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============================================================== 
Concurrency (take 258 to learn more) 
 
A process or thread is a potentially active execution context.  The classic von Neumann 
(stored program) model of computing has a single thread; parallel programs have more 
than one.  A process/thread can be thought of as an abstraction of a physical processor. 
 
 Processes/threads can be implemented via 
  multiple CPUs 
  kernel-level multiplexing of single physical machine 
  language or library level multiplexing of kernel-level abstraction 
 They can run in true parallel, unpredictably interleaved, or run-until-block; 
 most work focuses on the first two cases, which are equally difficult to deal with. 
 
In common (but by no means universal :-( terminology, each processor chip has one or 
more cores, each of which has one or more hardware threads.  The operating system 
multiplexes one or more kernel-level threads on top of one or hardware threads, and a 
library package or language run-time system multiplexes one or more user-level threads 
on top of the kernel-level threads.  Kernel threads in the same address space constitute 
a process.  (But theoreticians say “process” where systems people say “thread.”) 
 

                     



Two main classes of programming notation 
 
 1) synchronized access to shared memory 
 2) message passing between processes that don’t share memory 
 
Both approaches can be embedded in a programming language. 
Both can be implemented on hardware designed for the other, though shared 
memory on message-passing hardware tends to be slow. 
 
We’ll focus here on shared memory.  The book covers message passing on the 
companion site.  Shared-memory concurrency is essential to any language that wants 
programs to run on more than one core (and all but the tiniest embedded processors 
have had multiple cores for the past 20 years).  Code that wants to use the GPU or other 
accelerators faces additional challenges, not covered here. 
 
Programmers can be provided w/ concurrency via languages, language extensions, or 
libraries.  Some examples: 
 
 
 
 
 
 
 
 
 
Thread creation syntax 

•  static set 
•  co-begin: Algol 68, Occam, SR 
•  parallel loops 

o iterations are independent: SR, Occam, others 
o or iterations are to run (as if) in lock step: Fortran 95 forall 

•  launch-on-elaboration: Ada, SR 
•  fork/join: Ada, Modula-3, Java, C#, OpenMP 
•  implicit receipt: DP, Lynx, RPC systems 
•  early reply: SR, Lynx 

o Cf. separated new() and start() in Java 



---------------------------------------- 
Races 

A race condition (or just “a race”) occurs when program behavior depends on the 
order in which events occur in different threads.  Races are not all bad; sometimes 
any of the possible program outcomes are ok (e.g. workers taking things off a task 
queue).  Often, however, we want to avoid them.  Suppose processors A and B share 
memory, and both try to increment variable X at more or less the same time.  Very 
few processors support arithmetic operations on memory (even if the ISA supports 
provides single instructions for this, they aren’t guaranteed to be atomic), so each 
processor executes 

  LOAD X 
  INC 
  STORE X 

Suppose X is initialized to 0.   If both processors execute these instruction sequences 
concurrently, we could see an increase of either one or two. 
 

Data races v. synchronization races 
 essentially unannotated v. annotated: 
 synchronization races are the expected ones, which the programmer 
  tells the implementation (compiler & HW) to implement correctly 
 
Races of one sort or another are what makes concurrent programming hard. 
 widespread consensus that data races are bugs 
 

Races are particularly pernicious if unintentional or unannotated (so unknown to the 
compiler), because hardware rarely guarantees visible consistent order of accesses 
across cores. 

 
  initialization example 
   // ready == false 
 
   p = new foo(args) 
   ready = true     while (!ready) {} 
           // use *p 
 
 



  butterfly “causality” example 
   // x == y == 0 
 
   y = 1  x = 1 
   a = x  b = y 
 
   a == b == 0 ? 
 

Races must be considered—and annotated—in the implementation of nonblocking 
algorithms (covered in 2/458) and synchronization primitives. 

 
Modern languages are converging on semantics (memory models) that say 
circularity never occurs in “properly synchronized” (data race free) programs. 

