
CSC 256/456: Operating Systems

Deadlock John Criswell!
University of Rochester

1

Outline
❖ Basics of deadlock!

❖ Three approaches for handling deadlock

2

The Deadlock Problem
❖ Definition:!

❖ A set of blocked processes each holding some resources and waiting to acquire a resource
held by another process in the set!

❖ None of the processes can proceed or back-off (release resources it owns)!

❖ Examples: !

❖ Dining philosopher problem!

❖ System has 2 memory pages (unit of memory allocation); P1 and P2 each hold one page and
each needs another one!

❖ Semaphores A and B, initialized to 1!

❖ P1! ! P2!

❖ wait (A);! ! wait(B)!

❖ wait (B);! ! wait(A)

3

Resources Can Be Anything!
❖ Devices!!

❖ Files!!

❖ Networks!!

❖ Mutexs!!

❖ Sections of Road!!

❖ Time itself!

4

Resource Allocation Graph
❖ Nodes!

❖ Processes!

❖ Resources (or resource classes)!

❖ Request Edge!

❖ P -> R: Process Wants Resource!

❖ Assignment Edge!

❖ R -> P: Resource held by process

5

P1

P2

P3

R1 R2

R3

The Four Conditions of Deadlock
❖ Mutual exclusion!

❖ Hold and wait!

❖ No preemption!

❖ Circular wait

6

Mutual Exclusion
❖ Only one process at a time can use a resource

7

Hold and Wait
❖ Process can hold one resource while waiting to acquire

additional resources held by other processes

8

No Preemption
❖ Resource can be released only voluntarily by the process

holding it, after that process has completed its task

9

Circular Wait
❖ There exists a set {P0, P1, …, Pn} of waiting processes

such that:!

❖ P0 is waiting for a resource that is held by P1, !

❖ P1 is waiting for a resource that is held by P2, !

❖ …, !

❖ Pn–1 is waiting for a resource that is held by Pn, !

❖ and Pn is waiting for a resource that is held by P0.

10

Methods for Handling Deadlocks
❖ Ignore the problem!!

❖ Ensure that the system will never enter a deadlock state!

❖ Deadlock Prevention!

❖ Deadlock Avoidance!

❖ Detect and recover from deadlock state

11

Of Ostriches and Resources

12

The “Ostrich” Algorithm
❖ Pretend there is no problem!

❖ unfortunately they can occur!

❖ Reasonable if !

❖ deadlocks occur very rarely !

❖ cost of prevention is high!

❖ Typical OS take this approach for processes and devices!

❖ Trade-off between convenience and correctness

13

Deadlock Prevention

14

Deadlock Prevention
❖ Establish conventions that prevent deadlock!

❖ Prevents one of the four conditions from happening

15

Attack the Mutual Exclusion Condition!

❖ Don’t permit mutual exclusion!

❖ Read-only files!

❖ Spooled devices (e.g., printer)!

❖ Can’t be done in most cases

16

Attack the Hold and Wait Condition!
❖ Require processes to request all resources before starting!

❖ Problems!

❖ May not know required resources at start of run!

❖ Ties up resources other processes could be using!

❖ Variation: !

❖ before a process requests a new resource, it must give
up all resources and then request all resources needed

17

Attack the No Preemption Condition!

❖ Preemption!

❖ when a process is holding some resources and
waiting for others, its resources may be preempted to
be used by others!

❖ Problem!

❖ Many resources may not allow preemption; i.e.,
preemption will cause process to fail

18

Attack the Circular Wait Condition!

❖ Impose a total order of all resource types!

❖ Processes must request resources in the same order!

❖ Often used for mutexs

19

Deadlock Avoidance

20

Prevention vs. Avoidance
❖ Prevention prevents conditions under which deadlock

can occur!

❖ Enforces conventions that break deadlock conditions!

❖ Avoidance refuses resource allocation if deadlock would
be possible in the future!

❖ Examines state of allocation to check for future
deadlock

21

Deadlock Avoidance
❖ Processes declare max amount of resources ever needed!

❖ How to determine if allocation state is deadlock free:!

❖ Line up processes in some order such that for all Pi:!

❖ Can allocate all future resources from either:!

❖ Free resources!

❖ Resources held by all Pj such that j < i!

❖ State of system is called a safe state

22

Deadlock Avoidance Example 1

23

P1
P2

P3

Holds: 5!
Needs: 1

Holds: 2!
Needs: 7

Holds: 7!
Needs: 2

Resources Unallocated: 1

? ? ?

[1] [2] [3]

Deadlock Avoidance Example 1

24

P1
P2

P3

Holds: 5!
Needs: 1

Holds: 2!
Needs: 7

Holds: 7!
Needs: 2

Resources Unallocated: 1

P1 P2 P3

[1] [2] [3]

Deadlock Avoidance Example 2

25

P1
P2

P3

Holds: 1!
Needs: 1

Holds: 1!
Needs: 7

Holds: 1!
Needs: 4

Resources Unallocated: 1

? ? ?

[1] [2] [3]

One Resource Per Resource Class

26

Safe States Unsafe States == Deadlock

Multiples Resources Per Resource Class

27

Safe
States

Unsafe
States

Deadlock

Deadlock Prevention with Resource Allocation Graphs

❖ Works with single resource per resource class!

❖ Enhance allocation graph with three edges

28

Edge Type

Request Edge

Assignment Edge

Claim Edge

P2R1

P1 R1

P1 R1

Deadlock Prevention with Resource Allocation Graphs

❖ On allocation:!

❖ Change claim to assignment
edge!

❖ Check for cycle!

❖ Cycle implies deadlock

29

P1

P2

P3

R1 R2

R3

What is the execution time for cycle
detection?

30

Banker’s Algorithm

❖ Each process must a priori claim the maximum set of resources that might be needed in
its execution !

❖ Safety check!

❖ repeat!

❖ pick any process that can finish with existing available resources; finish it and
release all its resources!

❖ until no such process exists!

❖ all finished → safe; otherwise → unsafe.!

❖ When a resource request is made, the process must wait if:!

❖ enough available resource is not available for this request!

❖ granting the request would result in an unsafe system state

31

Deadlock Detection
❖ Deadlock detection is very similar to the safety check in

the Banker’s algorithm!

❖ Replace maximum needs with current requests

32

Recovery from Deadlock
❖ Recovery through preemption!

❖ take a resource from some other process!

❖ depends on nature of the resource!

❖ Recovery through rollback!

❖ checkpoint a process state periodically!

❖ rollback a process to its checkpoint state if it is found deadlocked!

❖ Recovery through killing processes!

❖ kill one or more of the processes in the deadlock cycle!

❖ the other processes get its resources !

❖ In which order should we choose process to kill?!

❖ Will recovery lead to starvation?

33

Disclaimer
❖ Parts of the lecture slides contain original work of

Abraham Silberschatz, Peter B. Galvin, Greg Gagne,
Andrew S. Tanenbaum, and Gary Nutt. The slides are
intended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

34

