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=============================== 
Recall compiler phases: 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that this differs slightly from the version shown in the Chapter 1 lectures.  
Specifically, I’ve 
• rolled AST generation into the parser  
• separated semantic analysis from (medium level) IF generation 
• put that IF generation in the “middle end” 

 
This more accurately reflects the likely structure of a modern compiler. 
 
It’s common for a compiler to have more than one intermediate form/representation 
(IF/IR).  These are sometimes differentiated by “level,” or degree of abstractness: 
 
 high-level—typically an AST 



 medium-level—often a control flow graph 
   basic blocks as nodes; jumps as edges 
 low-level—usually instructions for an idealized machine 
  perhaps the same notation that’s used w/in basic blocks above 
 
NB: there are no hard boundaries between these levels. 
 
One family of IFs deserves separate mention: stack-based IFs 
 may be medium or low-level 
 not used in most compilers, but important in special cases 
  particularly where size is an issue 
 examples include JBC, CIL, 1970s pcode 
 
 example from the book: Heron’s formula: 
 
  A = sqrt [s(s-a)(s-b)(s-c)] 
  where s = (a+b+c)/2 
 
 stack-based:   3-address pseudo-assembly 
  push a     r2 := a 
  push b     r3 := b 
  push c     r4 := c 
  add      r1 := r2 + r3 
  add      r1 := r1 + r4 
  push 2     r1 := r1 / 2     -- s 
  divide 
  pop s 
  push s 
  push s     r2 := r1 - r2  -- s-a 
  push a 
  subtract 
  push s     r3 := r1 - r3  -- s-b 
  push b 
  subtract 
  push s     r4 := r1 - r4  -- s-c 
  push c 
  subtract 
  multiply    r3 := r3 * r4 
  multiply    r2 := r2 * r3 
  multiply    r1 := r1 * r2 
  push sqrt    call sqrt 
  call 



 time-space tradeoff 
  stack code is denser 
   lots of instructions, but tiny 
  v. speed 
   can’t optimize for register set and pipeline performance 

The JBC or CIL version of the stack-based code will use a single byte for every 
instruction except the second-to-last, which will take 3 bytes.  That’s 23 
instructions in 25 bytes. 

The 3-address code keeps a, b, c, and s in registers, and uses only 13 
instructions.  Typically, however, most will be 4 bytes long (the last will be 8).  
That’s 13 instructions in 56 bytes. 

 
---------------------------------------- 
Consider the GCD example from the Chap. 1 of the book.  Source (in C): 
 int main() { 
  int i = getint(), j = getint(); 
  while (i != j) { 
   if (i > j) i = i - j; 
   else j = j - i; 
  } 
  putint(i); 
 } 
 
AST (we know how to generate this now): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Start

v1 := i

v2 := j

v3 := v1 =/ v2

test v3

null

End

T

T F

F

v7 := i

v8 := j

v9 := v7 − v 8

i := v9

v10 := j

v11 := i

v12 := v10 − v11

j := v12

v13 := i

a1 := v13

call putint

v4 := i

v5 := j

v6 := v4 > v5

test v6

call getint

i := rv

call getint

j := rv

 Control Flow Graph is “straightforward” to generate from the AST: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Here I’ve used “virtual registers” for all computed values. 
 These are assumed to be unlimited in number. 
 I’ve also used special register names (a1 and rv) to pass values to 
  and from subroutines. 
 
Conversion from AST to control-flow graph (or other IF) typically uses 
one or more pass(es) over the tree. 
 Like static semantic checking, these pass(es) can be expressed with 
  an AG, with attributes for control flow graph fragments. 
 More commonly, it’s just hand-written code. 



 
The control-flow graph may see many changes during code improvement.  We may split 
and merge basic blocks; add and delete blocks; change the code inside blocks; move 
code from one block to another; etc. 
 
Much of the decision making is driven by data flow analysis, which 
discovers properties of blocks that depend on other blocks.  E.g., 
• which virtual registers are live (contain values that may be needed in the future at 

the end of a given block? 
• which values are known to be available (contained in some virtual register) at the 

start of a given block? 
 

Like the algorithm that builds predict sets for a top-down parser, the data flow “engine” 
begins with “obvious” facts and iterates until it can’t learn anything more (and we can 
prove the answer has converged). 
 