 
---------------------------------------- 
Synchronization 

Synchronization is the art of ensuring that events in different threads happen in a 
desired order.  Synchronization can be used to eliminate races.  In our increment 
example we need to make each thread’s operation atomic.  One way to do that (not 
the only way) is to make the threads take turns.  This is called mutual exclusion: 
only one thread at a time can execute its critical section.  Informally, atomicity 
requires the appearance that threads take turns; mutual exclusion really makes 
them take turns.  Most synchronization can be regarded as either atomicity or 
condition synchronization, which means making sure that a given thread does not 
proceed until some condition holds (e.g., that a variable contains a given value). 

 
 [ Other ways to get atomicity: 
  (1) nonblocking algorithms 
  (2) transactional memory, which may be implemented in hardware or 
        in a library or language, with either nonblocking algorithms or locks. ] 
 
 Example: bounded buffer. 
  index: 1..SIZE 
  buf: array [index] of data 
  nextempty, nextfull : index 
 
  procedure insert(d : data) 
   // put something into the buffer, waiting if it’s full 



 
  procedure remove : data 
   // take something out of the buffer, waiting if it’s empty 
 
 A solution requires 
  (1) the buffer behaves AS IF only one thread manipulates it at a time. 
  (2) threads wait for non-full or non-empty conditions as appropriate. 
 
 (1) is atomicity; (2) is condition synchronization. 
 

You might be tempted to think of mutual exclusion as a form of condition 
synchronization (the condition being that nobody else is in the critical section), but it 
isn’t.  The distinction is basically existential v. universal quantification—my state v. 
everybody’s state.  Mutual exclusion requires multi-thread agreement. 
 
We do not in general want to over-synchronize.  That eliminates parallelism, which 
we generally want to encourage for performance.  Basically, we want to eliminate 
“bad” race conditions—the ones that cause the program to give incorrect results. 

 
Synchronization can be based either on spinning (busy-waiting) or re-scheduling 
(yielding to a different thread).  The latter is built on the former.   To get started, you 
have to have something nontrivial that is atomic in hardware—something that happens 
all at once, as an indivisible action. 
 

On most machines, reads and writes of individual memory locations are atomic 
(note that this is not trivial; memory and/or busses must be designed to arbitrate 
and serialize concurrent accesses).  In early machines, reads and writes of individual 
memory locations were all that was atomic. To simplify the implementation of 
mutual exclusion, hardware designers began in the late 60’s to build so-called read-
modify-write, or fetch-and-ϕ, instructions into their machines. 
 
Spin-based condition synchronization with atomic reads and writes is easy.  You just 
cast each condition in the form of “location X contains value Y” and you keep 
reading X in a loop until you see what you want.  Mutual exclusion is harder.  
Much early research was devoted to figuring out how to build it from simple atomic 
reads and writes.  Dekker is generally credited with finding the first correct solution 
for two threads in the early 1960s.  Dijkstra published a version that works for N 
threads in 1965.  Peterson published a much simpler two-thread solution in 1981, 



while he was on the faculty here at Rochester. It can be extended to N threads with 
a log-depth tree. 
 
A busy-wait mutual exclusion mechanism is known as a spin lock. The problem with 
spin locks is that they waste processor cycles.  Synchronization mechanisms are 
needed that interact with a thread/process scheduler to put a thread to sleep and 
run something else instead of spinning.  Note, however, that spin locks are still 
valuable for certain things, and are widely used.  In particular, it is better to spin 
than to sleep when the expected spin time is less than the rescheduling overhead. 
 
Semaphores were the first proposed scheduler-based synchronization mechanism, 
and remain widely used.  Conditional critical regions and monitors came later.  
Monitors have the highest-level semantics, but a few sticky semantic problems.  
They are also widely used.  Synchronization in Java 2 provided sort of a hybrid of 
monitors and CCRs.  Java 5 introduced true monitors, but with clunky syntax.  
Shared-memory synchronization in Ada 95 is yet another hybrid. 

