
A S i m p l e  D i v i d e - a n d - C o n q u e r  A l g o r i t h m  fi)r C o n s t r u c t i n g  
I ) e l a u n a y  T r i a n g u l a t i o n s  in O ( n  log log n)  E x p e c t e d  T i m e  

Rex A. Dwyer* 

Compul;ex Science Department 
Carnegie-Mellon University 

Pittsl)urgh, Pennsylvania 152t3 

O. A b s t r a c t .  
We present a modification to the divide-and- 

conquer algorithm of Guibas & Stolfi [GS] for 
computing the Delaunay triangulation of n sites 
in the plane. The change reduces its @(nlogn) 
expected running time to O(n log log n) for a large 
class of distributions which includes the uniform 
distribution in the unit square. The modi fed  al- 
gorithm is significantly easier to implement than 
the optimal linear-expected-time algorithm of 
Bentley, Weide & Yao [BWY]. Unlike the incre- 
mcnt;d m(:tho(l~ of Ohya, Iri & Murota [OIM] 
and Maus [M] it has ol,timal O(niogn) worst- 
(:a:~c I)crformauce. The iml)rovemcnt extends to 
the cOlnlmtali(m of ttm 1)elaunay triangulation 
in I, hc Lp metric fur 1 < p < oo. Ext)crimcn- 
tal evi(let~ce l)r(zseated (lcnmnstrates that in the 
Euclidean ca,se the modilied algorithm i)crforms 
very. well for ?t _-= "~ 216, the range of the exper- 
iments. We c(mjecture that its average running 
time is no more than twice ot)timal for n less than 
seven trillion. 

1. I n t r o d u c t i o n .  
The Voronoi diagram generated by a set S = 

{PJ ,P2 , . . . , Pn}  of n points in the plane (called 
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,site,s) partitions the. plane into n convex regions 
])i = { P [ V j :  d(P, I~) < d(P, l~i ) }. Ea(:h region 
contaias the points lying nearer to the site ill its 
interior than to any other site. 

The straight-line dual of the Voroaoi dia- 
gram is called the Delaunay triangulation, de- 
noted DT(S). I~ and I~. are adjacent in DT(S)  
if and only if ))i and ])j share a common c(lge. 
(Fig. 1.1.) If, as is assmned in the sequel, no four 
sites arc cocircular, the Delaunay triangulation 
partitions the convex hull of S into triangles. The 
Voronoi diagram can be constructed from the De- 
launay triangulation in O(n) time and vice versa. 

Existing algorithms for constructing the 
widely-applied Voronoi diagram and Dclaunay 
triangulation fall into two categories: divide-and- 
conquer algorithms and incremental algorithms. 

Shamos [Sh] presents the first divide-and- 
conquer algorithm and shows its O (n log n) worst- 
case running time to be optimal under the real 
RAM model of computation. Lee & Schachter 
[LS] describe a dual algorithm for constructing 
the Delaunay triangulation. Guibas & Stolfi [GS] 
advocate the Delaunay triangulation as an inter- 
mediate step in the construction of the Voronoi 
diagram, and present ideal data structures for 
the problem. Hwang [H], Lee & Wang [LW], and 
Lee [L] present O(nlog n) divide-and-conquer ab 
gorithms for the Voronoi diagram in the L1, L1 
and Loo, and general Lp metrics respectively. Re- 
cent work of Ohya, Iri & Murota [OIM] shows the 
average running time of the Euclidean-metric al- 
gorithms to be f~(n log n) when the sites are uni- 
formly distributed hi the unit square. Their proof 
extends naturally to the Lp metrics. 

Various incremental algorithms, which con- 
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Fig. 1.1. A Voronoi diagram and its dual. 

struct the Voronoi diagram by adding new sites 
one by one, differ principally in the order in which 
sites are added. Sibson & Green [SG] were early 
advocates of such a method, giving an algorithm 
with O(?~ 2) worst-case and O(n 3/2) average run- 
ning times. Tile algorithms of Ohya, Iri & Murota  
[OIM] and Maus [M] achieve optimal linear aver- 
age time but  only quadratic worst-case time. For- 
tune's new sweepline algorithm [F] uses a clever 
geometric transformation to achieve O(nlogn)  
worst-case time; only the trivial bounds on its 
average 1)erfornlan('e are known. 

