
1

Computer Networks

LECTURE 3

Socket Programming and

Application Layer Protocols

Sandhya Dwarkadas

Department of Computer Science

University of Rochester

Assignments

• Lab 2 – socket programming

– DUE: Wednesday September 14th

Computer Networks: Principles

and Architecture

• Network Architecture:

– Design and Implementation Guide

Principle of Abstraction – layering of protocols

A protocol provides a communication service to

the next higher-level layer

• Service interface – e.g., send and receive

• Peer interface – form and meaning of messages

exchanged between peers
Introduction

Why layering?

dealing with complex systems:

• explicit structure allows identification, relationship of

complex system’s pieces

– layered reference model for discussion

• modularization eases maintenance, updating of system

– change of implementation of layer’s service transparent to rest of

system

– e.g., change in gate procedure doesn’t affect rest of system

• layering considered harmful?

1-4

2

Introduction

Internet protocol stack

• application: supporting network
applications

– FTP, SMTP, HTTP

• transport: process-process data
transfer

– TCP, UDP

• network: routing of datagrams
from source to destination

– IP, routing protocols

• link: data transfer between
neighboring network elements

– Ethernet, 802.111 (WiFi), PPP

• physical: bits “on the wire”

application

transport

network

link

physical

1-5

Socket programming

goal: learn how to build client/server

applications that communicate using sockets

socket: door between application process and

end-end-transport protocol

Application Layer 2-6

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Operating Systems Support:

Sockets

• A socket is an operating system abstraction

in which a port is embedded

• A port is a communication endpoint

Host, port Host, port

socketsocket
Process Process

Socket Addresses

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

struct sockaddr{

u_short sa_family; /*address family: AF_xxx value*/

char sa_data[14];/* up to 14 bytes of addr */

}; /* (protocol-specific) */

struct sockaddr_in {

short sin_family; /* AF_INET */

u_short sin_port; /* 16-bit port number */

struct in_addr sin_addr; /* 32-bit netid/hostid */

char sin_zero[8];/* unused */

}; /*sin_port and sin_addr are network byte ordered*/

3

Network Byte Order

• Two ways to map byte addresses onto words:

– Little Endian byte ordering: Intel 80x86, DEC VAX

– Big Endian byte ordering: IBM 360/370, Motorola

68K, MIPS, SPARC, HPPA

• Network byte order (TCP/IP, XNS, SNA

protocols): big-endian in protocol headers

• Byte ordering/alignment routines: htonl, htons,

ntohl, ntohs

Socket System Call

• Creates an endpoint for communication

int socket(int family, int type, int protocol);

– Family (or domain): AF_UNIX, AF_INET, AF_NS, AF_IMPLINK

– type: SOCK_STREAM, SOCK_DGRAM, SOCK_RAW, ...

– protocol: typically 0

– Returns a socket descriptor, or sockfd

• Methods by which socket options may be

changed

– setsockopt

– fcntl

– ioctl

Services Provided by the

Transport Layer

• Connection-oriented (virtual circuit) versus

connection-less (datagram) protocols

• Sequencing

• Error control

• Flow control

• Byte stream vs. messages

• Full duplex vs. half duplex

4

• Connection-oriented (virtual circuit)

– Establish a connection

– Transfer data

– Terminate connection

• Connection-less (datagram)

– Each message or datagram transmitted

independently – must contain all information

for delivery

Socket programming

Two socket types for two transport services:

– UDP: unreliable datagram

– TCP: reliable, byte stream-oriented

Application Layer 2-15

Application Example:
1. client reads a line of characters (data) from its

keyboard and sends data to server
2. server receives the data and converts characters

to uppercase
3. server sends modified data to client
4. client receives modified data and displays line on

its screen

• Operations:

– fd = socket(): creates the socket (think OS

metadata to manage communication endpoint)

– bind(fd, port): binds socket to local port

(address)

– sendto(), recvfrom(), write(), read(): operations

for sending and receiving data

– close(fd): close the connection

5

Socket programming with UDP

UDP: no “connection” between client & server

• no handshaking before sending data

• sender explicitly attaches IP destination address and

port # to each packet

• receiver extracts sender IP address and port# from

received packet

UDP: transmitted data may be lost or received

out-of-order

Application viewpoint:
• UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server
Application Layer 2-17

Datagram Protocol: UDP

Client/server socket interaction: UDP

close

clientSocket

read datagram from

clientSocket

create socket:

clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and

port=x; send datagram via

clientSocket

create socket, port= x:

serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from

serverSocket

write reply to

serverSocket

specifying

client address,

port number

Application 2-19

server (running on serverIP) client

Application Layer 2-20

Example app: UDP client

from socket import *

serverName = ‘hostname’

serverPort = 12000

clientSocket = socket(AF_INET,

SOCK_DGRAM)

message = raw_input(’Input lowercase sentence:’)

clientSocket.sendto(message.encode(),

(serverName, serverPort))

modifiedMessage, serverAddress =

clientSocket.recvfrom(2048)

print modifiedMessage.decode()

clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for

server

get user keyboard
input

Attach server name, port to

message; send into socket

print out received string

and close socket

read reply characters from

socket into string

6

Application Layer 2-21

Example app: UDP server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind(('', serverPort))

print (“The server is ready to receive”)

while True:

message, clientAddress = serverSocket.recvfrom(2048)

modifiedMessage = message.decode().upper()

serverSocket.sendto(modifiedMessage.encode(),

clientAddress)