 
 
---------------------------------------- 
Spin Locks 
 
Synchronization with only reads and writes is very subtle.  I’m not going to go into the 
details.  Dijkstra and Peterson’s N-thread locks require O(N) time to acquire, which is 
bad.  All of the locks based on only reads and writes, including Lamport’s O(1) lock, 
require O(N) space, which is bad.  Even Lamport’s fast lock is O(1) only in the absence of 
contention. 

Can do better with atomic read-modify-write (fetch-and-phi) instructions. 
 test_and_set 
 fetch_and_or 
 fetch_and_and 
 fetch_and_add 
 fetch_and_clear_then_add 
 fetch_and_store (swap) 

universal: 
 compare_and_swap 
 load-linked + store-conditional 

 

These typically return the old 
value, prior to changes, from 
which you can of course deduce 
the new value. 
 



The simple test_and_set lock: 
 type lock = Boolean := false 
 procedure acquire(L : ^lock) 
  repeat until test_and_set(L) = false 
 procedure release(L : ^lock) 
  L^ := false 
 
 Problems: 
  not fair (possible starvation) 
  LOTS of contention for memory and interconnect bandwidth 
 
 Latter problem can be partially cured, on a cache-coherent machine, by spinning 
       with reads instead of TASes: 
  procedure acquire(L : ^lock) 
   // "test-and-test-and-set" lock 
   while test_and_set(L) = true 
    repeat until L = false 
 
 This is known as a test-and-test_and_set lock. 
 
 There are better solutions to these problems (including my own), but there isn’t  
       time to cover them here: take 258! 
 
Busy-wait solution to the bounded buffer problem: 
 
 index: 0..SIZE-1 
 buf: array [index] of data 
 nextempty, nextfull, fullslots : index := 0, 0, 0 
 mutex : spinlock 
 
 procedure insert(d : data) 
  loop 
   acquire(mutex) 
   if fullslots < SIZE 
    buf[nextempty] := d 
    nextempty++; nextempty %= SIZE 
    fullslots++ 
    release(mutex) 
    return 
   else 
    release(mutex) 
 



 procedure remove : data 
  loop 
   acquire(mutex) 
   if fullslots > 0 
    data d := buf[nextfull]; 
    nextfull++; nextfull %= SIZE; 
    fullslots--; 
    release(mutex) 
    return d 
   else 
    release(mutex) 
 
BTW, Fetch-and-phi operations are useful not only for locking, but for nonblocking data 
structures as well—clever algorithms that avoid race conditions without ever locking 
anything.  If a thread is preempted (at any time), other threads can continue to make 
progress.  There exist good nonblocking algorithms for lists, queues, hash tables, search 
trees, mark-and-sweep garbage collection, and other things.  Historically every new 
nonblocking algorithm has been a publishable result.  Transactional memory changes 
that: some (not all) TM systems are implemented in a nonblocking way under the hood: 
these provide a universal construction for nonblocking data structures.  Operations on 
traditional nonblocking data structures can then be thought of as optimized hand-
written transactions, though it isn’t trivial to make these interoperate with general 
transactions. 
 
======================================== 
Schedulers 
 
Give us the ability to “put a thread/process to sleep” and run something else on its 
kernel thread/processor. 
 Start with coroutines 
 make uniprocessor run-until-block threads 
 add preemption 
 add multiple processors 
 
Coroutines 
 As in Simula and Modula-2. Covered in section 8.6 in the book. 
 
 Multiple execution contexts, only one of which is active. 
 



 
 transfer(other): 
  save all callee-saves registers on stack  // including ra & fp 
  *current := sp 
  current := other 
  sp := *current 
  pop all callee-saves registers  // including ra, but not sp 
  return          // into different coroutine! 
 
 other and current are pointers to context blocks. 
 Each contains sp; may contain other stuff as well 
  (priority, I/O status, accounting info, etc.) 
 