Bentley, Wcidc' & Yao [BWY] prol)ose a com- 
plicated hybrid a,lgorithm which achieves optimal 
running time in both  the worst-case and expected 
senses. It invokes a divide-and-conquer algorithm 
on the "outer" sites lying near tile boundary of 
the unit square. The Voronoi polygon of each 
"inner" site is constructed in constant expected 
time by a "spiral search" among its neighl)ors. In 
the unlikely event that more than O(log n) time is 
expended on any inner site, spiral search is aban- 
doned and the divide-and-conquer algorithm is 
applied to the entire set of sites. 

We present an easily implemented improve- 
ment to the divide-and=conquer algorithm of 
Guibas & Stolfi. If the floor function can be com- 
puted in constant time, the change maintains its 
O(nlogn)  worst-case complexity, but  lowers its 
average-case complexity to O(nloglogn)  when 
the sites are drawn independently from any of 
a large class of distributions which includes the 
uniform distribution on the unit square. T h e  
modification can be made to any of the divide- 
and-conquer algorithms including those for the 

L 7, metric tbr 1 < p _< co. Our exl)eriment, al ev- 
idence demonstrates that  in the l,uch(lean met- 
ric 13m irnprow;d algorithm l)erfi)rms ve.ry well for 
n ( 216, the range of tit(; experiments. We con- 
jecture that its average running time is no more 
than twice optimal for n less than seven trillion. 

2. P r e l i m i n a r i e s .  
We slow restate some useflll facts about  De- 

launay triangulations and Voronoi (liagrams and 
review the results of Guibas & Stolfi upon which 
our work depends. 

Lemma 2.1. Every triangulation of a set of  n 
sites of which k lie on the convex hull (i.e., on 
tile boundary of the convex hull) has 3(n - 1) - k 
edges and 2(n - 1) - k triangles. 

Proof. Let t be the number of triangles and e the 
number of edges. All the edges belong to two 
triangles except for the k on the convex hull, thus 
2e - k -- 3t. The results are obtained by solving 
this equation for t or e and substi tuting into n - 
e + (t + 1) = 2 (Euler's formula). [ ]  

Corollary 2.2. At  most 3n non-intersecting edges 
can be constructed on a set of  n sites. 
I'roof. Any set of non-intersecting edges cau be 
extended to form a triangulation. [-_] 

Lemma 2.3 I f  sites 1~, Pj and P~: ;ire w'.rtices 
of  a triangle in the Dclaunay triangulatian, the 
circle passing through these three sites contains 
no other sites. 

Proof. The center of the circle is equidistant from 
the three sites and is on the boundary of the 
Voronoi region of each of them. Thus it, cannot lie 
nearer to a fourth site than to Pi, Pj and Pk. [ ]  

Corollary 2.4. I f  sites Pi and Pj are endpoints of 
a Delaunay edge, there is some circle containing 
no sites which passes through Pi and Pj. 

Proof. Each edge is a side of some triangle. [ ]  

Corollary 2.5. Every convex hull edge is a De- 
launay edge. 

Proof. One of the half-planes defined by the affine 
extension of the edge is a degenerate site-free cir- 
cle. [ ]  

Sibson [S] has showed that,  degenerate cases 
with four cocircular sites excepted, the Delaunay 
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triangulation is the only t, ri;lngulation satisfying 
Lemma 2.3. 

Guibas & Stolfi's algorithm first constructs 
t, hc l)claunay triangulation. The Voronoi dia- 
gram is then found in linear time. The Delaunay 
triangulation is constructed as follows: 

1) The sites are sorted along the x-axis. 
2) If there are three or fi;wer sites, the Delaunay 

triangulation is constructed directly. Other- 
wise, the sites are divided into two approx- 
imately equal sets by a line perpendicular 
to the x-axis, Step 2 is recursively applied 
to construct the Delaunay triangulations of 
these sets, and the results are merged. 
The merge procedure forms the foundation of 

our own algorithm as well as of Guibas & Stolfi's. 
Let g be the dividing line of Step 2, and let/~ and 

be the sets lying to the left and the right of t. 
Clearly two edges of the convex hull of/~ U)~ cross 
~. Merging begins with a search for the endpoints 
of the lower of the two. The search begins with 
the sites of £ and ,~ lying nearest g and alter- 
nately advances clockwise around the convex hull 
of £ and counterclockwise around the convex hull 
of ~. Once its endpoints are found and the lower 
hull (:dge is creat(,(t, the otlter n('w edges are cre- 
ated in the order in which they cross g. Old edges 
are renmv(;(l as necessary. The essential features 
of the m(:rg~, proc(,dure are summarized in the 
following theorem: 

