
Scanner (lexical analysis)

Character stream

Token stream

Abstract syntax tree (AST)

Annotated AST
Front end

Flow graph with pseudo-
instructions in basic blocks

Modified flow graph

(Almost) assembly language

Real assembly language

Parser and AST generation

Semantic analysis

Intermediate
code generation

Machine-independent
code improvement

Target code generation

Machine-specific
code improvement

Back end

“Middle end”

Notes for CSC 254, 24 Apr. 2025

===============================
Recall compiler phases:

Note that this differs slightly from the version shown in the Chapter 1 lectures.
Specifically, I’ve
• rolled AST generation into the parser
• separated semantic analysis from (medium level) IF generation
• put that IF generation in the “middle end”

This more accurately reflects the likely structure of a modern compiler.

It’s common for a compiler to have more than one intermediate form/representation
(IF/IR). These are sometimes differentiated by “level,” or degree of abstractness:

 high-level—typically an AST

 medium-level—often a control flow graph
 basic blocks as nodes; jumps as edges
 low-level—usually instructions for an idealized machine
 perhaps the same notation that’s used w/in basic blocks above

NB: there are no hard boundaries between these levels.

One family of IFs deserves separate mention: stack-based IFs
 may be medium or low-level
 not used in most compilers, but important in special cases
 particularly where size is an issue
 examples include JBC, CIL, 1970s pcode

 example from the book: Heron’s formula:

 A = sqrt [s(s-a)(s-b)(s-c)]
 where s = (a+b+c)/2

 stack-based: 3-address pseudo-assembly
 push a r2 := a
 push b r3 := b
 push c r4 := c
 add r1 := r2 + r3
 add r1 := r1 + r4
 push 2 r1 := r1 / 2 -- s
 divide
 pop s
 push s
 push s r2 := r1 - r2 -- s-a
 push a
 subtract
 push s r3 := r1 - r3 -- s-b
 push b
 subtract
 push s r4 := r1 - r4 -- s-c
 push c
 subtract
 multiply r3 := r3 * r4
 multiply r2 := r2 * r3
 multiply r1 := r1 * r2
 push sqrt call sqrt
 call

 time-space tradeoff
 stack code is denser
 lots of instructions, but tiny
 v. speed
 can’t optimize for register set and pipeline performance

The JBC or CIL version of the stack-based code will use a single byte for every
instruction except the second-to-last, which will take 3 bytes. That’s 23
instructions in 25 bytes.

The 3-address code keeps a, b, c, and s in registers, and uses only 13
instructions. Typically, however, most will be 4 bytes long (the last will be 8).
That’s 13 instructions in 56 bytes.

--
Consider the GCD example from the Chap. 1 of the book. Source (in C):
 int main() {
 int i = getint(), j = getint();
 while (i != j) {
 if (i > j) i = i - j;
 else j = j - i;
 }
 putint(i);
 }

AST (we know how to generate this now):

Start

v1 := i

v2 := j

v3 := v1 =/ v2

test v3

null

End

T

T F

F

v7 := i

v8 := j

v9 := v7 − v 8

i := v9

v10 := j

v11 := i

v12 := v10 − v11

j := v12

v13 := i

a1 := v13

call putint

v4 := i

v5 := j

v6 := v4 > v5

test v6

call getint

i := rv

call getint

j := rv

 Control Flow Graph is “straightforward” to generate from the AST:

Here I’ve used “virtual registers” for all computed values.
 These are assumed to be unlimited in number.
 I’ve also used special register names (a1 and rv) to pass values to
 and from subroutines.

Conversion from AST to control-flow graph (or other IF) typically uses
one or more pass(es) over the tree.
 Like static semantic checking, these pass(es) can be expressed with
 an AG, with attributes for control flow graph fragments.
 More commonly, it’s just hand-written code.

The control-flow graph may see many changes during code improvement. We may split
and merge basic blocks; add and delete blocks; change the code inside blocks; move
code from one block to another; etc.

Much of the decision making is driven by data flow analysis, which
discovers properties of blocks that depend on other blocks. E.g.,
• which virtual registers are live (contain values that may be needed in the future at

the end of a given block?
• which values are known to be available (contained in some virtual register) at the

start of a given block?