 No need to change pc; always changes at the same place. 
 Create new coroutine in a state that looks like it’s blocked in transfer. 
  (Or maybe let it execute and then “detach”.  That’s basically early reply.) 
 
Run-until block threads on a single process 
 Need to get rid of explicit argument to transfer. 
 ready_list data structure: threads that are runnable but not running. 

 reschedule: 
  t : cb := dequeue(ready_list) 
  transfer(t) 
 
 To do this safely, we need to save current somewhere.  Two options. 
 
 (1) Suppose we’re just relinquishing the processor for the sake of 
  fairness (as in MacOS 9 or Windows 3.1): 
  yield: 
   enqueue(ready_list, current) 
   reschedule 
 
 (2) Now suppose we’re implementing synchronization: 
  sleep_on(q): 
   enqueue(q, current) 
   reschedule 
 
 Some other thread/process will move us to the ready list when we can continue. 



Preemption 
 
 Use timer interrupts (in OS) or signals (in library package) to trigger 
 involuntary yields. 
 
 Requires that we protect the scheduler data structures: 
 
 yield: 
  disable_signals() 
  enqueue(ready_list, current) 
  reschedule 
  re-enable_signals() 
 
 Note that reschedule takes us to a different thread, possibly in code 
 other than yield.  Invariant: every call to reschedule must be made with 
 signals disabled, and must re-enable them upon its return. 
 
 disable_signals() 
 if not <desired condition> 
  sleep_on <condition queue> 
 re-enable_signals() 
 
Multiprocessors 
 
 Disabling signals doesn’t suffice: 
 
 yield: 
  disable_signals() 
  acquire(scheduler_lock)   // spin lock 
  enqueue(ready_list, current) 
  reschedule 
  release(scheduler_lock) 
  re-enable_signals() 
 
 disable_signals() 
 acquire(scheduler_lock)       // spin lock 
 if not <desired condition> 
  sleep_on <condition queue> 
 release(scheduler_lock) 
 re-enable_signals() 
 



------------------------------------ 
Scheduler-Based Synchronization 
 
semaphores 
 
 So-called binary semaphores are scheduler-based mutual exclusion 
 locks.  The acquire operation is named P; the release operation is 
 named V; these stand for words in Dutch.  (Mnemonically, I think of 
 P as standing for “pause”, though it doesn’t.)  Binary semaphores 
 are called “binary” because we can think of them as a counter that 
 is always 0 or 1, and that indicates the number of threads that 
 could perform acquire operations without blocking. 
 
 We can extend this to general semaphores, with non-binary counters. 
 These are useful for certain algorithms, though they don’t add any 
 additional power (you can implement them trivially with binary 
 semaphores). 
 
 In either case, a semaphore is a special sort of counter.  It has an 
 initial value, and it keeps track of the excess (if any) of past V 
 operations over past P operations. A P operation is delayed (the 
 thread is de-scheduled) until #P-#V ≤ C, the initial value of the 
 semaphore. 
 
 Here is one possible implementation: 
 
 type semaphore = record 
  N : integer    // initialized to something non-negative 
  Q : queue of threads 
 
 procedure P(ref S : semaphore) : 
  disable_signals() 
  acquire(scheduler_lock) 
  if S.N > 0 
   S.N -:= 1 
  else 
   sleep_on(S.Q) 
  release(scheduler_lock) 
  re-enable_signals() 
 



 procedure V(ref S : semaphore) : 
  disable_signals() 
  acquire(scheduler_lock) 
  if S.Q is nonempty 
   enqueue(ready_list, dequeue(S.Q)) 
  else 
   S.N +:= 1 
  release(scheduler_lock) 
  re-enable_signals() 
 
