A Simple Divide-and-Conquer Algorithm for Constructing
Delaunay Triangulations in O(n log log n) Expected Time

Rex A. Dwyer*

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

0. Abstract.

We present a modification to the divide-and-
conquer algorithm of Guibas & Stolfi [{GS] for
computing the Dclaunay triangulation of n sites
in the plane. The change reduces its ©(nlogn)
expected running time to O(nlog log n) for a large
class of distributions which includes the uniform
distribution in the unit square. The modified al-
gorithm is significantly easier to implement than
the optimal linear-cxpected-time algorithm of
Bentley, Weide & Yao [BWY]. Unlike the incre-
mental methods of Ohya, Iri & Murota [OIM]
and Maus [M] it has optimal O(nlogn) worst-
case performance. The improvement extends to
the computaiion of the Delaunay triangulation
in the L, metric for 1 < p < oco. Experimen-
tal evidence presented demonstrates that in the
Euclidean case the modified algorithm performs
very well for n < 216 the range of the exper-
imments. We conjecture that its average running
time is no more than twice optimal for n less than
seven trillion.

1. Introduction.
The Voronoi diagram gencrated by aset § =
{Py,Pa,...,P.} of n points in the plane (called

* Supported by National Science Foundation
Grants DCR-8352081 & DCR-8416190.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and. notice is given that copying is by

permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 ACM 0-89791-194-6/86/0600/0276 $00.75

sites) partitions the plane into n convex regions
Vi={P|Vj:d(P,P) <d(P Py)}. Each region
contains the points lying nearer to the site in its
interior than to any other site.

The straight-line dual of the Voronoi dia-
gram is called the Delaunay triangulation, de-
noted DT'(S). P; and P; are adjacent in DT(S)
if and only if V; and V; share a common cdge.
(I'ig. 1.1.) If, as is assumed in the sequel, no four
sites are cocircular, the Delaunay triangulation
partitions the convex hull of § into triangles. The
Voronoi diagram can be constructed from the De-
launay triangulation in O(n) time and wvice versa.

Existing algorithms for constructing the
widely-applied Voronoi diagram and Dclaunay
triangulation fall into two categories: divide-and-
conquer algorithms and incremental algorithms.

Shamos [Sh] prescnts the first divide-and-
conquer algorithm and shows its O (n log n) worst-
case running time to be optimal under the real
RAM model of computation. Lee & Schachter
[LS] describe a dual algorithm for constructing
the Delaunay triangulation. Guibas & Stolfi {GS]
advocate the Delaunay triangulation as an inter-
mediate step in the construction of the Voronoi
diagram, and present ideal data structures for
the problem. Hwang [H], Lee & Wang [LW], and
Lee [L] present O(nlogn) divide-and-conquer al:
gorithms for the Voronoi diagram in the Ly, Ly
and L., and general L, metrics respectively. Re-
cent work of Ohya, Iri & Murota [OIM] shows the
average running time of the Euclidean-metric al-
gorithms to be (}(nlog n) when the sites are uni-
formly distributed in the unit square. Their proof
extends naturally to the L, metrics. ‘

Various incremental algorithms, which con-

Fig. 1.1. A Voronoi diagram and its dual.

struct the Voronoi diagram by adding new sites
onc by one, differ principally in the order in which
sites are added. Sibson & Green [SG] were carly
advocates of such a method, giving an algorithm
with O(n?) worst-case and O(n®/?) average run-
ning times. The algorithms of Ohya, Iri & Murota
[OIM] and Maus [M] achieve optimal linear aver-
age time but only quadratic worst-case time. For-
tunc’s new sweepline algorithm [F] uses a clever
geometric transformation to achieve O(nlogn)
worst-case time; only the trivial bounds on its
average performance are known.

Bentley, Weide & Yao [BWY] propose a com-
plicated hybrid algorithm which achicves optimal
running time in both the worst-case and expected
senses. It invokes a divide-and-conquer algorithm
on the “outer” sites lying near the boundary of
the unit square. The Voronoi polygon of each
“inner” site is constructed in counstant expected
time by a “spiral scarch” among its neighbors. In
the unlikely event that more than O(log n) time is
expended on any inner site, spiral search is aban-
doned and the divide-and-conquer algorithm is
applied to the entire set of sites.

