Notes for CSC 254, 29 Apr. 2025

Run-time Systems

A library is preexisting code you can call.
A run-time system is a library that makes assumptions about how the
compiler works
- may use tables generated by the compiler
- may examine or manipulate heap or stack layout
- e.g., GC requires help finding root pointers and type descriptors;
needs compiler to generate write barriers
A virtual machine is a run-time system that provides/specifies everything the
program needs, including the instruction set

The Java Virtual Machine (JVM)

Recall how Java works
compiler translates Java source to Java byte code (JBC)
byte code runs on virtual machine
virtual machine may execute code via interpretation,
JIT compilation, or some combination of the two

The JVM’s machine architecture provides
all & only Java’s built-in types
(invokedynamic was added to the JVM for Java 7, to support
Java lambdas & dynamic languages)
type safety
definite assignment
garbage collection
threads
global constant pool, per-thread stacks, heap, method (code) area
[each stack frame contains
array of locals & formals
each slot 32 bits wide (longs and doubles take 2)
can be reused for temporally disjoint data of different types
expression evaluation stack
(sized to accommodate largest expression in the method)]

implicit references (“registers”) for the current program counter, frame,
top of operand stack within frame, symbol table info in constant pool

The JVM also defines the format of . class files

At start-up, the JVM
loads the given class file (which must have amain())
verifies that it satisfies various invariants
type safety
no operand stack overflow or underflow
all references to the constant pool and the locals array are
within bounds
all constant pool entries are well formed
no inheritance from a final class
definite assignment
(several of these require data flow analysis)
allocates and initializes static data
links to library classes
callsmain() in a single thread

The Java Byte Code instruction set includes
load-store
back and forth between local variable array and operand stack
arithmetic
all done implicitly on the operand stack
type conversion
object management
new, field and array element access, reflection
push, pop, dup, swap
branches, switch
specify targets as indices in the instruction array of the
current method
static and virtual method calls
specify target symbolically by name (index in constant pool)
throw exception
monitor enter, exit (wait, notify, and notifyAll are method calls)

public void insert(int v) {

node n = head;

while (n.next !'= null
&% n.next.val < v) {

n = n.next;

}

if (n.next == null
|l n.next.val > v) {
node t = new node();

t.val = v;

t.next =

n.next;

n.next

]
ot

} // else v already in set

}

Figure 16.2 Java source and bytecode for a list insertion method. Output on the right was produced by Oracle’s javac

Code:
Stack=3, Locals=4,

0 aload_0O
1 getfield
4: astore_2
5: aload_2
6 getfield
9: ifnull
12: aload_2
13: getfield
16: getfield
19: iload_1
20: if_icmpge
23: aload_2
24: getfield
27: astore_2
28: goto

31: aload_2
32: getfield
35: ifnull
38: aload_2
39: getfield
42: getfield
45: iload_1
46: if_icmple
49: new

52: dup

53: aload_O
54: invokespecial
57: astore_3
58: aload_3
59: iload_1
60: putfield
63: aload_3
64: aload_2
65: getfield
68: putfield
71: aload_2
72: aload_3
73: putfield
76: return

Args_size=2

#4;

#5;

31

#5;
#6;

#5;

#5;
49

#5;
#6;

76

#2;

#3;

#6;

#5;
#5;

#5;

// this

//Field head:LLLset$node;

// n
//Field LLset$node.

next:LLLset$node;

// conditional branch

//Field LLset$node.
//Field LLset$node.
/v

//Field LLset$node.

//Field LLset$node.

//Field LLset$node.
//Field LLset$node.

//class LLset$node

//Method LLset$node."<init>":(LLLset;)V

// t

//Field LLset$node.

//Field LLset$node.
//Field LLset$node.

//Field LLset$node.

(compiler) and javap (disassembler) tools, with additional comments inserted by hand.

next:LLLset$node;
val:I

next:LLLset$node;

next:LLLset$node;

next:LLLset$node;
val:I

val:I

next:LLLset$node;
next:LLLset$node;

next:LLLset$node;

The Common Language Infrastructure (CLI) is similar to the JVM but more general
(The Common Language Runtime [CLR] is Microsoft’s implementation)
explicit support for multiple programming languages
(Microsoft supports C#, F#, Visual Basic, Managed C++, and JScript)
richer common type system (CTS)
richer calling mechanisms (including tail recursion)
multiple pointer and reference types
support for unsafe code
etc.
Common Intermediate Language (CIL) is the JBC analogue
JIT-centric: several tradeoffs made against interpretation
type information in objects, not opcodes
separate spaces for arguments and locals
built-in support for generics

Binary rewriting
trace scheduling

HP Dynamo (PA-RISC) & DynamoRIO (x86), late 1990s

instrumentation
statistics gathering
simulate new architectures
insert dynamic semantic checks
sandboxing (a.k.a. software fault isolation -- SFI)
Pin, Valgrind tools
trace-based

procedure print_matching(S : set, p : predicate)

foreach e in S
)

prologue if ple))
— print e
Y
loop head
Y
test, 7 N
test, 4\ PN

Y

Y

loop foot

)

epilogue
—

Figure 16.3 Creation of a partial execution trace. Procedure print_matching (shown at top)
is often called with a particular predicate, p, which is usually false. The control flow graph (left,
with hot blocks in bold and the hot path in grey) can be reorganized at run time to improve

testz

Y

loop foot

instruction-cache locality and to optimize across abstraction boundaries (right).

(Interestingly, some processors cache traces like these in hardware.)

To learn more about language tools, take 2/455!