What can we do with semaphores?  Here is a bounded buffer: 
 shared buf : array [1..SIZE] of data 
 shared next_full, next_empty : integer := 1 
 shared mutex : semaphore := 1 
 shared empty_slots, full_slots : semaphore := SIZE, 0 
 
 procedure insert(d : data) : 
  P(empty_slots) 
  P(mutex) 
  buf[next_empty] := d 
  next_empty := next_empty mod SIZE + 1 
  V(mutex) 
  V(full_slots) 
 
 function remove returns data : 
  P(full_slots) 
  P(mutex) 
  d : data := buf[next_full] 
  next_full := next_full mod SIZE + 1 
  V(mutex) 
  V(empty_slots) 
  return d 
 
 It is generally assumed that semaphores are fair, in the sense that 
 threads complete P operations in the same order they start them. 
 
 Problems with semaphores: 

 (1) They’re pretty low-level.  When using them for mutual exclusion, 
  for example (the most common usage), it’s easy to forget a P or a 
  V, especially when they don’t occur in strictly matched pairs 
  (because you do a V inside an if statement, for example, as in 
   the use of the spin lock in the implementation of P). 



 (2) Their use is scattered all over the place. If you want to change 
  how threads synchronize access to a data structure, you have to 
  find all the places in the code where they touch that structure, 
  which is difficult and error-prone. 
 
 These problems are addressed by monitors and other language mechanisms. 
 
======================================== 
Language-level Synchronization 
 
Scheduler-based locks in many languages (C/C++, Rust, Scala, Ruby, ...) 
 
Monitors 

 Attempt to address the two weaknesses of semaphores previously discussed. 
 Suggested by Dijkstra, developed more thoroughly by Brinch Hansen, and 
       formalized nicely by Hoare (a real cooperative effort!) in the early 1970s.  Several 
       parallel programming languages have incorporated monitors as their fundamental 
       synchronization mechanism.  None, to my knowledge, incorporates the precise 
       semantics of Hoare’s formalization. 

A monitor is a shared object with operations, internal state, and a number of 
condition queues.  Only one operation of a given monitor may be active at a given 
point in time.  A thread that calls a busy monitor is delayed until the monitor is free.  
On behalf of its calling thread, any operation may suspend itself by waiting on a 
condition.  An operation may also signal a condition, in which case one of the 
waiting threads is resumed, usually the one that waited first. 

 

                



The precise semantics of mutual exclusion in monitors are the subject of 
considerable dispute.  Hoare’s original proposal remains the clearest and most 
carefully described.  It specifies two bookkeeping queues for each monitor: an entry 
queue, and an urgent queue.  When a thread executes a signal operation from 
within a monitor, it waits in the monitor’s urgent queue and the first thread on the 
appropriate condition queue obtains control of the monitor.  When a thread leaves 
a monitor it unblocks the first thread on the urgent queue or, if the urgent queue is 
empty, it unblocks the first thread on the entry queue instead. 
 
The two main semantic controversies: 

(1) Should a signal-er keep going, rather than moving to the urgent queue and 
       letting the wait-er in?  That reduces context switches but requires that we  
       treat signals as “hints” instead of “absolutes”. 
 
The idiom 

    if not condition wait 
   becomes 
    while not condition wait 
 

(2) The “nested monitor problem”: A calls M1.e1, which calls M2.e2, which 
waits.  Should A release exclusion on M1?  If it does, the world may change 
before it returns, and it may not even be able to resume, if some other 
thread enters and locks M1.  If A doesn’t release M1, however, B may not be 
able to pass through M1 to reach M2 to signal A.  The most elegant solution 
I know of (but which I don’t think anybody implements) was suggested by 
Wettstein: to make signals hints, release all monitors, re-acquire them all 
outermost first on wakeup, and require that invariants hold when making 
nested calls.  Java does not release outer monitors. 

 
Building a correct monitor requires that one think about the monitor invariant.  
(Everybody remember loop invariants?)  The monitor invariant is a predicate that 
captures the notion “the state of the monitor is consistent.”  It needs to be true 
initially, and at monitor exit.  It also needs to be true at every wait statement.  In 
Hoare’s formulation, needs to be true at every signal operation as well, since 
some other thread may immediately run. 
 