Conversion to low-level IF can be as simple as picking an order for the 
basic blocks of the control flow graph: 
 
   call getint 
   i := rv 
   call getint 
   j := rv 
 
 L1: v1 := i 
   v2 := j 
   v3 := v1 != v2 
   test v3 
   if false goto L2 
 
   v4 := i 
   v5 := j 
   v6 := v4 > v5 
   test v6 
   if false goto L3 
 
   v7 := i 
   v8 := j 
   v9 := v7 - v8 
   i := v9 
   goto L4 



 L3: v10 := j 
   v11 := i 
   v12 := v10 - v11 
   j := v12 
 
 L4: goto L1 
 
 L5: v13 := i 
   a1 := v13 
   call putint 
   halt 
 
This is unlikely to give you the best code for a given target instruction set; more on this 
below. 
 
Key tasks of target code generation 
 
 instruction selection 
  This seems like it ought to be straightforward, but it can be tricky 
   more than one way to do things on many machines 
    multiply by 2 v. add to self v. left shift one bit 
   messy addressing modes 
   side effects (e.g., on condition codes or scratch registers) 
  Common to make a simple choice, 
   then follow up w/ machine-dependent code improvement 
  Both simple choice and improvement may be based on automated 
   pattern matching (code generator generator) 
 
 instruction scheduling 
  order in which to execute logically independent instructions 
  e.g. 
   r2 += r3 * r4 \ 
   r1 := a   / swap these (to tolerate load delay) 
   r2 += r1 
 
 register allocation 
  what should be kept in registers when? 
   NP hard in the general case—equivalent to minimal graph coloring 
   typical modern compilers use a heuristic solution to 
    the coloring problem 



 instruction scheduling and register allocation interact in complicated ways 
  if you reorder instructions, the number of registers needed may change 
   (have to hang onto a temporary value across the creation of 
   some other temporary value) 
  if you run out of registers, you have to spill them, 
    which changes the set of instructions 
   and the new instructions are loads and stores, for which 
    scheduling is particularly important 
  real compiler might 
    - schedule instructions assuming unlimited registers 
    - allocate registers, spilling as necessary 
    (this is the NP hard graph coloring problem) 
    typical modern compilers use a heuristic solution 
    - reschedule to fill new load delays, so long as it doesn’t 
    mess up register allocation 
  more on this in Chap 17 (not covered this semester) 
 
FWIW, with aggressive (machine independent and machine independent) code 
improvement, even something as simple as the GCD program can produce surprisingly 
clever code.  The following is from LLVM -O3, hand translated from x86-64 assembly 
back into pseudocode for readability. 
 
 int main() { 
  int i = getint(), j = getint(); 
  while (i != j) { 
   if (i > j) i = i - j; 
   else j = j - i;   } 
  putint(i); 
 } 
 
  call getint 
  r1 := rv           // r1 holds i 
  call getint        // rv holds j 
  compare rv, r1       // compare j to i 
  goto L2 if equal 
  r2 := 0 
  compare r1, rv 
L1: 
  r3 := 0 
  r3 := rv if less than  // “conditional move” 
             // based on most recent comparison 



  r4 := r1           // i 
  r4 := r2 if less than 
  r1 -:= r3        // i -= (i < j ? j : 0) 
  rv -:= r4        // j -= (i < j ? 0 : i) 
  compare r1, rv 
  goto L1 if not equal 
L2: 
  a1 := r1           // i 
  call putint 
 
The inner loop here is only 8 instructions long, compared to 20 in our naive 
linearized control flow graph. 
 
  



======================================== 
Building a program: 
 
Terminology: 
- An object file contains machine language code and data. 
- A relocatable object file contains the information needed to relocate the file’s 

contents. 
- An executable object file can be loaded and run.  (Rust, for some reason, calls 

object files crates.) 
 
It is possible for a file to be both relocatable and executable. 
 
Example of a C program with 4 source files, foo.c, foo.h, bar.c, and bar.h: 
 
    foo.c     foo.h       bar.h     bar.c 
      |       /    \     /    \       | 
      |      /       \ /       \      | 
      |     /         X         \     | 
      |    /        /   \        \    | 
      |   /      /         \      \   | 
      |  /    /               \    \  | 
      | /  /                     \  \ | 
       gcc                         gcc 
        |                           | 
        |                           | 
      foo.s                       bar.s 
        |                           | 
        |                           | 
       as                          as 
        |                           | 
        |                           | 
      foo.o        crt0.o         bar.o 
            \      libc.a       / 
              \    libm.a     / 
                \    etc    /     
                  \   |   / 
                    \ | /   
                   linker 
                      | 
                    a.out 
                      | 
                  OS loader 
                      | 
                running program 
 



---------------------------------- 
Assemblers 
 
Translate assembly language to machine language. 
Long ago, had lots of fancy features (e.g., sophisticated macro systems) 
for the convenience of human users.  Nowadays very little assembly code 
is written by hand. 
 Some produce assembly code and make the assembler a separate pass. 
 Some compilers produce machine code directly. 
  For these you either need an option to produce assembly code on 
  demand or a good disassembler for people developing/debugging 
  the compiler. 
 