Like the algorithm that builds predict sets for a top-down parser, the data flow “engine”
begins with “obvious” facts and iterates until it can’t learn anything more (and we can
prove the answer has converged).

Conversion to low-level IF can be as simple as picking an order for the
basic blocks of the control flow graph:

 call getint
 i := rv
 call getint
 j := rv

 L1: v1 := i
 v2 := j
 v3 := v1 != v2
 test v3
 if false goto L2

 v4 := i
 v5 := j
 v6 := v4 > v5
 test v6
 if false goto L3

 v7 := i
 v8 := j
 v9 := v7 - v8
 i := v9
 goto L4

 L3: v10 := j
 v11 := i
 v12 := v10 - v11
 j := v12

 L4: goto L1

 L5: v13 := i
 a1 := v13
 call putint
 halt

This is unlikely to give you the best code for a given target instruction set; more on this
below.

Key tasks of target code generation

 instruction selection
 This seems like it ought to be straightforward, but it can be tricky
 more than one way to do things on many machines
 multiply by 2 v. add to self v. left shift one bit
 messy addressing modes
 side effects (e.g., on condition codes or scratch registers)
 Common to make a simple choice,
 then follow up w/ machine-dependent code improvement
 Both simple choice and improvement may be based on automated
 pattern matching (code generator generator)

 instruction scheduling
 order in which to execute logically independent instructions
 e.g.
 r2 += r3 * r4 \
 r1 := a / swap these (to tolerate load delay)
 r2 += r1

 register allocation
 what should be kept in registers when?
 NP hard in the general case—equivalent to minimal graph coloring
 typical modern compilers use a heuristic solution to
 the coloring problem

 instruction scheduling and register allocation interact in complicated ways
 if you reorder instructions, the number of registers needed may change
 (have to hang onto a temporary value across the creation of
 some other temporary value)
 if you run out of registers, you have to spill them,
 which changes the set of instructions
 and the new instructions are loads and stores, for which
 scheduling is particularly important
 real compiler might
 - schedule instructions assuming unlimited registers
 - allocate registers, spilling as necessary
 (this is the NP hard graph coloring problem)
 typical modern compilers use a heuristic solution
 - reschedule to fill new load delays, so long as it doesn’t
 mess up register allocation
 more on this in Chap 17 (not covered this semester)

FWIW, with aggressive (machine independent and machine independent) code
improvement, even something as simple as the GCD program can produce surprisingly
clever code. The following is from LLVM -O3, hand translated from x86-64 assembly
back into pseudocode for readability.

 int main() {
 int i = getint(), j = getint();
 while (i != j) {
 if (i > j) i = i - j;
 else j = j - i;  }
 putint(i);
 }

 call getint
 r1 := rv // r1 holds i
 call getint // rv holds j
 compare rv, r1 // compare j to i
 goto L2 if equal
 r2 := 0
 compare r1, rv
L1:
 r3 := 0
 r3 := rv if less than // “conditional move”
 // based on most recent comparison

 r4 := r1 // i
 r4 := r2 if less than
 r1 -:= r3 // i -= (i < j ? j : 0)
 rv -:= r4 // j -= (i < j ? 0 : i)
 compare r1, rv
 goto L1 if not equal
L2:
 a1 := r1 // i
 call putint

The inner loop here is only 8 instructions long, compared to 20 in our naive
linearized control flow graph.

==
Building a program:

Terminology:
- An object file contains machine language code and data.
- A relocatable object file contains the information needed to relocate the file’s

contents.
- An executable object file can be loaded and run. (Rust, for some reason, calls

object files crates.)

It is possible for a file to be both relocatable and executable.