Theorem 2.6. Let g, f and R be as above. 
When merging DT(£.) and DT(]~) to construct 
DT(£ u 

a) Only edges joining two sites in £ and edges 
joining two sites in ;~ are deleted. 

b) Only edges crossing g and joining a site in £ 
to one in ~ are created. 

c) The worst-case running time of the merge is 
bounded by a function linear in the sum of 
three components: 

i) the number of sites examined to find the 
endpoints of the lower of tile two edges 
of  the convex hull of  £. U R which cross 
g. 

ii) the number of edges deleted, and 
iii) the number of  edges created. 

d) The worst-case running time of the merge is 
O(IZ: u ~l). 
Proof. Guibas & Stolfi. [ ]  

Our analysis requires a more relin('.d bound 
on the running time of the merge than those of 
Theorem 2.6. 

Theorem 2.7. The total rmming time of  ;m algo- 
rithm based on Guibas & StolIi's merge procedure 
is bounded by a linear fimction of the nmnber of  
edges created. 

Proof. By Theorem 2.6.c, it suffices to show that  
the number of edges deleted and the number of 
sites examined to construct the lower convex hull 
edge are bounded by the number of edges created 
in the merge. 

Clearly no edge can be deleted which has not 
first been created during a previous invocation of 
the merge procedure. 

It is also true that  each of the sites examined 
in the convex-hull-edge construction of a partic- 
ular invocation of the merge procedure receives a 
new edge during the same invocation. Since each 
one falls on the boundary  of tile convex hull of 
or ~,  it must be the vertex of some angle larger 
than 180 degrees before the merge. However, it 
must also lie in the interior of the convex hull of 

U ~,  and it therefore cannot be the vertex of 
such a large angle after tile merge. [S] 

3. Tile M o d i f i e d  A l g o r i t h m  a n d  Analysis 
of  I t s  W o r s t - C a s e  R u n n i n g  T i m e .  

The unit square is I)artitioned into n/ log n 
square cells with sides of length v~logn/n. Tile 
Delaunay triangulation of tile sites within each 
cell is constructed with the Guibas-Stolfi algo- 
rithm. The triangulations within each row of cells 
are merged in pairs until tile triangulation of the 
row has been completed. Then row triangulations 
are merged in pairs to complete the triangulation 
of the entire set of sites. (Fig. 3.1.) 

Theorem 3.1 Algorithm A uses O(nlogn)  time 
in the worst case. 

Proof. Step 0 requires O(n) time, since the floor 
function is assumed to be computable in constant 
time. 

Number  the cells arbitrarily and let ni be 
the number of sites in the i-th cell. Since Guibas 
& Stolfi's algorithm requires O(nlogn)  time in 
the worst case, Step 1 can be completed in time 
Y]~i O(ni log ni) <_ ~_,~ O(ni log n) <_ O(n log n). 
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{ Ste 1) 0: Sort Sites into Buckets } 
m :---= V ~ / I o g n  
for  P E $ (to insert P into I3[mzpJ,[mypJ 
{ SteI) 1: Triangulate Cells } 
f o r i : = 0  to m - 1  do  

for  j : = 0 t o  m - I  do  
DTij := Guibas_Stolfi_DT(Bij) 

{ Step 2: Merge Cells into Rows } 
for  k : = 0 t o  l g m d o  

for  i : = 0  to  m - 1  do  
for j := 0 to  m - 1 by  2 TM do 

DT~j := merge(DTij, DTi,j+2k ); 
{ Step 3: Merge Rows } 
for k : = 0  to  l g m d o  

f o r i : = 0 t o m - 1  by  2 k+l do  
DTio := merge( DTio, DTi + 2~,o ); 

r e t u r n  DT00; 

Figure 3.1. Algorithm A 

In Step 2, no site is involved in more than 
a single merge for any fixed value of k. Since by 
Corollary 2.2, the number of points involved in 
the merges bounds the number of edges created, 
and by Theorem 2.7 the number of edges created 
bounds the running time, no more than O(n) time 
is required for ea(:h iteration of tile k loop. The k 
loop is executed l g ( ~ g - - r ~ . )  < lg n ti]nes, thus 
O(n log n) time is required fi)r Step 2. 