We present an casily implemented improve-
ment to the divide-and-conquer algorithm of
Guibas & Stolfi. If the floor function can be com-
puted in constant time, the change maintains its
O(nlogn) worst-case complexity, but lowers its
average-case complexity to O(nloglogn) when
the sites are drawn independently from any of
a large class of distributions which includes the
uniform distribution on the unit square.
modification can be made to any of the divide-
and-conquer algorithms including those for the

The.

277

L, metric for 1 < p < oo. Our experimental ev-
idence demonstrates that in the Euclidean met-
ric the improved algorithin performs very well for
n < 2% the range of the experiments. We con-
jecture that its average running time is no more

than twice optimal for n less than seven trillion.

2. Preliminaries.

We now restate some uscful facts about De-
launay triangulations and Voronoi diagrams and
review the results of Guibas & Stolfi upon which
our work depends.

Lemma 2.1. Every triangulation of a set of n
sites of which k lie on the convex hull (i.e., on
the boundary of the convex hull) has 3(n—1) -k
edges and 2(n — 1) — k triangles.

Proof. Let ¢t be the number of triangles and e the
number of edges. All the edges belong to two
triangles except for the k on the convex hull, thus
2e — k = 3t. The results are obtained by solving
this equation for ¢ or ¢ and substituting into n —
e+ (t + 1) = 2 (Euler’s formula). []

Corollary 2.2. At most 3n non-intersecting edges
can be constructed on a set of n sites.

Proof. Any sct of non-intersecting edges can be
extended to form a triangulation. []

Lemma 2.3 If sites I, P; and Py are vertices
of a triangle in the Dclaunay triangulation, the
circle passing through these three sites contains
no other sites.

Proof. The center of the circle is equidistant from
the three sites and is on the boundary of the
Voronoi region of cach of them. Thus it cannot lie
nearer to a fourth site than to 1%, P; and . J

Corollary 2.4. If sites P; and P; are endpoints of
a Delaunay edge, there is some circle containing
no sites which passes through P; and P;.

Proof. Each edge is a side of some triangle. []

Corollary 2.5.
launay edge.

Every convex hull edge is a De-

Proof. Onc of the half-planes defined by the affine
extension of the edge is a degencrate site-free cir-

cle. [1

Sibson [S] has showed that, degenerate cases
with four cocircular sites excepted, the Delaunay

triangulation is the only triangulation salisfying
Lemmna 2.3.

Guibas & Stolfi’s algorithm first constructs
the Delaunay triangulation. The Voronoi dia-
gram is then found in linear time. The Delaunay
triangulation is constructed as follows:

1) The sites are sorted along the z-axis.

2) If there are three or fewer sites, the Delaunay
triangulation is constructed directly. Other-
wise, the sites are divided into two approx-
imately equal sets by a line perpendicular
to the z-axis, Step 2 is recursively applied
to construct the Delaunay triangulations of
these sets, and the results are merged.

The merge procedure forms the foundation of
our own algorithm as well as of Guibas & Stolfi’s.
Let ¢ be the dividing line of Step 2, and let £ and
R be the sets lying to the left and the right of £.
Clearly two edges of the convex hull of LU R cross
¢. Merging begins with a scarch for the endpoints
of the lower of the two. The secarch begins with
the sites of £ and R lying nearest £ and alter-
nately advances clockwise around the convex hull
of £ and counterclockwise around the convex hull
of R. Once its endpoints are found and the lower
hull edge is created, the other new edges are cre-
ated in the order in which they cross €. Old edges
arc removed as necessary. The cssential features
of the merge procedure are summarized in the
following theorem:

Theorem 2.6. Let ¢, L and R be as above.
When merging DT(L) and DT(R) to construct
DT(L U R):
a) Only edges joining two sites in £ and edges
Jjoining two sites in R are deleted.
b) Only edges crossing ¢ and joining a site in £
to onc in R are created.
¢) The worst-case running time of the merge is
bounded by a function linear in the sum of
three components:

i) the number of sites examined to find the
endpoints of the lower of the two edges
of the convex hull of L U R which cross
L.

ii) the number of edges deleted, and

iii) the number of edges created.
d) The worst-case running time of the merge is

O(|LuUR)|).
Proof. Guibas & Stolfi. (1

Our analysis requires a more refined bound
on the running time of the merge than those of
Theorem 2.6.