Principal complication of assembly is the fact that a label may be used 
before it is defined: 
 
   cmp  %eax, %ecx 
   jne  .L1 
 ... 
 .L1: addl %eax, %edx 
 
When the assembler sees jne (jump if not equal) the first time, it doesn’t 
know .L1’s location. 
 
Translation therefore takes 2 steps: 

1) associate memory locations with labels, based on an understanding of how long 
each eventual code block will be (this can be complicated by the fact that the length 
of some instructions [e.g., branches, loads] depends on how far away things end up). 

2) go back and do the actual assembly-to-machine code translation, using the locations 
figured out in step 1. 

 
Step 2 also generates a symbol table. 
 Each entry contains 
- the string representing the symbol 
- the segment—e.g. undefined, absolute, text, data, bss 

(bss = zero-initialized globals [“block started by symbol”]) 
- the offset from the start of the segment 
- a bit for private versus global 



- for symbols not defined here, a list of the instructions in which the symbol is 
referenced (so the linker can patch them up [see below]) 

 
This is in addition to (or an augmentation of) the symbol table produced by the 
compiler. 
 
---------------------------------------- 
Linking 
 
Assemblers (and compilers) seldom produce exactly the bits that will be in the code 
segment in memory when your program runs.  Two tasks generally remain to be done 
 
(1) Symbol resolution 
 Most programs are made of separately compiled modules. 

Something needs to stitch these together to make a whole program.  This is called 
linking; it’s done by a linker. 

The ‘.o’ files that the assembler produces from your source files are called object 
files because they contain “object” code (as opposed to source code).  They 
define certain symbols that represent interesting things in your program—
mainly code and data—and contain unresolved references to symbols in other 
object files. 

The linker takes a collection of object files and resolves mutual references.  It 
usually knows about certain “standard” libraries that contain many of the 
symbols. 

 
(2) Relocation 

Because your program is typically made from separately-compiled pieces, the 
assembler doesn’t know when it creates a given .o file where in your address 
space that file will lie.  This means it doesn’t know the absolute addresses at 
which code and data will lie. 

Branches can be made in terms of relative offsets from the program counter, but 
jumps, loads, and stores have to be deferred until we know what the absolute 
address of the beginning of the object file will be. 

Once we know this address, we can relocate the code. This job is usually also done 
by the linker. 

Object files contain information indicating that certain words need to be modified to 
reflect where symbols have been placed. 



    - Might be as simple as adding the address of a file to the word 
    - Or adding some piece of the address to some piece of the word; 
   more on this below. 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A warning: the term loading is sometimes used for relocation.  It is better used for the 
task of putting a program (or at least part of it) into physical memory so it can run.  The 
kernel does loading in response to an exec system call (or its equivalent in non-Unix 
systems).  Once upon a time, when hardware didn’t do address translation, programs 
had to be relocated when they were loaded; hence the confusion.  It’s especially 
unfortunate that Unix’s linker is called “ld”, which suggests “loader”.  Sometimes a 
linker is called a “link editor” or (unfortunately) “link-loader”. 



 
AND... Just to make life more confusing, modern systems often employ Address Space 
Layout Randomization (ASLR) as a security measure.  This effectively puts relocation 
back into the loader’s job description. 
 
---------------------------------- 
Unix ELF Object File Format (Executable and Linking Format) 
 
Contains 
 ELF header (contains pointer to section header table) 
 sections 
    .text   code 
    .rodata  constants 
    .data   initialized, writable data 
    .bss   placeholder for uninitialized data 
    .symtab  global symbols, defined and undefined 
    .rel.text  relocation information for code 
    .rel.data  relocation information for data 
    .debug  debugger symbol table if compiled –g 
    .line   line number map if compiled –g 
    .strtab  heap for strings in .symtab and .debug 
 section header table 
 