Step 3 carl be handled exactly like Step 2. 
Summing the times for the three steps, we find 
that  at nmst O(n log n) time is required. [ ]  

4. Ana lys i s  of  E x p e c t e d  Time.  
We will call a distribution with density func- 

tion f quasi-uniform in a region if, for some 
strictly positive constants cl and c2, f (x ,y )  = 0 
outside the region and el < f ( x , y )  < c2 in- 
side the region. By modifying constants in the 
proofs which follow, it is not difficult to show 
that  the expected running time of Algorithm A is 
O(n log log n) for any quasi-uniform distribution 
in a rectangle. However, we restrict our attention 
to the uniform distribution in the unit square for 
the sake of expository simplicity. 

During Step 1, we accept the O(n log n) worst 
case performance of Guibas & Stolfi's algorithm 
to construct Delaunay triangulations within each 
ceil. We need only take care to show that  it is 

unlikely that  very many sites l, dl within a single 
cell, making worst-case performance for that  cell 
unacceptal)ly large. 

We next show that  when merging two Delan- 
nay triangulations most sites to which new e(lges 
are constructed must lie near the boundaries of 
the two triangulations. N(;w edges to sites far 
from the boun(laries must necessarily be so long 
that they determine l~Lrge circles likely to coutain 
other sites, in violation of Corollary 2.4. Since the 
new edges are non-intersecting, by Corollary 2.2 
and Theorem 2.7 the numl)er of sites to which 
new edges are constructed bounds the running 
time. 

In the sequel we assume that  Z/ is the unit 
square and that  $ = {Pa,P2, . . .  ,Pn} is a set of 
n sites chosen independently from the uniform 
distribution on ~/. 

Lemma 4.1. The probability that any fixed cell 
contains more than e log n sites is less than 1/n, 
where e is the base of the natural logarithms. 

Proo£ Since the cells are squares with sides of 
length v/log n/n,  the probability that  a given site 
lies in the cell is equal to log n/n,  the area of the 
cell. Call this prol)ability p, and let N l)e tile 
numl)er of sites in the (:ell. Then N has a binomial 
dist.ribution, an(t 

P r{N _ elogn} :: E P r{N = k} 
k~-~e log n 

-< E e(k-,log,,) P r { N  = k} 
k>_e log n 

-< n-~ E e k P r { N  = k} 
k_>o 

k_>0 

= n - " ( e p  + 1 - p ) "  

= n -~ cxp(n log(1 + p(e - 1))). 

Since log(1 + x) < x for x > 0, it follows that  
P r{N > elogn} < n -e exp(np(e - 1)) 
= n -e exp((log n)(e - 1)) = n - ' .  n e - 1  = l / n .  [ ]  

In passing, we note that the same argument  
can be used to show that the probability that a 
fixed cell contains more than ( e + m - 1 )  log n sites 
is at most 1/n m. 

279 



Theorem 4.2. Step 1 of Algoritlm~ A requires 
O(n log log n) expected time. 

Proof. Since there are n/logn (:ells, Lemma 4.1 
implies that  Pr{sonw. cell has _ elog n sites} _< 
(n/ log n) • e r{a  fixed cell has _> e h)g n sites} < 
1 / logn.  Since even these inputs can be han- 
dled in O ( n l o g n )  time, their contr ibution to 
the ext)cctcd running time of Step 1 is at most  
O ( ( n h ) g n ) . ( l / h ) g n ) )  : O(n). For the other 
cases, at most  n / log  n subproblems of size at most  
e log n must  be solved using the O(n log n) worst- 
case algori thm of Guibas & Stolfi, making the to- 
tal expected t ime O ((n/ log n)e log n log(e log n)) 
or O (n log log n) for Step 1. [ ]  

We now bound the expected t ime of the 
merging steps. We first show tha t  most  new edges 
lie in a region near the boundaries of the diagrazns 
being merged. We then bound the number  of 
edges which we expect to create in these botmd- 
ary regions in all the merges of Steps 2 and 3. 