Theorem 2.7. The total running time of an algo-
rithm based on Guibas & Stolfi’s merge procedure
is bounded by a linear function of the number of
edges created.

Proof. By Theorem 2.6.¢, it suffices to show that
the number of edges deleted and the number of
sites examined to construct the lower convex hull
edge are bounded by the number of edges crcated
in the merge.

Clearly no edge can be deleted which has not
first been created during a previous invocation of
the merge procedure.

It is also true that each of the sites examined
in the convex-hull-edge construction of a partic-
ular invocation of the merge procedure receives a
new edge during the same invocation. Since each
one falls on the boundary of the convex hull of £
or R, it must be the vertex of some angle larger
than 180 degrees before the merge. However, it
must also lie in the interior of the convex hull of
L U R, and it therefore cannot be the vertex of
such a large angle after the merge. [

3. The Modified Algorithm and Analysis
of Its Worst-Case Running Time.

The unit square is partitioned into n/logn
square cells with sides of length \ﬂbg n/n. The
Delaunay triangulation of the sites within each
cell is constructed with the Guibas-Stolfi algo-
rithm. The triangulations within cach row of cells
arc merged in pairs until the triangulation of the
row has been completed. Then row triangulations
arc merged in pairs to complete the triangulation
of the entire set of sites. (Fig. 3.1.)

Theorem 3.1 Algorithm A uses O(nlogn) time
in the worst case.

Proof. Step 0 requires O(n) time, since the floor
function is assumed to be computable in constant
time.

Number the cells arbitrarily and let n; be
the number of sites in the i-th cell. Since Guibas
& Stolfi’s algorithm requires O(nlogn) time in
the worst case, Step 1 can be completed in time
> O(nilogn;) < 37, O(n;logn) < O(nlogn).

{ Step 0: Sort Sites into Buckets }
m := y/nflogn
for P € § do insert P into Blmap |, |mys)
{ Step 1: Triangulate Cells }
fori:=0tom—1do
for 7 :=0tom—1 do
DT,'_-,' = Guibas_Stolji_DT(Bij)
{ Step 2: Merge Cells into Rows }
for k:=0 to lgm do
for i:=0tom—1do
for j:=0 to m — 1 by 2¥t! do
DT;; := merge(DTij, DT; j 1 2x);
{ Step 3: Merge Rows }
for k:=0 to lgm do
for i:=0 to m — 1 by 2¢t! do
DT := merge(DTio, DT; 4 2% 0);
return DTgg;

Figure 3.1. Algorithm A

In Step 2, no site is involved in more than
a single merge for any fixed value of k. Since by
Corollary 2.2, the number of points involved in
the merges bounds the number of edges created,
and by Theorem 2.7 the number of edges created
bounds the running time, no more than O(n) time
is required for cach iteration of the & loop. The &k
loop is executed lg(\/'n/ 102{13.) < lgn times, thus
O(nlogn) time is required for Step 2.

Step 3 can be handled exactly like Step 2.
Summing the times for the three steps, we find
that at most O(nlogn) time is required. [

4. Analysis of Expected Time.

We will call a distribution with density func-
tion f quasi-uniform in a region if, for some
strictly positive constants ¢; and ¢z, f(z,y) =0
outside the region and ¢; < f(z,y) < ¢z in-
side the region. By modifying constants in the
proofs which follow, it is not difficult to show
that the expected running time of Algorithm A is
O(nloglogn) for any quasi-uniform distribution
in a rectangle. However, we restrict our attention
to the uniform distribution in the unit square for
the sake of expository simplicity.

During Step 1, we accept the O(n log n) worst
case performance of Guibas & Stolfi’s algorithm
to construct Delaunay triangulations within each
cell. We need only take care to show that it is

279

unlikely that very many sites [all within a single
cell, making worst-case performance for that cell
unacceptably large.

