
1

Computer Networks

LECTURE 13

Switches, Transport Layer

Sandhya Dwarkadas

Department of Computer Science

University of Rochester

Link layer services

 Medium Access Control
 Error detection and correction
 Encoding

 Framing

6-2Link Layer and LANs

MAC addresses

 32-bit IP address:
• network-layer address for interface

• used for layer 3 (network layer) forwarding

 MAC (or LAN or physical or Ethernet) address:
• function: used ‘locally” to get frame from one interface to

another physically-connected interface (same network, in IP-
addressing sense)

• 48 bit MAC address (for most LANs) burned in NIC
ROM, also sometimes software settable

• e.g.: 1A-2F-BB-76-09-AD

hexadecimal (base 16) notation

(each “numeral” represents 4 bits)

6-3Link Layer and LANs

LAN addresses

each adapter on LAN has unique LAN address

adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

(wired or

wireless)

6-4Link Layer and LANs

2

LAN addresses (more)

 MAC address allocation administered by IEEE

 manufacturer buys portion of MAC address space
(to assure uniqueness)

 analogy:
• MAC address: like Social Security Number

• IP address: like postal address

 MAC flat address ➜ portability
• can move LAN card from one LAN to another

 IP hierarchical address not portable
• address depends on IP subnet to which node is

attached

6-5Link Layer and LANs

ARP: address resolution protocol

ARP table: each IP node (host,
router) on LAN has table

• IP/MAC address
mappings for some LAN
nodes:

< IP address; MAC address; TTL>

• TTL (Time To Live):
time after which address
mapping will be
forgotten (typically 20
min)

Question: how to determine

interface’s MAC address,

knowing its IP address?

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

137.196.7.23

137.196.7.78

137.196.7.14

137.196.7.88

6-6Link Layer and LANs

ARP protocol: same LAN

 A wants to send datagram
to B

• B’s MAC address not in
A’s ARP table.

 A broadcasts ARP query
packet, containing B's IP
address

• destination MAC address =
FF-FF-FF-FF-FF-FF

• all nodes on LAN receive
ARP query

 B receives ARP packet,
replies to A with its (B's)
MAC address

• frame sent to A’s MAC
address (unicast)

 A caches (saves) IP-to-
MAC address pair in its
ARP table until information
becomes old (times out)

• soft state: information that
times out (goes away)
unless refreshed

 ARP is “plug-and-play”:
• nodes create their ARP

tables without intervention
from net administrator

6-7Link Layer and LANs

walkthrough: send datagram from A to B via R

 focus on addressing – at IP (datagram) and MAC layer (frame)

 assume A knows B’s IP address

 assume A knows IP address of first hop router, R (how?)

 assume A knows R’s MAC address (how?)

Addressing: routing to another LAN

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111

74-29-9C-E8-FF-55

A

222.222.222.222

49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

6-8Link Layer and LANs

3

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111

74-29-9C-E8-FF-55

A

222.222.222.222

49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

Addressing: routing to another LAN

IP

Eth

Phy

IP src: 111.111.111.111

IP dest: 222.222.222.222

 A creates IP datagram with IP source A, destination B

 A creates link-layer frame with R's MAC address as destination address,
frame contains A-to-B IP datagram

MAC src: 74-29-9C-E8-FF-55

MAC dest: E6-E9-00-17-BB-4B

6-9Link Layer and LANs

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111

74-29-9C-E8-FF-55

A

222.222.222.222

49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

Addressing: routing to another LAN

IP

Eth

Phy

 frame sent from A to R

IP

Eth

Phy

 frame received at R, datagram removed, passed up to IP

MAC src: 74-29-9C-E8-FF-55

MAC dest: E6-E9-00-17-BB-4B

IP src: 111.111.111.111

IP dest: 222.222.222.222

IP src: 111.111.111.111

IP dest: 222.222.222.222

6-10Link Layer and LANs

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111

74-29-9C-E8-FF-55

A

222.222.222.222

49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

Addressing: routing to another LAN

IP src: 111.111.111.111

IP dest: 222.222.222.222

 R forwards datagram with IP source A, destination B

 R creates link-layer frame with B's MAC address as destination address,
frame contains A-to-B IP datagram

MAC src: 1A-23-F9-CD-06-9B

MAC dest: 49-BD-D2-C7-56-2A

IP

Eth

Phy

IP

Eth

Phy

6-11Link Layer and LANs

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111

74-29-9C-E8-FF-55

A

222.222.222.222

49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

Addressing: routing to another LAN
 R forwards datagram with IP source A, destination B