Hoare’s definition of monitors in terms of semaphores makes clear that semaphores 
can do anything monitors can.  The inverse is also true; it is trivial to build 
semaphores from monitors (if you don’t see how, you should figure it out :-) 

 
---------------------------------------- 
Concurrency in Java 
 
Explicit threads (in Java from the beginning) 
 
 class Foo extends Thread { 
  public Foo (...) { 

// constructor; does not start thread running 
  } 
  public void run() { 
   // this is where the thread starts running 
  } 
 } 
 
 Foo f = new Foo(...);  // returns when constructor is done 
 f.start(); 
  // puts new thread on the ready list, 
  //    set up to execute its run routine 
 
 ... 
 f.join(); 
  // optional; waits for f to finish (return from its run method) 
 
start() is implemented by Thread.  It calls run().  In classes derived from Thread you 
should always override run, and you should make threads begin execution by calling 
start().  Never override start().  Never call run(). 
 
Executors (introduced in Java 5).  Allow caching of threads to avoid 
start-up / shut-down costs.  Also abstract out the physical parallelism, 
so you can have N tasks run by M ≤ N threads under the hood. 
 
 class Foo implements Runnable { 
  ... 
  // constructor and run() method same as before 
 } 
 ... 



 ExecutorService pool = Executors.newCachedThreadPool(); 
 ... 
 pool.execute(new Foo( constructor_args )); 
 ... 
 // indicate that pool will never get any additional tasks 
 pool.shutdown(); 
 // wait for all workers to complete 
 try { 
  pool.awaitTermination(60, TimeUnit.SECONDS); 
 } catch(InterruptedException e) {} 
 
Runnables are object closures.  They’re useful for other things besides concurrency—
basically anything you want to package up for future execution.  There’s also a 
Callable that produces a value that can be picked up later. 
 
Can also use newFixedThreadPool(numThreads) or newSingleThreadExecutor() 
These are all factory methods that create and manage Executor objects.  
 
NOTE: Because tasks are multiplexed on threads, they should never block, and should 
rarely busy-wait.  When they do, their thread is unable to run anything else. 
 
Java 2 synchronization (really should be generic; leaving that out for simplicity): 
 
 class BB { 
  final private int SIZE = 10; 
  private Object[] buf = new Object[SIZE]; 
 
  private int nextEmpty = 0; 
  private int nextFull = 0; 
  private int fullSlots = 0; 
 
  synchronized public void insert(Object d) 
    throws InterruptedException { 
   while (fullSlots == SIZE) { 
    wait(); 
   } 
   buf[nextEmpty] = d; 
   nextEmpty = (nextEmpty + 1) % SIZE; 
   ++fullSlots; 
   notifyAll();   // explain why! 
  } 
 



  synchronized public Object remove() 
    throws InterruptedException { 
   while (fullSlots == 0) { 
    wait(); 
   } 
   Object d = buf[nextFull]; 
   nextFull = (nextFull + 1) % SIZE; 
   --fullSlots; 
   notifyAll();   // explain why! 
   return d; 
  } 
 } 
 
Several operations (e.g. wait, join, sleep) can throw InterruptedException. 
Any time you call one of these you have to be either (a) inside a try block with a handler 
(catch clause) for InterruptedException, or (b) inside a method whose header 
indicates “throws InterruptedException”.  Kind of a nuisance. 

What is InterruptedException for?  It’s the way to get a waiting thread to wake up.  
If t is of class Thread, t.interrupt() will cause t to experience an 
InterruptedException the next time it calls a blocking operation. 
Note that there is no acceptable way to cause an exception in a non-blocked thread—all 
such mechanisms have been deprecated. 