We next show that when merging two Delau-
nay triangulations most sitcs to which new edges
are constructed must lic near the boundaries of
the two triangulations. New edges to sites far
from the boundaries must necessarily be so long
that they determine Jarge circles likely to contain
other sites, in violation of Corollary 2.4. Since the
new edges arc non-intersecting, by Corollary 2.2
and Theorem 2.7 the number of sites to which
new edges are constructed bounds the running
time.

In the sequel we assume that U is the unit
square and that § = {Py, Py,...,P,} is a set of
n sites chosen independently from the uniform
distribution on Y.

Lemma 4.1. The probability that any fixed cell
contains more than elogn sites is less than 1/n,
where e is the base of the natural logarithms.

Proof. Since the cells are squares with sides of
length /log n/n, the probability that a given site
lies in the cell is equal to log n/n, the area of the
cell, Call this probability p, and let N be the
number of sites in the cell. Then N has a binomial
distribution, and

Pr{N > elogn} = Z Pr{N =k}

k>elogn

< Z e(k—-e logn) PI‘{N — k}
k>elogn

<n”° Z e*Pr{N =k}
k>0

—>

k>0

(})eo*a -

=n"%(ep+1-p)"
n” ¢ exp(nlog(l + p(e ~ 1))).

Since log(l + z) < z for z > 0, it follows that

Pr{N > elogn} < n™¢exp(np(e — 1))

=n"° cxp((log n)(e — 1)) =n"¢.n1=1/n]
In passing, we note that the same argument

can be uscd to show that the probability that a

fixed cell contains more than (e+m—1) log n sites

is at most 1/n™.

Theorem 4.2, Step I of Algorithin A requires
O(nloglogn) expected time.

Proof. Since there are n/logn cells, Lemma 4.1
implics that Pr{some cell has > elogn sites} <
(n/logn) - Pr{a fixed cell has > clogn sites} <
1/logn. Since even these inputs can be han-
dled in O(nlogn) time, their contribution to
the expected running time of Step 1 is at most
O ((nlogn) - (1/logn)) = O(n). For the other
cases, at most n/log n subproblems of size at most
elog n must be solved using the O(n log n) worst-
case algorithm of Guibas & Stolfi, making the to-
tal expected time O ((n/log n)elog nlog(elogn))
or O (nloglogn) for Step 1. [1

We now bound the expected time of the
merging steps. We first show that most new edges
lie in a region near the boundaries of the diagrams
being merged. We then bound the number of
edges which we cxpect to create in these bound-
ary regions in all the merges of Steps 2 and 3.

The following lemma will be proved in a more
gencral setting in the next section:

Lemma 4.3. Let P, Q, and P’ be three points
lying along a line in that order. Let M and N
be the other vertices of the square with diagonal
PQ). Then any circle passing through P and P’
completely encloses either APQM or APQN or
both.
Lemma 4.4. Let p = 2loglogn/n, let T be a
subset of U with arca exceeding p, and let §' be
a set of at least n — 2 sites drawn independently
from the uniform distribution on . Then Pr{§'n
T =0} = O(1/log n).
Proof.
Pr{§'nT =0} <(1-p)"2

= exp((n — 2) log(1 ~ p))

< exp(—p(n —2))

< exp((—loglogn)(4/n — 2))

= log n{*/™~2 = O(1/log n). (I
Theorem 4.5. Let [JABCD and UICDEF
lie inside U, let R = SN [JABCD and L =

"N [OCDEF, and let h = |CD|. Then there is
a merge region M C [TJABCD such that:

a) Area(M) = O(hy/log log n/n+log nloglog n/n)
b)if P€ Rbut P ¢ M then p=Pr{3IP' € L |
(P,P")e DT(LUR)} = 0(1/logn).

Proof. Tor convenience, we use a coordinate sys-
tem with origin at C, I3 on the positive z-axis,
and D on the positive y-axis. (Fig. 4.1.) We now
verify that conditions a) and b) are satisfied by

M= OABCD N {(z,y) | (z < 8v/log log n/n)
V(zy < 24loglogn/n)
V(z(h —y) < 24loglogn/n)}

x(h-y) = 24 loglogn/ n

x = 8 sqrt{loglog n / n)

Y
N xy = 24 loglogn/n

&«F C B
Fig. 4.1. The merge region M.