The following lemma will be proved in a more 
general sett ing in the next section: 

Lemma 4.3. Let P, Q, and P' be three points 
lying along a line in that order. Let M and N 
be the other vertices of the ,wuare with diagonal 
PQ. Then any circle passing thrmlgh P and P' 
completely ench)ses either A P Q M  or A P Q N  or 
both. 
Lemma 4.4. Let p = 2log Iogn /n ,  let T be a 
sul),~et of II with area exceeding p, antl let S' be 
a set of at least n - 2 sites drawn independently 
[rom the uniform distribution on U. Then Pr{S'f 'l  
T = 0} = O(1/logn). 
Proo£ 
Pr{S '  rq T = O} < (1 - p ) n - 2  

= exp((n  - 2) log(1 - p)) 
< e x p ( - p ( n  -. 2)) 
_< e x p ( ( - l o g l o g n ) ( 4 / n -  2)) 
= log n (4 /n ) -2  : O ( 1 / l o g  n).  [ ]  

Theorem 4.5. Let V-]ABCD and V-]CDEF 
lie inside li, let ~ = 5 N V-IABCD and £. = 

n U:]CDEF, and let h = ICDI. Then there is 
a merge region 34 C F-1ABCD such that: 
a) Area(34) = O (h x/log log n/n+log n log log n/n) 
b) i f P E  ~ b u t  P ! ~  34 t h e n p = e r { S P '  E /~ [ 
(P, P') E DT(£. LA ~) } = O(1/log n). 

Proo£ For convenience, we use a coordinate sys- 
tem with origin at C, B on the t)ositive x-axis, 
and D on the positive y-axis. (Fig. 4.1.) We now 
verify that  conditions a) and b) are satisfied by 

34 = F-'qABCDM {(x,y) I (x <_ 8 v / ~ g l o g n / n )  
V(xy < 241oglogn/n) 

V ( x ( h -  y) <_ 24h, g l o g n / n ) }  

(,,,,- E I) A 

(--F C B 

Fig. 4.1. The merge region 34. 
Since the two hyl)erbohts delining 34 are mir- 

ror images, and since IBCI ~ I, we have 

Area(34) < 8hx/log log n/n  

4 - 2 ~  241°gl°gndx 
]og n / n  ~X 

= O(hy/ log log n/n  -F log n log log n/n) 

Now let P = (xp ,yp)  be a site in ~ but  
outside 34, let P' be a site in L, and let Q be 
the point  of intersection of PP'  and CD. Let 
EJPMQN be the square with M above and N 

below PQ. Further  suppose tha t  P and P '  are 
joined in DT(.C U ~). By Corollary 2.4, there is a 
circle C through P and P '  whose intersection with 
F-qABCD is site-free. Then according to Lemma 

4.3 either ( A P Q M  ¢q r--qABCD) or ( A P Q N  rq 
I--IABCD) is site-free.. We will show that  each of 
A P Q M  and A P Q N  completely contains one of 
ten regions in F-qABCD, each of which has area 
exceeding 2 log log n/n.  The conditions of Lemma  
4.4 are satisfied for each region with $' = S - 
{P, P '} ,  so the probability tha t  any fixed rcgion is 
site-free is O(1/log n). Therefore the probability 
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that at lemqt one of the ten regions is site-free is 
O(10/log n) = O(l/log n). 

The ten regions are sectors or parts of sec- 
tors of the circle of radius 1 ~xt, centered at P.  
(Fig. ,1.2.) The central angh; of each sector is 7r/8. 
Eight of the regions fall within the sector dctined 
by _/CPD. They nmst completely cover this sec- 
tor, but they may otherwise be fixed arbitrarily. 
To these are added the sector whose upper bound- 
ary is PC and the sector whose lower boundary 
is PD. Since AP'PM and ZP~PN measure Ir/4, 
anti tPMI, IPQI and IPNI exceed 1 ~Xp, each of 
A P Q M  and A P Q N  completely contains at least 
one of these sectors, no mat ter  where pt  lies in 
[--~CDEF. 

The area of the sectors is ½(½xp)2(Tr/8) = 
(~r/64)x~ > 7rloglog n/n  > 21oglog n/n.  But 
part of the sector below PC may lie outside 
f--]ABCD. In this case let J be the point on 

PC at distance ½xp from P,  and let K be the 
point of intersection of the x-axis and the other 
side of the sector. Surely the intersection of 
[::]ABCD and the sector contains A P J K .  But 

Area(z~PJK) = ½ • IPJJ . IPgl  . sin(Tr/8) _> 
2"I yxp'y[,'l- _ "31 ~> l x [ , y  P >_ l (241oglogn/n)  > 

(_tt I) 

a 

(-.F c V K  
Fig. 4.2. Bounding a t runcated sector. 

2 log log n/n.  Thus we have showed that  the in- 
tersection of [:=]ABCD and the sector below PC 
is itself large enough. The proof is completed by a 
symmetric argument applied to tim sector above 
PD. [] 

Theorem 4.6. Step 2 of Algorithm A requires 
O(n log log n) expected time. 