Python UDPServer

create UDP socket

bind socket to local port

number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string

back to this client

Socket programming with TCP

client must contact server

• server process must first be

running

• server must have created

socket (door) that welcomes

client’s contact

client contacts server by:

• Creating TCP socket,

specifying IP address, port

number of server process

• when client creates socket:

client TCP establishes

connection to server TCP

• when contacted by client,

server TCP creates new

socket for server process to

communicate with that

particular client

– allows server to talk with

multiple clients

– source port numbers used

to distinguish clients

(more in Chap 3)

Application Layer 2-22

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Connection-Oriented System

Calls

• Connect: Establishes a connection with a server

– includes bind - assigns 4 elements of the 5-tuple

• Listen: Indicates that server is willing to accept

connections (allows queueing)

• Accept: Waits for actual connection from client

process – creates a new socket descriptor

– assumes a concurrent server

Socket System Calls for

Connection-Oriented Protocol: TCP

7

Client/server socket interaction: TCP

Application Layer 2-25

wait for incoming

connection request
connectionSocket =

serverSocket.accept()

create socket,
port=x, for incoming

request:
serverSocket = socket()

create socket,
connect to hostid, port=x

clientSocket = socket()

server (running on hostid) client

send request using

clientSocketread request from

connectionSocket

write reply to

connectionSocket

TCP
connection setup

close

connectionSocket

read reply from

clientSocket

close

clientSocket

Application Layer 2-26

Example app: TCP client

from socket import *

serverName = ’servername’

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘Input lowercase sentence:’)

clientSocket.send(sentence.encode())

modifiedSentence = clientSocket.recv(1024)

print (‘From Server:’, modifiedSentence.decode())

clientSocket.close()

Python TCPClient

create TCP socket for

server, remote port 12000

No need to attach server

name, port

Application Layer 2-27

Example app: TCP server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

print ‘The server is ready to receive’

while True:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024).decode()

capitalizedSentence = sentence.upper()

connectionSocket.send(capitalizedSentence.

encode())

connectionSocket.close()

Python TCPServer

create TCP welcoming

socket

server begins listening for

incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but

not address as in UDP)

close connection to this

client (but not welcoming

socket)

Client-Server Model

• Iterative versus concurrent servers

• Role of client and server asymmetric

8

I/O Multiplexing

• Methods by which I/O may be multiplexed

– Set socket to non-blocking and poll

• fcntl(fd, F_SETFL, FNDELAY), where FNDELAY

implies non-blocking I/O) non-blocking I/O

– Fork a process/thread per socket

– SIGIO - asynchronous I/O with interrupts

– Select - wait or poll for multiple events

Select System Call

• Waits on several socket descriptors

• int select(int nfds, fd_set *readfds, fd_set

*writefds, fd_set *exceptfds, struct timeval

*timeout)

• FD_SET(fd, &fdset)

• FD_CLR(fd, &fdset)

• FD_ISSET(fd, &fdset)

• FD_ZERO(&fdset)

select() Example

9

Signals
• A signal is a small message that notifies a process that an event of some

type has occurred in the system.

– Kernel abstraction for exceptions and interrupts.

– Sent from the kernel (sometimes at the request of another process) to a
process.

– Different signals are identified by small integer ID’s

– The only information in a signal is its ID and the fact that it arrived.

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt from keyboard (ctl-c)

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

Signal Concepts (cont)

• Receiving a signal

– A destination process receives a signal when it is forced

by the kernel to react in some way to the delivery of the

signal.

– Three possible ways to react:

• Ignore the signal (do nothing)

• Terminate the process.

• Catch the signal by executing a user-level function called a

signal handler.

– Akin to a hardware exception handler being called in response to

an asynchronous interrupt.

Signal Concepts (cont)
• A signal is pending if it has been sent but not yet received.

– There can be at most one pending signal of any particular

type.

– Important: Signals are not queued

• If a process has a pending signal of type k, then subsequent signals of

type k that are sent to that process are discarded.

• A process can block the receipt of certain signals.

– Blocked signals can be delivered, but will not be received

until the signal is unblocked.

• A pending signal is received at most once.

Signal Concepts

• Kernel maintains pending and blocked bit vectors in

the context of each process.

– pending – represents the set of pending signals

• Kernel sets bit k in pending whenever a signal of type k is

delivered.

• Kernel clears bit k in pending whenever a signal of type k is

received

– blocked – represents the set of blocked signals

• Can be set and cleared by the application using the
sigprocmask function.