Since the two hyperbolas defining M arc mir-
ror images, and since |BC| < 1, we have

Arca(M) < 8h+/loglogn/n
1

n 2/ 24 loglog n
84/loglog n/; nx
= O(h+/loglog n/n + log nlog log n/n)

Now let P = (zp,yp) be a site in R but
outside M, let P’ be a site in £, and let @ be
the point of interscction of PP’ and CD. Let
COPMQN be the square with M above and N
below PQ. Further suppose that P and P’ are
joined in DT(L U R). By Corollary 2.4, there is a
circle C through P and P’ whose intersection with
CJABCD is site-free. Then according to Lemma
4.3 either (APQM N [CJABCD) or (APQN N
[JABCD) is site-frece. We will show that cach of
APQM and APQN completely contains one of
ten regions in (JABCD, each of which has area
exceeding 2 loglog n/n. The conditions of Lemma
4.4 are satisfied for each region with §' = § —
{P, P'}, so the probability that any fixed region is
site-free is O(1/logn). Therefore the probability

dz

that at least one of the ten regions is site-free is
O(10/logn) = O(1/logn).

The ten regions are scctors or parts of sec-
tors of the circle of radius %x p centered at P,
(Fig. 4.2.) The central angle of cach sector is 7/8.
Eight of the regions fall within the sector defined
by /CPD. They must completely cover this sec-
tor, but they may otherwise be fixed arbitrarily.
To these are added the sector whose upper bound-
ary is PC and the sector whose lower boundary
is PD. Since £P'PM and /P'PN mcasure /4,
and |PM/|, |PQ| and |PN| exceed jzp, each of
APQM and APQN completely contains at least
one of these sectors, no matter where P’ lies in
LCICDEF.

The area of the sectors is 2(3zp)?(n/8) =
(r/64)z% > mloglogn/n > 2loglogn/n. But
part of the sector below PC may lie outside
CJABCD. In this case let J be the point on
PC at distance 1zp from P, and let K be the
point of intersection of the z-axis and the other
side of the sector. Surely the intersection of
[CJABCD and the sector contains APJK. But
Area(APJK) = % - |PJ| - |PK| - sin(n/8) >

!

3 3%TP YP 3 > 5TpYP = £(24loglogn/n) >

&l

<
>

&F C K 3
Fig. 4.2. Bounding a truncated sector.

2loglogn/n. Thus we have showed that the in-
tersection of C1ABCD and the scctor below PC
is itself large enough. The proof is completed by a
symmetric argument applied to the sector above
Pp.O

Theorem 4.6. Step 2 of Algorithm A requires
O(nloglog n) expected time.

Proof. The merge region for each merge in Step
2 has height h = \/log n/n, thus the area of each

281

merge region is ()((\ﬂ(;;?vi'/_ﬂ- \/l;)_(:;“i(_)z,r_ﬁ‘/;i) -+
log nlog log n/n) = Olognloglogn/n). Tor a
particular valuc of k there are 27 *n/log n disjoint
merge regions with total arca O(2 % loglogn).
The expected number of siles in these regions is
O(2 *nloglogn). In addition it is expected that
at most another O(n/log n) sites from outside the
merge regions will receive new edges. Since by
Theorem 2.7 the running time is bounded by a
lincar function of the number of edges created,
and by Corollary 2.2 this is in turn lincar in the
numbecr of sites receiving new cdges, the expected
running time of Step 2 is bounded by

(/7o)
>

k=0

(0(27*nloglogn) + O(n/logn))

= O(nloglog n) + O(n) = O(nloglogn). [

Theorem 4.7. Step 3 of Algorithm A requires
O(n) expected time.

Proof. The merge region for cach merge in Step
3 has height & = 1 and area O(y/loglogn/n).
There are 2—'0\/77/'1655 merge regions for each k
value for a total arca of O (27*y/loglog n/log n) =
O(27%) containing O(2 *n) sites in the expected
case. Reasoning as for Step 2, we find the running
time in the expected case to be bounded by

lg(‘/n/log n)

> (02 *n) + O(nflogn)) = O(n). O
k=0

Adding together the expected time for each
step we have:

Theorem 4.8. Algorithm A constructs DT(S) in
O(nloglog n) expected time.