Notes: 

 1) You can also use a synchronized statement (alternative to synchronized method): 
 
  synchronized(my_obj) { 
   // critical section 
  } 
 
 2) There is only a single queue associated with each object.  If you 
  have threads that may wait for more than one reason, you need to 
  worry about the “wrong kind” of thread waking up: 
 
  if (!condition) { 
   wait(); 
  } 
  while (!condition) { 
   notify(); 
   wait(); 
  }  



This can be expensive. In some cases you can get around it by waiting 
  in multiple sub-objects, but this doesn’t work in general because a 
  waiting thread relinquishes only the inner lock, not any outer ones 
  (leading to deadlock if the releasing thread has to get into the same 
  outer objects). 
 
 3) A single thread can acquire the lock on a single object multiple times 

(doesn’t exclude itself).  Such locks are sometimes said to be reentrant. 
If the thread waits, it releases the lock “the appropriate number of times.”  
When it awakes, it will have re-acquired the lock “the appropriate number of 
times,” and must leave that many synchronized methods or statements (or wait 
again) before anybody else can get in. 

 
 4) my_obj.notifyAll() will wake up all threads waiting on my_obj. 
 

5) The lock on an object is associated with the data in the object only 
  by convention. Java guarantees that if one thread releases a lock 
  and a second then acquires it, the second sees all previous writes 
  to all data by the first. 
 
BB solution in Java 2 without using notifyAll is quite a bit harder: 
 
 class BB { 
  final private int SIZE = 10; 
  private Object[] buf = new Object[SIZE]; 
 
  private Object producerMutex = new Object(); 
  // waited upon only by producers; protects the following: 
   private int nextEmpty = 0; 
   private int emptySlots = SIZE; 
 
  private Object consumerMutex = new Object(); 
  // waited upon only by consumers; protects the following: 
   private int nextFull = 0; 
   private int fullSlots = 0; 
 
  public void insert(Object d) throws InterruptedException { 
   synchronized (producerMutex) { 
    while (emptySlots == 0) { 
     producerMutex.wait(); 
    } 



    --emptySlots; 
    buf[nextEmpty] = d; 
    nextEmpty = (nextEmpty + 1) % SIZE; 
   } 
   synchronized (consumerMutex) { 
    ++fullSlots; 
    consumerMutex.notify(); 
   } 
  } 
 
  public Object remove() throws InterruptedException { 
   Object d; 
   synchronized (consumerMutex) { 
    while (fullSlots < 0) { 
     consumerMutex.wait(); 
    } 
    --fullSlots; 
    d = buf[nextFull]; 
    nextFull = (nextFull + 1) % SIZE; 
   } 
   synchronized (producerMutex) { 
    ++emptySlots; 
    producerMutex.notify(); 
   } 
   return d; 
  } 
 } 
 
Solution using Java 5 locks is efficient and arguably more algorithmically elegant, 
but syntactically more cluttered due to library-based synchronization: 
 
 class BB { 
  final private int SIZE = 10; 
  private Object[] buf = new Object[SIZE]; 
 
  private int nextEmpty = 0; 
  private int nextFull = 0; 
  private int fullSlots = 0; 
 
  Lock l = new ReentrantLock(); 
  final Condition emptySlot  = l.newCondition(); 
  final Condition fullSlot = l.newCondition(); 
 
  public void insert(Object d) throws InterruptedException { 
   l.lock(); 



   try { 
    while (fullSlots == SIZE) { 
     emptySlot.await(); 
    } 
    buf[nextEmpty] = d; 
    nextEmpty = (nextEmpty + 1) % SIZE; 
    ++fullSlots; 
    fullSlot.signal(); 
   } finally { 
    l.unlock(); 
   } 
  } 
 
  public Object remove() throws InterruptedException { 
   l.lock(); 
   try { 
    while (fullSlots == 0) { 
     fullSlot.await(); 
    } 
    Object d = buf[nextFull]; 
    nextFull = (nextFull + 1) % SIZE; 
    --fullSlots; 
    emptySlot.signal(); 
    return d; 
   } finally { 
    l.unlock(); 
   } 
  } 
 } 