ELF File Header 
 
from /usr/include/sys/elf.h : 
 
 typedef struct 
 { 
   unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */ 
   Elf32_Half e_type;    /* Object file type */ 
   Elf32_Half e_machine;   /* Architecture */ 
   Elf32_Word e_version;  /* Object file version */ 
   Elf32_Addr e_entry;  /* Entry point virtual address */ 
   Elf32_Off  e_phoff;  /* Program header table file offset */ 
   Elf32_Off  e_shoff;  /* Section header table file offset */ 
   Elf32_Word e_flags;   /* Processor-specific flags */ 



   Elf32_Half e_ehsize;   /* ELF header size in bytes */ 
   Elf32_Half e_phentsize;  /* Program header table entry size */ 
   Elf32_Half e_phnum;   /* Program header table entry count */ 
   Elf32_Half e_shentsize;  /* Section header table entry size */ 
   Elf32_Half e_shnum;   /* Section header table entry count */ 
   Elf32_Half e_shstrndx;   /* Section header string table index */ 
 } Elf32_Ehdr; 
 
Details of the relocation information vary from machine to machine. 
ELF defines 11 different encodings. 
Two of them cover most cases on the x86: 
 PC relative branches 
  linker should subtract address of instruction from target 
  address and then add result into field (usually -4) 
 absolute jumps 
  linker should add target address into field (usually zero) 
 
RISC machines tend to be quite a bit trickier. 
For example, a source statement like 
 
 void() *f = &foo; 
 
is likely to become a PAIR of instructions on even a 32-bit RISC machine: 
 lui r1, c1  # &foo >> 16 
 ori r1, c2  # &foo & 0xffff 
 
The linker needs to know how to create the two specified constants, 
given the address of foo, and how to embed them in the immediate fields 
of the instructions. 
 
---------------------------------------- 
Loader: Loads file from disk/secondary storage 
   
  Read header for size of text and data segments 
  Create new address space - text, data, stack 
  Copy instructions/data from file into new address space (memory) 
  Copy program arguments onto stack 



  Initialize machine registers/stack pointer 
  Jump to startup routine    
   call any static initializers 
   copy program arguments from stack to registers (on RISC machine) 
   call program’s main routine 
   on return, terminate program with exit system call 
 
32-bit Linux Memory Layout (slightly updated from the version in the book). 
Note: fig is not to scale—kernel occupies 1/4 of address space. 
   
    Address 
             ,---------, 
             |         | 
             | kernel  | 
    c0000000 |---------| 
             |  stack  | 
             |    |    | 
             |    v    | 
 
 
             |---------| 
             |  misc   | libraries, files 
             |---------| 
 
 
             |    ^    | 
             |    |    | 
             |  heap   | 
             |---------| 
             | static  | .bss 
             |  read-  | 
             | write   | .data 
             |---------| 
             |  read-  | 
             |  only   | .text, .rodata 
    08048000 |---------| 
             |  misc   | libraries, files 
    00110000 |---------| 
             | unused  |  helps catch pointer bugs 
          0  ‘---------’ 
 
 
 



---------------------------------- 
Tools: Several tools can be used to read/interpret object files: 
   
  od—displays the contents of any file 
  nm—displays the symbol table information appended to an object 
    file 
  objdump    (on Linux) 
  readelf    (on Linux) 
        llvm-dwarfdump 
 
(abbreviated) example 
 
  % nm -p -v time_test.o 
 
 time_test.o: 
 0000000000 f time_test.c 
 0000000000 U exit 
 0000000000 U random 
 0000000000 U printf 
 0000000004 D counter 
 0000000008 D nthreads 
 0000000044 d count 
 0000000048 d sense 
 0000002712 T main 
 0000003692 T barrier 
 0000003852 T initialize 
 0000136824 B t1 
 0000136828 B t2 
 0000136832 B t3 
 
Key: 
 u undefined (external) 
 t text (code) 
 d initialized data 
 b bss 
 s section boundary 
 f source file boundary 
 a absolute (non-relocatable) value 
 
Capital letter means exported global. 
 



 
---------------------------------------- 
Shared libraries 
 
Motivation 

save disk space—don’t have copies of libraries in every executable on the disk 
save space in main memory—don’t have copies of libraries in every running process 

in memory 
allow upgrades of libraries without re-compilation—when you replace the shared 

copy of the library you automatically upgrade every application that is set up to 
use it (at least the next time it is launched) 

 
Implementation is kind of complicated. Key ideas include 
  - position-independent code (PIC) 
  - linkage tables (for absolute jumps, references to external symbols) 
  - initialization of tables with ld.so address, for lazy code linking 
 
Lots of wrinkles may be different on different systems.  For example: x86-32 doesn’t 
allow direct reads of PC (rip); need to fake with call instruction. 