Proof. The merge region for each merge in Step 
2 has height h = lov/lo--~/n, thus the area of each 

merge region is O((v/hig'ti, yi~ • ,v/]()g-i(--)g-n/rt~) -t- 
log nlog log n/n)  = O(log n log log n/n). For a 
particular value of k tlwrc are 2 kn/log n disjoint 
merge regions with total area 0(2 'k  log logn). 
The expected number of sites in these regions is 
0 ( 2  kn log log n). In addition it is expected that 
at most anottmr O(n/log n) sites from outside the 
merge regions will receive new edges. Since by 
Theorem 2.7 the running time is bounded by a 
linear function of the number of edges created, 
and by Corollary 2.2 this is in turn linear in the 
number of sites rece.iving new edges, the expected 
running time of Step 2 is bounded by 

k=O 
(O(2-kn  Iog log n) + O(n/log n)) 

= O (n log log n) + O (n) = O (n log log n). [ ]  

Theorem 4.7. Step 3 of Algorithm A requires 
O(n) expected time. 

Proof. The merge region for each merge in Step 
3 has height h = 1 and area O ( x / ~ g l o g n / n  ). 
There are 2-kX/~/log n merge regions for each k 
wduc for a total area of O(2--k X//~g log n/h)g n) = 
O(2 -k) containing O ( 2  kn) sites in the expected 
case. Rcasoning as for Step 2, we find the running 
time in the expected case to be bounded by 

E 
k=O 

(O(2-kn)  + O(n/log n)) = O(n). [] 

Adding together the expected time for each 
step we have: 

Theorem 4.8. Algorithm A constructs DT(S)  in 
O(n log log n) expected time. 

5. E x t e n s i o n  to  t h e  Lp M e t r i c s .  
In this section we show that  the algorithm 

of Section 3 and its analysis extend to the Lp 
metrics for 1 < p < o0. We are able to make only 
a small improvement for the Lx case. 

The Lp metric is defined by the distance 
function dp(P,  Q) = ([x[, - XQIp T [y[, - yQIP) 1/~ 
for 1 ~ p < (x) and d~(P,Q)  = max([xp - 
xQI, lYP - YQI) for p = cx). The L2 metric is the 
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usual Euclidean metric. Tlw. Ll metric is some- 
times calh;d the rectilinear or Manhattan metric. 
Itwang [II], Lee &Wong [LW], and Lee [L] present 
O (n log n) (livide--aud-eonquer algorithms for con- 
structing the Voronoi (liagrams in the L1, LI 
and L ~ ,  and general Lp metrics respectively. In 
these metrics each Voronoi polygon is star-shaped 
with a nucleus at the associated site, but it is 
not necessarily convex. The straight-line dual of 
the Voronoi diagram is called the Delaunay tri- 
angulation and denoted DTp(S),  although in fact 
DTI(S)  and DToo($) do not generally triangu- 
late the convex hull of S. 

Lee [L] shows that  Lemma 2.3, Corollaries 
2.4 and 2.5, and (essentially) Theorem 2.6 hold 
for 1 < p < co when the word "circle" is taken to 
mean the locus of points at a constant distance in 
the Lp metric from some given point. From these 
Theorems 2.7 and 3.1 follow. He also proves the 
following useful lemma. 

Lemma 5.1. The locus of  points equidistant from 
two given points, called their bisector, is either 
nonincreasing or nondecreasing. 

We can now extend the average-case analysis 
to 1 < p < o o .  

Theorem 5.2. Algorithm A constructs DTp(S) 
in O(n h)g log n) expected time for 1 < p < oo. 

Proof. The analysis of Section 4 lacks only an Lp 
w'.rsion of Lcmma 4.3, which we now provide: 

Lemrna 5.3. Let P, Q, and P~ he three points 
lying ,along a line in that order. Let M and N be 
the other vertices of  the square with diagonal PQ.  
Then for I <_ p ~_ co any Lp circle passing through 
P and P' completely encloses either A P Q M  or 
~ P Q N  or both. 

Proof. Let M'  and N '  be the other vertices of the 
square with diagonal P P '  lying on the same side 
of P P '  as M and N respectively. S i n c e / k P P ' M  ~ 
and A P P ' N  ~ contain A P Q M  and A P Q N  re- 
spectively, it suffices to show that  the circle con- 
tains either M ~ or N'.  (Fig. 5.1.) Without  loss 
of generality we consider only the case in which 
a > b > 0, P = (0,2b), P '  = (2a,0), .and 
M'  = (a + b,a + b), and show that  the center 
of the circle C must lie nearer M'  than P if it lies 
above the line through P and P ' .  