 R creates link-layer frame with B's MAC address as destination address,
frame contains A-to-B IP datagram

IP src: 111.111.111.111

IP dest: 222.222.222.222

MAC src: 1A-23-F9-CD-06-9B

MAC dest: 49-BD-D2-C7-56-2A

IP

Eth

Phy

IP

Eth

Phy

6-12Link Layer and LANs

4

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111

74-29-9C-E8-FF-55

A

222.222.222.222

49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

Addressing: routing to another LAN
 R forwards datagram with IP source A, destination B

 R creates link-layer frame with B's MAC address as dest, frame contains
A-to-B IP datagram

IP src: 111.111.111.111

IP dest: 222.222.222.222

MAC src: 1A-23-F9-CD-06-9B

MAC dest: 49-BD-D2-C7-56-2A

IP

Eth

Phy

6-13Link Layer and LANs

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Ethernet switch
 link-layer device: takes an active role

• store, forward Ethernet frames

• examine incoming frame’s MAC address,
selectively forward frame to one-or-more
outgoing links when frame is to be forwarded on
segment, uses CSMA/CD to access segment

• Extends network at link layer

 transparent

• hosts are unaware of presence of switches

 plug-and-play, self-learning

• switches do not need to be configured

6-14Link Layer and LANs

Switch: multiple simultaneous transmissions

 hosts have dedicated, direct
connection to switch

 switches buffer packets

 Ethernet protocol used on each
incoming link, but no collisions;
full duplex

• each link is its own collision
domain

 switching: A-to-A’ and B-to-B’
can transmit simultaneously,
without collisions switch with six interfaces

(1,2,3,4,5,6)

A

A’

B

B’ C

C’

1 2

345

6

6-15Link Layer and LANs

Switch forwarding table

Q: how does switch know A’
reachable via interface 4, B’
reachable via interface 5?

switch with six interfaces

(1,2,3,4,5,6)

A

A’

B

B’ C

C’

1 2

345

6 A: each switch has a switch
table, each entry:

 (MAC address of host, interface

to reach host, time stamp)

 looks like a routing table!

Q: how are entries created,
maintained in switch table?

 something like a routing
protocol?

6-16Link Layer and LANs

5

A

A’

B

B’ C

C’

1 2

345

6

Switch: self-learning

 switch learns which hosts
can be reached through
which interfaces

• when frame received,
switch “learns” location
of sender: incoming
LAN segment

• records sender/location
pair in switch table

A A’

Source: A

Dest: A’

MAC addr interface TTL

Switch table

(initially empty)
A 1 60

6-17Link Layer and LANs

Switch: frame filtering/forwarding

when frame received at switch:

1. record incoming link, MAC address of sending host

2. index switch table using MAC destination address

3. if entry found for destination
then {

if destination on segment from which frame arrived
then drop frame

else forward frame on interface indicated by entry

}

else flood /* forward on all interfaces except arriving

interface */

6-18Link Layer and LANs

A

A’

B

B’ C

C’

1 2

345

6

Self-learning, forwarding: example

A A’

Source: A

Dest: A’

MAC addr interface TTL

switch table

(initially empty)
A 1 60

A A’A A’A A’A A’A A’

 frame destination, A’,
location unknown: flood

A’ A

 destination A location

known:

A’ 4 60

selectively send

on just one link

6-19Link Layer and LANs

Interconnecting switches

self-learning switches can be connected together:

Q: sending from A to G - how does S1 know to
forward frame destined to G via S4 and S3?

 A: self learning! (works exactly the same as in
single-switch case!)

A

B

S1

C D

E

F

S2

S4

S3

H

I

G

6-20Link Layer and LANs

6

Interconnecting switches: loops

Problem: packets can circulate indefinitely

Solution: forward frames along a spanning tree

 Distributed spanning tree algorithm (developed by
Radia Perlman)

A

B

S1

C D

E

F

S2

S4 S3

H

I

G

6-21Link Layer and LANs

Distributed Spanning Tree

 Spanning tree: subgraph of a graph that covers
(spans) all vertices but contains no cycles

 Each bridge/switch has a unique identifier,
smallest id is considered root

 Each LAN has a designated bridge chosen by
minimum root path cost with ties broken by
smallest id