5. Extension to the L, Metrics.

In this section we show that the algorithm
of Section 3 and its analysis extend to the L,
metrics for 1 < p < co. We are able to make only
a small improvement for the L; case.

The L, metric is defined by the distance
function d,(P, Q) = ({zp — zolP + lyp — yo|P)'/?
for 1 £ p < o0 and deo(P,Q) = max(|zp —
zgl,lyp — yol|) for p = co. The L, metric is the

usual Luclidean metric. The L; metric is some-
times called the rectilinear or Manhattan metric.
Hwang (1], Lee & Wong [LW], and Lee [L] present
O(nlog n) divide-and-conquer algorithms for con-
structing the Voronoi diagrams in the Ly, I
and L, and general L, metrics respectively. In
these metrics each Voronoi polygon is star-shaped
with a nucleus at the associated site, but it is
not nccessarily convex. The straight-line dual of
the Voronoi diagram is called the Delaunay tri-
angulation and denoted DT,(S), although in fact
DT,(S) and DT (S) do not generally triangu-
late the convex hull of §.

Lee [L] shows that Lemma 2.3, Corollaries
2.4 and 2.5, and (cssentially) Theorem 2.6 hold
for 1 < p < oo when the word “circle” is taken to
mean the locus of points at a constant distance in
the L, metric from some given point. From these
Theorems 2.7 and 3.1 follow. He also proves the
following useful lemma.

Lemma 5.1. The locus of points equidistant from
two given points, called their bisector, is either
nonincreasing or nondecreasing.

We can now extend the average-case analysis
to 1l <p <oo.

Theorem 5.2. Algorithm A constructs DTp(S)
in O(nloglogn) expected time for 1 < p < oo.

Proof. The analysis of Section 4 lacks only an L,
version of Lemma 4.3, which we now provide:

Lemma 5.3. Let P, Q, and P’ be threc points
lying along a line in that order. Let M and N be
the other vertices of the square with diagonal PQ.
Then for 1 < p < oc any L,, circle passing through
P and P’ completely encloses either APQM or
APQN or both.

Proof. Let M' and N’ be the other vertices of the
square with diagonal PP’ lying on the same side
of PP’ as M and N respectively. Since APP'M’
and APP'N’ contain APQM and APQN re-
spectively, it suffices to show that the circle con-
tains either M’ or N'. (Fig. 5.1.) Without loss
of generality we consider only the case in which
a >b >0 P = (0,20), PP = (2a,0), and
M' = (a + b,a + b), and show that the center
of the circle C must lie nearer M’ than P if it lies
above the line through P and P'.

The triangle inequality implies that the bi-

282

5‘
Fig. 5.1. Bounding the arca of L, circles.

sector of P and P’ passes no nearer to P than
(a® + bP)1/? at R = (a,b). If C = R, M’ clearly
lies on the perimeter of the circle. Since both
M' and R lie on the biscctor, it is nondecreasing
rather than nonincreasing. Thus a < z¢c < a+b
and b < yo < a+bif C lies on the bisector be-
tween R and M', and d,(C, M') = (la+b—zc|P+
la +b = yolP)/? < (87 +aP)!/P = dy(R,P) <
dp(C, P). Beyond M', C must satisfy ¢ >a +b
and yc > a+b, 50 dp(C,M') = ((z¢ ~ (a+b))P+
(yc ~ (a +B)P)M/? < (2% + (yo — 20)7)/7 =
d,(C,P). 1

It is the L; and L., Voronoi diagrams which
are of most interest in applications. Unfortu-
nately, the implementation and analysis of these
cases is complicated by the fact that some con-
vex hull edges may be omitted from the Delaunay
triangulation. For these cases, the Guibas-Stolfi
merge procedure must be modified along the lines
of Lec’s dual algorithm to scarch downward for
the endpoints of the lower convex hull edge then
back upward for the endpoints of the lowest De-
launay edge crossing the dividing line. Thus some
sites examined in the search do not receive new
edges during the merge, and Theorem 2.7, which
relates the time spent on these lower-boundary-
edge searches to the total number of edges cre-
ated, no longer holds. The analysis of Section 4
still bounds the expectecd number of edges cre-
ated, but not the overall running time.