The triangle inequality implies that  the bi- 

Fig. 5.1. Bounding the area of Lp circles. 

sector of P and P '  passes no nearer to P than 
(a p .4- bP) 1/p at R -= (a,b). If C = R, M'  clearly 
lies on the perimeter of the circle. Since both 
M'  and R lie on the biscctor, it is nondecreasing 
rather than nonincreasing. Thus a < x c  < a .4-. b 
and b < Yc < a + b if C lies on the bisector be- 
tween R and M' ,  and dp(C,  M')  = ( [a .÷ b -xc l t '÷  
la + b - YelP) l ip  <_ (b ~ -4- aP) l ip = dr(R,  P) < 
dp(C, P).  Beyond M' ,  C must satisfy x c  > a +ib 
and Yc > a÷ b ,  so dp(C,M')  = ( ( x c - ( a  ÷ b))P + 
(uc  - (a + b))") l /"  < + (Uc - 2b)")' /P = 
dp(C, P). [] 

It is the L1 and L ~  Voronoi diagrams which 
are of most interest in applications. Unfortu- 
nately, tile implementation and analysis of these 
cases is complicated by the fact that  some con- 
vex hull edges may be omitted from the Delaunay 
triangulation. For these cases, the Guibas-Stolfi 
merge procedure nmst be mo(lified along the lines 
of Lee's dual algorithm to search downward tbr 
the endpoints of the lower convex huU edge then 
back upward for the endpoints of the lowest De- 
launay edge crossing the dividing line. Thus some 
sites examined in the search do not receive new 
edges during the merge, and Theorem 2.7, which 
relates the time spent on these lower-boundary- 
edge searches to the total number of edges cre- 
ated, no longer holds. The analysis of Section 4 
still bounds the expected number  of edges cre- 
ated, but  not the overall running time. 

We call the edges of the infinite face of the 
Delauanay triangulation boundary edges and their 
endpoints boundary sites. We show that  the L,~ 
boundary sites of a set of sites contained in an 
orthogonal rectangle in the unit square all proba- 
bly lie near the boundary of the rectangle. There  
are therefore so few of them in the expected case 
that  searching through them does not dominate 
the cost of the merge step. 
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Lemrna 5.4. A site P = (xp,yt,) is a boundary 
site in DT~(  $) only if at least one of the quarter- 
planes defined by the lines x = xp and y := yp is 
site-free. 
Proof. The result follows immediately from Lee's 
observation that  an edge is a l)oundary edge in 
DT'~(S)  if and only if one of the two quarter- 
planes defined by horizontal and vertical rays 
passing though the cn(lpoints is site-free. [ ]  

Theorem 5.5. Let ~_qABCD be an orthogonal 
rectangle lying inside II. Then there is a boundary 
region B C E3ABCD such that 

a) Area(/3) = O(log n log log n/n) 
b) if P C ($ N C:]ABCD -- B) then p = P r { P  

is a boundary site in DToo($)} = O(1/log n). 

Proof. For convenience, we use a coordinate sys- 
tem with origin at C, B on the positive x-axis, 
and D on the positive y-axis. We now verify that  
conditions a) and b) are satisfied by 

t3 = E ] A B C D N  { (x,y) l (xy <_ 21oglogn/n) 
V ( x ( h - y )  < 21oglogn/n) 
V((w - x)y _< 21oglogn/n) 

V ( ( / - x ) ( h - y )  < 21oglogn/n)} 
The bound on Area(B) is straightforward 

since h ,w < 1. 
Without  loss of generality sut)l)ose that P = 

(xp, y f,) lies in the lower left quarter  of K~ABCD 
I)ut outside B. Then the smallest of the four 
rectangles into which L--JABCD is part i t ioned 
by the vertical and horizontal lines through P 
has area xpyp >_ 21oglogn/n. By Lemma 4.4 
the probability of its l)eing site-free is at most 
O(1/logn). Therefore l)y Lemma 5.4 the prob- 
ability that  P is on the boundary  is at most 
O(4/log n) = O(l/ log n). [] 

We can now bound the running time of Al- 
gorithm A for the L=, metric. 