10

Default Actions

• Each signal type has a predefined default

action, which is one of:

– The process terminates

– The process terminates and dumps core.

– The process stops until restarted by a

SIGCONT signal.

– The process ignores the signal.

Receiving Signals

• Suppose kernel is returning from exception handler and is ready to

pass control to process p.

• Kernel computes pnb = pending & ~blocked

– The set of pending nonblocked signals for process p

• If (pnb == 0)

– Pass control to next instruction in the logical flow for p.

• Else

– Choose least nonzero bit k in pnb and force process p to receive

signal k.

– The receipt of the signal triggers some action by p

– Repeat for all nonzero k in pnb.

– Pass control to next instruction in logical flow for p.

Installing Signal Handlers
• The signal function modifies the default action associated with the receipt of

signal signum:

– handler_t *signal(int signum, handler_t *handler)

• Different values for handler:

– SIG_IGN: ignore signals of type signum

– SIG_DFL: revert to the default action on receipt of signals of type signum.

– Otherwise, handler is the address of a signal handler

• Called when process receives signal of type signum

• Referred to as “installing” the handler.

• Executing the handler is called “catching” or “handling” the signal.

• When the handler executes its return statement, control passes back to

instruction in the control flow of the process that was interrupted by receipt of

the signal.

11

12

HTTP Overview

• Hypertext Transfer Protocol (HTTP).

– Deliver resources on the World Wide Web

– HTML files, image files, query results etc

– HTTP request format: scheme://host:port/path

– Client/Server architecture

• client: browser, server: web server

– usually implemented over TCP/IP

– stateless protocol

– default port 80

WWW Architecture

Web Browser Web Server
request

response

request

fwd resp

fwd req

response

Web Browser

S C

Web Proxy Web Server

HTTP Message Format

• Requests and responses are

– similar

– English-oriented readable text

<initial line, different for request vs. response>

Header1: value1

Header2: value2

Header3: value3

// blank line (CRLF by itself)

<optional message body>

13

Initial Request Line

• Format: method path protocol

• Methods: GET POST HEAD

• Protocol HTTP/1.0 or HTTP/1.1

• Example
GET /path/to/file/index.html HTTP/1.0

Initial Response Line (Status line)

• Format: protocol status_code message

• Protocol HTTP/1.0 or HTTP/1.1

• status code and message
– 200 OK

– 201 Created

– 301 Moved Permanently

– 302 Moved Temporarily

– 400 Bad Request

– 404 Not Found

– 501 Not Implemented

– 503 Service Unavailable

Header

• Provide information about the request or

response

• Format:

Header-Name: value

• Header name is not case-sensitive

• Any number of spaces or tabs may be between “:”

and the value

Important Headers

• Content-Type: the MIME-type of the data

in the body, e.g. text/html or image/gif.

• Content-Length: the number of bytes in the

body.

• Others

• Client to server
•From

•User-Agent

•Server to client
•Server

•Last-Modified

14

Request and Response Example

GET /path/file.html HTTP/1.0

From: someuser@jmarshall.com

User-Agent: Netscape/4.7

[blank line here]

HTTP/1.0 200 OK

Date: Fri, 31 Dec 1999 23:59:59 GMT

Content-Type: text/html

Content-Length: 1354

<html>

<body>

<h1>Happy New Millennium!</h1>

(more file contents)

...

</body>

</html>

Steps to access
http://www.somehost.com/path/file.htm

•The client opens a TCP connection to

www.somehost.com:80

•The client sends request

•The server sends response

•The browser display file.htm

Live example

POST Method

• Submit data to servers

• Content-Type:

application/x-www-

form-urlencoded

• Content is URL-

encoded

POST /path/script.cgi HTTP/1.0

From: frog@jmarshall.com

User-Agent: HTTPTool/1.0

Content-Type: application/x-www-

form-urlencoded

Content-Length: 32

home=Cosby&favorite+flavor=flies

Proxy Specialty

• Requests sent to proxies usually use

complete URL, instead of just path

• Example

GET http://host/path/file.html HTTP/1.0

• Well-behaved proxy should strip

“http://host” before forwarding.

Socket Programming Steps

socket

server

bind

select

accept

socket

connect

client

gethostbyname

Example: http://www.ecst.csuchico.edu/~beej/guide/net/html/clientserver.html

15

Server handle multiple requests

• Multi-process

– fork, wait, wait_pid

• select---Synchronous I/O Multiplexing (example)

• Multi-thread:
pthread_attr_init(&attr);

pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

pthread_create(&id, &attr, svc_routine, param);

• Asynchronous I/O

– sigaction and SIGIO

Disclaimer

• Parts of the lecture slides are adapted from

and copyrighted by James Kurose and Keith

Ross. The slides are intended for the sole

purpose of instruction of computer networks

at the University of Rochester. All

copyrighted materials belong to their

original owner(s).