 Each bridge chooses a port that is on its shortest
path to the root

 Bridges forward and accept frames on ports for
which they are the “designated bridge”, and on
the port corresponding the the shortest path to
the root

Data Link Layer 5-22

Spanning Tree Algorithm

 Election process (select ports over which frames will be
forwarded)
• Initially, all bridges assume that they are the root bridge: forwards

frames over all its ports

• Each bridge send a message to all other bridges with

• The id of this bridge

• The id of the bridge that this bridge considers root

• The root path cost for this bridge (and port in this path)

• Per-port and bridge info is updated if “better” info is received

• It identifies a root with a smaller id

• It reports a shorter distance to the root

• The sending bridge has a smaller id

• In steady state, only root bridge periodically transmits info

• New election process started if info from root not received
in a while

Data Link Layer 5-23

Self-learning multi-switch example

Suppose C sends frame to I, I responds to C

 Q: show switch tables and packet forwarding in S1, S2, S3, S4

A

B

S1

C D

E

F

S2

S4

S3

H

I

G

6-24Link Layer and LANs

7

Example Institutional network

to external

network

router

IP subnet

mail server

web server

6-25Link Layer and LANs

Switches vs. routers

both are store-and-forward:

 routers: network-layer
devices (examine network-
layer headers)

 switches: link-layer devices
(examine link-layer headers)

both have forwarding tables:

 routers: compute tables using
routing algorithms, IP
addresses

 switches: learn forwarding
table using flooding, learning,
MAC addresses

application

transport

network

link

physical

network

link

physical

link

physical

switch

datagram

application

transport

network

link

physical

frame

frame

frame

datagram

6-26Link Layer and LANs

Synthesis: a day in the life of a web request

 journey down protocol stack complete!
• application, transport, network, link

 putting-it-all-together: synthesis!
• goal: identify, review, understand protocols (at all

layers) involved in seemingly simple scenario:
requesting www page

• scenario: student attaches laptop to campus network,
requests/receives www.google.com

6-27Link Layer and LANs

A day in the life: scenario

Comcast network

68.80.0.0/13

Google’s network

64.233.160.0/19 64.233.169.105

web server

DNS server

school network

68.80.2.0/24

web page

browser

6-28Link Layer and LANs

8

router

(runs DHCP)

A day in the life… connecting to the Internet

 connecting laptop needs to
get its own IP address, addr
of first-hop router, addr of
DNS server: use DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCP

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCPDHCP

 DHCP request encapsulated
in UDP, encapsulated in IP,
encapsulated in 802.3
Ethernet

 Ethernet frame broadcast
(dest: FFFFFFFFFFFF) on LAN,
received at router running
DHCP server

 Ethernet demuxed to IP
demuxed, UDP demuxed to
DHCP

6-29Link Layer and LANs

router

(runs DHCP)

 DHCP server formulates
DHCP ACK containing
client’s IP address, IP
address of first-hop router
for client, name & IP address
of DNS server

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCP

DHCP

 encapsulation at DHCP
server, frame forwarded
(switch learning) through
LAN, demultiplexing at client

Client now has IP address, knows name & addr of DNS

server, IP address of its first-hop router

 DHCP client receives DHCP
ACK reply

A day in the life… connecting to the Internet

6-30Link Layer and LANs

router

(runs DHCP)

A day in the life… ARP (before DNS, before HTTP)

 before sending HTTP request, need
IP address of www.google.com:
DNS

DNS

UDP

IP

Eth

Phy

DNS

DNS

DNS

 DNS query created, encapsulated in
UDP, encapsulated in IP,
encapsulated in Eth. To send frame
to router, need MAC address of
router interface: ARP

 ARP query broadcast, received by
router, which replies with ARP
reply giving MAC address of
router interface

 client now knows MAC address
of first hop router, so can now
send frame containing DNS
query

ARP query

Eth

Phy

ARP

ARP

ARP reply

6-31Link Layer and LANs

router

(runs DHCP)

DNS

UDP

IP

Eth

Phy

DNS

DNS

DNS

DNS

DNS

 IP datagram containing DNS
query forwarded via LAN
switch from client to 1st hop
router

 IP datagram forwarded from
campus network into Comcast
network, routed (tables created
by RIP, OSPF, IS-IS and/or BGP
routing protocols) to DNS server

 demuxed to DNS server

 DNS server replies to client
with IP address of
www.google.com

Comcast network

68.80.0.0/13

DNS server

DNS

UDP

IP

Eth

Phy

DNS

DNS

DNS

DNS

A day in the life… using DNS

6-32Link Layer and LANs

9

router

(runs DHCP)

