explicit ‘this’ parameter
 all methods virtual in Modula-3 (also Oberon, I think)

static by default in Ada 95; virtual when desired; but not a property of the method;
rather, determined by access through “class-wide” parameter or pointer

 Fortran 2003

Exist OO extensions to Common Lisp (CLOS), Rexx (Object Rexx), Tcl (Incr Tcl).

OCaml is of course object-oriented (that’s what the ‘O’ is for). For simplicity, I don’t
usually use any of the OO features in course assignments.