We call the edges of the infinite face of the
Delauanay triangulation boundary edges and their
endpoints boundary sites. We show that the Lo
boundary sites of a set of sites contained in an
orthogonal rectangle in the unit square all proba-
bly lie near the boundary of the rectangle. There
are therefore so few of them in the expected case
that searching through them does not dominate
the cost of the merge step.

Lemma 5.4. A site P = (xp,yp) is a boundary
site in DT, (S) only if at least once of the quarter-
planes defined by the lines £ = zp and y = yp is
site-free.

Proof. The result follows immediately from Lee’s
observation that an cdge is a boundary cdge in
DT (S) if and only if one of the two quarter-
plancs defined by horizontal and vertical rays
passing though the endpoints is site-free. [

Theorem 5.5. Let TJABCD be an orthogonal
rectangle lying inside U. Then there is a boundary
region B ¢ [JABCD such that

a) Arca(B) = O(log nloglogn/n)

b) if P € (§ n CIABCD - B) then p = Pr{P
is a boundary site in DT, (S)} = O(1/logn).

Proof. For convenience, we use a coordinate sys-
tem with origin at C, B on the positive z-axis,
and D on the positive y-axis. We now verify that
conditions a) and b) are satisfied by
B = CJABCD N {(z,y) | (zy < 2loglogn/n)
V(z(h — y) < 2loglogn/n)
V((w — z)y < 2loglogn/n)
V((w —z)(h —y) < 2loglogn/n)}

The bound on Arca(B) is straightforward
since h,w < 1.

Without loss of generality suppose that P =
(zp,yp) lies in the lower lelt quarter of [ZIABCD
but outside B. Then the smallest of the four
rectangles into which CJADBCD is partitioned
by the vertical and horizontal lines through P
has arca zpyp > 2loglogn/n. By Lemma 4.4
the probability of its being site-free is at most
O(1/logn). Therefore by Lemma 5.4 the prob-
ability that P is on the boundary is at most
O(4/logn) = O(1/logn). O

We can now bound the running time of Al-
gorithin A for the L., metric.

Theorem 5.6. Algorithm A constructs DT, (S)
in O(nloglogn) expected time.

Proof. The analysis of Step 1 in Theorem 4.2 re-
mains valid, since the worse-case performance of
the Ly /Lo merge procedure is O(nlogn). Since
the boundary region of any rectangle is smaller
than its merge region, the calculations of The-
orems 4.6 and 4.7 for Steps 2 and 3 apply to
the number of sites examined in boundary-edge
searches as well as to the number of edges cre-

283

ated. Thercfore the overall bound of Theorem
4.8 applics as well. []

The Ly case is more difficult. It follows from
Lemma 5.4 and the well-known correspondence
between the Ly and Lo, metrics that a site P
is an L; boundary site if and only if one of the
quarter-planes defined by the lines through P
with slopes 41 and —1 is site-frce. The L; ana-
log of Theorem 5.5 states that all points within
a (Euclidean) distance of \/2loglogn/n of the
boundary fall within the boundary region. An-
alyzing thc number of sites cxamined in lower-
boundary-cdge searches in Steps 2 and 3 yiclds
an O(nv/lognloglogn) bound, which is only a
marginal improvement to the original ©(nlogn)
expected running time.

6. EIExperimental Results.

A variation of Algorithm A for the Euclidean
metric has been implemented for practical evalu-
ation. In this variation, the set of n sites is di-
vided into \/n/logn equal subsets by lines per-
pendicular to the y-axis. Then the Guibas-Stolfi
algorithm, which divides with lines perpendicular
to the z-axis, is applied to cach subset. Finally
the results are merged in pairs as in Step 3 of
Algocithm A. This variation is somewhat casier
to implement but more difficult to analyze. Intu-
itively, we expect its behavior to differ little from
that of Algorithm A for rcasonably large n.

-
o

Guibas-Stolfi Algorithim

@

2]

a
1

Modified Algorithm

256 4096 65536
Number of Sites (log scale)

Fig. 6.1. The algorithms compared.