A day in the life…TCP connection carrying HTTP

HTTP

TCP

IP

Eth

Phy

HTTP

 to send HTTP request,
client first opens TCP
socket to web server

 TCP SYN segment (step 1 in 3-
way handshake) inter-domain
routed to web server

 TCP connection established!64.233.169.105

web server

SYN

SYN

SYN

SYN

TCP

IP

Eth

Phy

SYN

SYN

SYN

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK

 web server responds with TCP
SYNACK (step 2 in 3-way
handshake)

6-33Link Layer and LANs

router

(runs DHCP)

A day in the life… HTTP request/reply

HTTP

TCP

IP

Eth

Phy

HTTP

 HTTP request sent into
TCP socket

 IP datagram containing HTTP
request routed to
www.google.com

 IP datagram containing HTTP
reply routed back to client

64.233.169.105

web server

HTTP

TCP

IP

Eth

Phy
 web server responds with

HTTP reply (containing web
page)

HTTP

HTTP

HTTPHTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

 web page finally (!!!) displayed

6-34Link Layer and LANs

Chapter 6: Summary

 principles behind data link layer services:
• error detection, correction

• sharing a broadcast channel: multiple access

• link layer addressing

 instantiation and implementation of various link
layer technologies
• Ethernet

• Bridging and switching

6-35Link Layer and LANs

TAMAL BISWAS

RELIABLE DATA TRANSFER
(RDT)

Transport Layer 3-36

10

Transport Layer 3-37

Lecture outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-38

Transport Layer

our goals for today:
 understand principles

behind transport
layer services:

• multiplexing,
demultiplexing

• reliable data transfer

• flow control

• congestion control

Transport Layer 3-39

Transport services and protocols

 provide logical communication
between app processes
running on different hosts

 transport protocols run in
end systems

• send side: breaks app
messages into segments,
passes to network layer

• rcv side: reassembles
segments into messages,
passes to app layer

 more than one transport
protocol available to apps

• Internet: TCP and UDP

application

transport

network

data link

physical

application

transport

network

data link

physical

Transport Layer 3-40

Transport vs. network layer

 network layer: logical
communication
between hosts

 transport layer:
logical
communication
between processes
• relies on, enhances,

network layer
services

11

Transport Layer 3-41

Internet transport-layer protocols

 reliable, in-order
delivery (TCP)

• congestion control

• flow control

• connection setup

 unreliable, unordered
delivery: UDP

• no-frills extension of
“best-effort” IP

 services not available:
• delay guarantees

• bandwidth guarantees

application

transport

network

data link

physical

application

transport

network

data link

physical

network

data link

physical
network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical
network

data link

physical
network

data link

physical

Transport Layer 3-42

Principles of reliable data transfer
 important in application, transport, link layers

• top-10 list of important networking topics!

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-43

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Principles of reliable data transfer
 important in application, transport, link layers

• top-10 list of important networking topics!

Transport Layer 3-44

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

 important in application, transport, link layers
• top-10 list of important networking topics!

Principles of reliable data transfer

12

Transport Layer 3-45

Reliable data transfer: getting started

send

side
receive

side

rdt_send(): called from above,

(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,

to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet

arrives on rcv-side of channel

deliver_data(): called by

rdt to deliver data to upper

Transport Layer 3-46

we’ll:

 incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

 consider only unidirectional data transfer
• but control info will flow on both directions!

 use finite state machines (FSM) to specify sender,
receiver

state
1

state
2

event causing state transition

actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event

actions

Reliable data transfer: getting started

Transport Layer 3-47

rdt1.0: reliable transfer over a reliable channel

 underlying channel perfectly reliable
• no bit errors

• no loss of packets

 separate FSMs for sender, receiver:
• sender sends data into underlying channel

• receiver reads data from underlying channel

Wait for

call from

above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for

call from

below

rdt_rcv(packet)

sender receiver

Transport Layer 3-48

 underlying channel may flip bits in packet
• checksum to detect bit errors

 the question: how to recover from errors:
• acknowledgements (ACKs): receiver explicitly tells sender

that pkt received OK
• negative acknowledgements (NAKs): receiver explicitly tells

sender that pkt had errors
• sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
• error detection
• receiver feedback: control msgs (ACK,NAK) rcvr-

>sender

rdt2.0: channel with bit errors

How do humans recover from “errors”
during conversation?