Theorem 5.6. Algorithm A constructs DT~($)  
in O(n log log n) expected time. 

Proof. The analysis of Step 1 in Theorem 4.2 re- 
mains valid, since the worse-case performance of 
the L1/Loo merge procedure is O(nlogn). Since 
the boundary region of any rectangle is smaller 
than its merge region, the calculations of The- 
orems 4.6 and 4.7 for Steps 2 and 3 apply to 
the number of sites examined in boundary-edge 
searches as well as to the nuinber of edges ere- 

ated. Therefore the overall bound of Theorem 
4.8 applies as well. E~] 

The Li case is more difficult. It follows from 
Lemma 5.4 and the well-known correspondence 
between the LI and Loo metrics that a site P 
is an Ll boundary sit(; if and only if one of the 
quarter-planes defined by the lines through P 
with slopes +1 and - 1  is site-free. The LL ana- 
h)g of Theorem 5.5 states that  all points within 
a (Euclidean) (tistancc of V/2 log log n/n  of the 
boundary 5dl within the boundary region. An- 
alyzing the number of sites examined in lowcr- 
boundary-e(lge searches in Steps 2 and 3 yiehts 
an O(nx/ lognloglo~)  bound, which is only a 
marginal improvement to the original O(n h)g n) 
expected running time. 

6. Exper imenta l  Results .  
A variation of Algorithm A for the Euclidean 

metric has been implemented for practical evalu- 
ation. In this variation, the set of n sites is di- 
vided into vfn-/log n equal subsets by lines per- 
pendicular to the y-axis. Then the Guibas-Stolfi 
algorithm, which divides with lines perpendicular 
to the x-axis, is al)plied to ea.ch sub.~et. Finally 
the re, suits are merge(1 in pairs as in Step 3 of 
Algo,'ithm A. This variation is somewhat easier 
to inq)lement I)ut Inore difficult to analyze. Intu- 
itively, we CXl)e(;t its t)ehavior to dilfer little front 
that  of Algorithm A for r(,asonal)ly large n. 
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6.1. The algorithms compared. 

This variation and the original Guibas-Stolfi 
algorithm were run on inputs generated by draw- 
ing sites from the uniform distribution in the unit 
square. Twenty inputs of size 2 k were generated 
for 4 < k < 16. The results are summarized in 
Fig. 6.1, which plots the mean number of edges 
created per site as a function of n, the number  
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of sites. The small variance (:an be safely ig- 
nore(l. Our mcasur(:rncnts fi~r the original algo- 
rithm match closely those of ()hya, Iri & Murota. 
It is (:h~ar that the modilie(l algorithm is signifi- 
cantly faster fi~r all but the smallest wdues of n. 

of l,his work; Steve Shreve, who provided help 
with Lcmma 4.1; aud Ravi l(annan, Cathy Mc- 
Geoch, and Danny Sleator, who provided encour- 
agerncnt, engaged in useful discussions, and care- 
fiflly read and comnmnted upon drafts. Naturally 
remaining errors are my own. 
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Fig. 6.2. Estimating the constant factor. 

Fig. 6.2 is useful in estimating the constant 
factor c in the upper b(mnd c n l o g l o g n  on ex- 
pected running time. If c is asymptotically less 
than 1.77 as Fig. 6.2 suggests, the number of 
edges created by tile algorithm would be less than 
6n for n < exp(exp(6.0/1.77)) ~ 7 × 1012. Since 
about 3n edges are required in the final diagram, 
we conjecture that th(; rumfing tithe is no nmre 
than twice optimal t o r n  in this range. 

7. C o n c l u s i o n s .  
We have showed how the average running 

time of the (]uibas-Stolfi algorithm for construct- 
ing the Dclaunay triarlgulation can be improved 
dramatically to O(n log log n) for a large class 
of distributions of the sites. We believe the 
improvcd algorithm is competitive with linear- 
time increinental algorithms even for relatively 
large prol)lems, but cannot state this unequiv- 
ocably without further theoretical and experi- 
mental study of the algorithm's performance on 
non-uniform distributions and (tircct experimen- 
tal comparison with the incremental algorithms. 

We have also showed that  tile improvement 
extends to the Lp version of the algorithm for 
1 < p < oc. It would naturally be desirable to 
extcnd it to the LI case. 

8. A c k n o w l e d g e m e n t s .  
Thanks to Jon Webb, whose code for the 

Guibas-Stolfi algorithm was the starting-point 
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