Example of a C program with 4 source files, foo.c, foo.h, bar.c, and bar.h:

 foo.c foo.h bar.h bar.c
 | / \ / \ |
 | / \ / \ |
 | / X \ |
 | / / \ \ |
 | / / \ \ |
 | / / \ \ |
 | / / \ \ |
 gcc gcc
 | |
 | |
 foo.s bar.s
 | |
 | |
 as as
 | |
 | |
 foo.o crt0.o bar.o
 \ libc.a /
 \ libm.a /
 \ etc /
 \ | /
 \ | /
 linker
 |
 a.out
 |
 OS loader
 |
 running program

Assemblers

Translate assembly language to machine language.
Long ago, had lots of fancy features (e.g., sophisticated macro systems)
for the convenience of human users. Nowadays very little assembly code
is written by hand.
 Some produce assembly code and make the assembler a separate pass.
 Some compilers produce machine code directly.
 For these you either need an option to produce assembly code on
 demand or a good disassembler for people developing/debugging
 the compiler.

Principal complication of assembly is the fact that a label may be used
before it is defined:

 cmp %eax, %ecx
 jne .L1
 ...
 .L1: addl %eax, %edx

When the assembler sees jne (jump if not equal) the first time, it doesn’t
know .L1’s location.

Translation therefore takes 2 steps:

1) associate memory locations with labels, based on an understanding of how long
each eventual code block will be (this can be complicated by the fact that the length
of some instructions [e.g., branches, loads] depends on how far away things end up).

2) go back and do the actual assembly-to-machine code translation, using the locations
figured out in step 1.

Step 2 also generates a symbol table.
 Each entry contains
- the string representing the symbol
- the segment—e.g. undefined, absolute, text, data, bss

(bss = zero-initialized globals [“block started by symbol”])
- the offset from the start of the segment
- a bit for private versus global

- for symbols not defined here, a list of the instructions in which the symbol is
referenced (so the linker can patch them up [see below])

This is in addition to (or an augmentation of) the symbol table produced by the
compiler.

--
Linking

Assemblers (and compilers) seldom produce exactly the bits that will be in the code
segment in memory when your program runs. Two tasks generally remain to be done

(1) Symbol resolution
 Most programs are made of separately compiled modules.

Something needs to stitch these together to make a whole program. This is called
linking; it’s done by a linker.

The ‘.o’ files that the assembler produces from your source files are called object
files because they contain “object” code (as opposed to source code). They
define certain symbols that represent interesting things in your program—
mainly code and data—and contain unresolved references to symbols in other
object files.

The linker takes a collection of object files and resolves mutual references. It
usually knows about certain “standard” libraries that contain many of the
symbols.

(2) Relocation

Because your program is typically made from separately-compiled pieces, the
assembler doesn’t know when it creates a given .o file where in your address
space that file will lie. This means it doesn’t know the absolute addresses at
which code and data will lie.

Branches can be made in terms of relative offsets from the program counter, but
jumps, loads, and stores have to be deferred until we know what the absolute
address of the beginning of the object file will be.

Once we know this address, we can relocate the code. This job is usually also done
by the linker.

Object files contain information indicating that certain words need to be modified to
reflect where symbols have been placed.

 - Might be as simple as adding the address of a file to the word
 - Or adding some piece of the address to some piece of the word;
 more on this below.

A warning: the term loading is sometimes used for relocation. It is better used for the
task of putting a program (or at least part of it) into physical memory so it can run. The
kernel does loading in response to an exec system call (or its equivalent in non-Unix
systems). Once upon a time, when hardware didn’t do address translation, programs
had to be relocated when they were loaded; hence the confusion. It’s especially
unfortunate that Unix’s linker is called “ld”, which suggests “loader”. Sometimes a
linker is called a “link editor” or (unfortunately) “link-loader”.

AND... Just to make life more confusing, modern systems often employ Address Space
Layout Randomization (ASLR) as a security measure. This effectively puts relocation
back into the loader’s job description.