13

Transport Layer 3-49

Recall: Internet checksum

example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

* Check out the online interactive exercises for more

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-50

 underlying channel may flip bits in packet
• checksum to detect bit errors

 the question: how to recover from errors:

• acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

• negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

• sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
• error detection
• feedback: control msgs (ACK,NAK) from receiver to

sender

rdt2.0: channel with bit errors

Transport Layer 3-51

rdt2.0: FSM specification

Wait for

call from

above

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

belowsender

receiver
rdt_send(data)

L

Transport Layer 3-52

rdt2.0: operation with no errors

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

L

14

Transport Layer 3-53

rdt2.0: error scenario

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

L

Transport Layer 3-54

rdt2.0 has a fatal flaw!

what happens if
ACK/NAK corrupted?

 sender doesn’t know
what happened at
receiver!

 can’t just retransmit:
possible duplicate

handling duplicates:
 sender retransmits

current pkt if ACK/NAK
corrupted

 sender adds sequence
number to each pkt

 receiver discards (doesn’t
deliver up) duplicate pkt

stop and wait
sender sends one packet,
then waits for receiver
response

Transport Layer 3-55

rdt2.1: sender, handles garbled ACK/NAKs

Wait for

call 0 from

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

Wait for

ACK or

NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isNAK(rcvpkt))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)

Wait for

call 1 from

above

Wait for

ACK or

NAK 1

L
L

Transport Layer 3-56

Wait for

0 from

below

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

not corrupt(rcvpkt) &&

has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

Wait for

1 from

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq0(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

not corrupt(rcvpkt) &&

has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt2.1: receiver, handles garbled ACK/NAKs

15

Transport Layer 3-57

rdt2.1: discussion

sender:

 seq # added to pkt

 two seq. #’s (0,1) will
suffice. Why?

 must check if received
ACK/NAK corrupted

 twice as many states
• state must
“remember” whether
“expected” pkt should
have seq # of 0 or 1

receiver:

 must check if received
packet is duplicate

• state indicates whether
0 or 1 is expected pkt
seq #

 note: receiver can not
know if its last
ACK/NAK received
OK at sender

Transport Layer 3-58

rdt2.2: a NAK-free protocol

 same functionality as rdt2.1, using ACKs only

 instead of NAK, receiver sends ACK for last pkt
received OK

• receiver must explicitly include seq # of pkt being ACKed

 duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-59

rdt2.2: sender, receiver fragments

Wait for

call 0 from

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

Wait for

ACK

0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

Wait for

0 from

below

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

L

Transport Layer 3-60

rdt3.0: channels with errors and loss

new assumption:
underlying channel can
also lose packets (data,
ACKs)

• checksum, seq. #,
ACKs, retransmissions
will be of help … but
not enough

approach: sender waits
“reasonable” amount of
time for ACK

 retransmits if no ACK
received in this time

 if pkt (or ACK) just delayed
(not lost):

• retransmission will be
duplicate, but seq. #’s
already handles this

• receiver must specify seq
of pkt being ACKed

 requires countdown timer

16

Transport Layer 3-61

rdt3.0 sender

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait

for

ACK0

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

Wait for

call 1 from

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,0))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

stop_timer

stop_timer

udt_send(sndpkt)

start_timer

timeout

udt_send(sndpkt)

start_timer

timeout

rdt_rcv(rcvpkt)

Wait for

call 0from

above

Wait

for

ACK1

L

rdt_rcv(rcvpkt)

L

L

L

Transport Layer 3-62

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

rdt3.0 in action

Transport Layer 3-63

rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0

rcv pkt0
pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1

send pkt0
rcv ack1

pkt0

ack1

ack0

send pkt0
rcv ack1 pkt0

rcv pkt0
send ack0ack0

rcv pkt0

send ack0
(detect duplicate)

Transport Layer 3-64

Performance of rdt3.0

 rdt3.0 is correct, but performance stinks

 e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

 U sender: utilization – fraction of time sender busy sending

U
sender =

.008

30.008
= 0.00027

L / R

RTT + L / R
=

 if RTT=30 msec, 1KB pkt every 30 msec: 33kB/sec thruput
over 1 Gbps link

 network protocol limits use of physical resources!