Edges Created per Site

-
]

This variation and the original Guibas-Stolfi
algorithm were run on inputs generated by draw-
ing sites from the uniform distribution in the unit
square. Twenty inputs of size 2% were generated
for 4 < k < 16. The results are summarized in
Fig. 6.1, which plots the mean number of edges
created per site as a function of n, the number

of sites. The small variance can be safely ig-
nored. Our measurements for the original algo-
rithim match closely those of Ohya, Iri & Murota.
It is clear that the modilied algorithm is signifi-
cantly faster for all but the smallest values of n.

L
Q
s}

Edges / (nlog log n)
N
Q
Q

0 40 60
Thousands of Sites

20
Iig. 6.2. Estimating the constant factor.

Fig. 6.2 is useful in cstimating the constant
factor ¢ in the upper bound cnloglogn on ex-
pected running time. If ¢ is asymptotically less
than 1.77 as Fig. 6.2 suggests, the number of
edges created by the algorithmm would be less than
6n for n < exp(exp(6.0/1.77)) ~ 7 x 10'2. Since
about 3n edges arc required in the final diagram,
we conjecture that the running time is no more
than twice optimal for n in this range.

7. Couclusions.
We have showed how the average running
time of the Guibas-Stollt algorithm for construct-
ing the Delaunay triangulation can be improved
dramatically to O(nloglogn) for a large class
of distributions of the sites. We believe the
improved algorithm is competitive with linear-
time incremental algorithins even for relatively
large problems, but cannot state this uncquiv-
ocably without further theorctical and experi-
mental study of the algorithmn’s performance on
non-uniform distributions and dircct experimen-
tal comparison with the incremental algorithms.
We have also showed that the improvement
cxtends to the L, version of the algorithm for
1 < p < oo. It would naturally be desirable to
extend it to the Ly case.

8. Acknowledgements.
Thanks to Jon Webb, whose code for the

Guibas-Stolfi algorithm was the starting-point

284

of this work; Steve Shreve, who provided help
with Lemma 4.1; and Ravi Kannan, Cathy Mc-
Geoch, and Danny Sleator, who provided encour-
agement, engaged in useful discussions, and care-
fully read and commented upon drafts. Naturally
remaining errors are my own.

9. References.
[BWY] J. L. Bentley, B. W. Weide & A. C.
Yao, “Optimal expected-time algorithms for
closest point problems,” ACM Trans. Math.
Software 6 (1980), 563-580.
[F] S. Fortune, “A sweepline algorithm for
Voronoi diagrams,” these proceedings.
[GS]L. J. Guibas & J. Stolfi, “Primitives for
the manipulation of general subdivisions and
the computation of Voronoi diagrams,” ACM
Trans. Graphics 4 (1985), 74-123.
[H] F. K. Hwang, “An O(nlogn) algorithm for
rectilinear minimal spanning trees,” J. ACM
26 (1979), 177-182.
[L] D. T. Lee, “Two-dimensional Voronoi dia-
grams in the L,-metric,” J. ACM 27 (1980),
604-618.
[LS] D. T. Lee & B. Schachter, “T'wo algorithms
for constructing Delaunay triangulations,”
Int. J. Comput. Inform. Sci. 9 (1980), 219-
242,
[LW] D. T. Lee & C. K. Wong, “Voronoi
diagrams in L; (L.) metrics with two-
dimensional storage applications,” SIAM J.
Comput. 9 (1980), 200-211.
[M] A. Maus, “Declaunay triangulation and the
convex hull of n points in expected linear
time,” BIT 24 (1984), 151-163.
[OIM] T. Ohya, M. Iri & K. Murota, “Improve--
ments of the incremental methods for the
Voronoi diagram with computational com-
parison of various algorithms,” J. Operations -
Research Soc. Japan 27 (1984), 306-336.
R. Sibson, “Locally equiangular triangula-
tions,” Comput. J. 21 (1978), 243-245. .
[SG]R. Sibson & P. J. Green, “Computing
Dirichlet tessellations in the plane,” Comput.
J. 21 (1978), 168-173. :

[Sh] M. I. Shamos, Computational Geometry,
Ph.D. Thesis (1978), Yale University.

(]