Unix ELF Object File Format (Executable and Linking Format)

Contains
 ELF header (contains pointer to section header table)
 sections
 .text code
 .rodata constants
 .data initialized, writable data
 .bss placeholder for uninitialized data
 .symtab global symbols, defined and undefined
 .rel.text relocation information for code
 .rel.data relocation information for data
 .debug debugger symbol table if compiled –g
 .line line number map if compiled –g
 .strtab heap for strings in .symtab and .debug
 section header table

ELF File Header

from /usr/include/sys/elf.h :

 typedef struct
 {
 unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */
 Elf32_Half e_type; /* Object file type */
 Elf32_Half e_machine; /* Architecture */
 Elf32_Word e_version; /* Object file version */
 Elf32_Addr e_entry; /* Entry point virtual address */
 Elf32_Off e_phoff; /* Program header table file offset */
 Elf32_Off e_shoff; /* Section header table file offset */
 Elf32_Word e_flags; /* Processor-specific flags */

 Elf32_Half e_ehsize; /* ELF header size in bytes */
 Elf32_Half e_phentsize; /* Program header table entry size */
 Elf32_Half e_phnum; /* Program header table entry count */
 Elf32_Half e_shentsize; /* Section header table entry size */
 Elf32_Half e_shnum; /* Section header table entry count */
 Elf32_Half e_shstrndx; /* Section header string table index */
 } Elf32_Ehdr;

Details of the relocation information vary from machine to machine.
ELF defines 11 different encodings.
Two of them cover most cases on the x86:
 PC relative branches
 linker should subtract address of instruction from target
 address and then add result into field (usually -4)
 absolute jumps
 linker should add target address into field (usually zero)

RISC machines tend to be quite a bit trickier.
For example, a source statement like

 void() *f = &foo;

is likely to become a PAIR of instructions on even a 32-bit RISC machine:
 lui r1, c1 # &foo >> 16
 ori r1, c2 # &foo & 0xffff

The linker needs to know how to create the two specified constants,
given the address of foo, and how to embed them in the immediate fields
of the instructions.

--
Loader: Loads file from disk/secondary storage

 Read header for size of text and data segments
 Create new address space - text, data, stack
 Copy instructions/data from file into new address space (memory)
 Copy program arguments onto stack

 Initialize machine registers/stack pointer
 Jump to startup routine
 call any static initializers
 copy program arguments from stack to registers (on RISC machine)
 call program’s main routine
 on return, terminate program with exit system call

32-bit Linux Memory Layout (slightly updated from the version in the book).
Note: fig is not to scale—kernel occupies 1/4 of address space.

 Address
 ,---------,
 | |
 | kernel |
 c0000000 |---------|
 | stack |
 | | |
 | v |

 |---------|
 | misc | libraries, files
 |---------|

 | ^ |
 | | |
 | heap |
 |---------|
 | static | .bss
 | read- |
 | write | .data
 |---------|
 | read- |
 | only | .text, .rodata
 08048000 |---------|
 | misc | libraries, files
 00110000 |---------|
 | unused | helps catch pointer bugs
 0 ‘---------’

Tools: Several tools can be used to read/interpret object files:

 od—displays the contents of any file
 nm—displays the symbol table information appended to an object
 file
 objdump (on Linux)
 readelf (on Linux)
 llvm-dwarfdump

(abbreviated) example

 % nm -p -v time_test.o

 time_test.o:
 0000000000 f time_test.c
 0000000000 U exit
 0000000000 U random
 0000000000 U printf
 0000000004 D counter
 0000000008 D nthreads
 0000000044 d count
 0000000048 d sense
 0000002712 T main
 0000003692 T barrier
 0000003852 T initialize
 0000136824 B t1
 0000136828 B t2
 0000136832 B t3

Key:
 u undefined (external)
 t text (code)
 d initialized data
 b bss
 s section boundary
 f source file boundary
 a absolute (non-relocatable) value

Capital letter means exported global.

--
Shared libraries

Motivation

save disk space—don’t have copies of libraries in every executable on the disk
save space in main memory—don’t have copies of libraries in every running process

in memory
allow upgrades of libraries without re-compilation—when you replace the shared

copy of the library you automatically upgrade every application that is set up to
use it (at least the next time it is launched)

Implementation is kind of complicated. Key ideas include
 - position-independent code (PIC)
 - linkage tables (for absolute jumps, references to external symbols)
 - initialization of tables with ld.so address, for lazy code linking

Lots of wrinkles may be different on different systems. For example: x86-32 doesn’t
allow direct reads of PC (rip); need to fake with call instruction.