Dtrans =
L
R

8000 bits

109 bits/sec
= = 8 microsecs

17

Transport Layer 3-65

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

U
sender =

.008

30.008
= 0.00027

L / R

RTT + L / R
=

Transport Layer 3-66

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts

• range of sequence numbers must be increased

• buffering at sender and/or receiver

 two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-67

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases

utilization by a factor of 3!

U
sender =

.0024

30.008
= 0.00081

3L / R

RTT + L / R
=

Transport Layer 3-68

Pipelined protocols: overview

Go-back-N:
 sender can have up to

N unacked packets in
pipeline

 receiver only sends
cumulative ack

• doesn’t ack packet if
there’s a gap

 sender has timer for
oldest unacked packet

• when timer expires,
retransmit all unacked
packets

Selective Repeat:
 sender can have up to N

unack’ed packets in
pipeline

 rcvr sends individual ack
for each packet

 sender maintains timer
for each unacked packet

• when timer expires,
retransmit only that
unacked packet

18

Transport Layer 3-69

Go-Back-N: sender

 k-bit seq # in pkt header

 “window” of up to N, consecutive unack’ed pkts allowed

 ACK(n): ACKs all pkts up to, including seq # n - “cumulative
ACK”
• may receive duplicate ACKs (see receiver)

 timer for oldest in-flight pkt

 timeout(n): retransmit packet n and all higher seq # pkts in
window

Transport Layer 3-70

GBN: sender extended FSM

Wait
start_timer

udt_send(sndpkt[base])

udt_send(sndpkt[base+1])

…

udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {

sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)

udt_send(sndpkt[nextseqnum])

if (base == nextseqnum)

start_timer

nextseqnum++

}

else

refuse_data(data)

base = getacknum(rcvpkt)+1

If (base == nextseqnum)

stop_timer

else

start_timer

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

base=1

nextseqnum=1

rdt_rcv(rcvpkt)

&& corrupt(rcvpkt)

L

Transport Layer 3-71

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

• may generate duplicate ACKs

• need only remember expectedseqnum

 out-of-order pkt:
• discard (don’t buffer): no receiver buffering!

• re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)

&& notcurrupt(rcvpkt)

&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(expectedseqnum,ACK,chksum)

udt_send(sndpkt)

expectedseqnum++

expectedseqnum=1

sndpkt =

make_pkt(expectedseqnum,ACK,chksum)

L

GBN: receiver extended FSM

Transport Layer 3-72

GBN in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
(re)send ack1rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

Xloss

receive pkt4, discard,
(re)send ack1

receive pkt5, discard,
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

19

Transport Layer 3-73

Selective repeat

 receiver individually acknowledges all correctly
received pkts

• buffers pkts, as needed, for eventual in-order delivery
to upper layer

 sender only resends pkts for which ACK not
received

• sender timer for each unACKed pkt

 sender window
• N consecutive seq #’s
• limits seq #s of sent, unACKed pkts

Transport Layer 3-74

Selective repeat: sender, receiver windows

Transport Layer 3-75

Selective repeat

data from above:
 if next available seq # in

window, send pkt

timeout(n):
 resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

 mark pkt n as received

 if n smallest unACKed pkt,
advance window base to
next unACKed seq #

sender
pkt n in [rcvbase, rcvbase+N-1]

 send ACK(n)

 out-of-order: buffer

 in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

 ACK(n)

otherwise:
 ignore

receiver

Transport Layer 3-76

Selective repeat in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

Xloss

receive pkt4, buffer,
send ack4

receive pkt5, buffer,
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

record ack4 arrived

record ack5 arrived

Q: what happens when ack2 arrives?

20

Transport Layer 3-77

Selective repeat:
dilemma

example:
 seq #’s: 0, 1, 2, 3

 window size=3

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2X

X

X

will accept packet
with seq number 0

(b) oops!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

receiver can’t see sender side.
receiver behavior identical in both cases!

something’s (very) wrong!

 receiver sees no
difference in two
scenarios!

 duplicate data
accepted as new in (b)

Q: what relationship
between seq # size
and window size to
avoid problem in (b)?

Disclaimer

• Parts of the lecture slides are adapted from

and copyrighted by James Kurose and Keith

Ross and from those by Prof. Kai Shen. The

slides are intended for the sole purpose of

instruction of computer networks at the

University of Rochester. All copyrighted

materials belong to their original owner(s).

