CSC 261/461 — Database Systems
Lecture 11

Fall 2017

Announcement

Read the textbook!

— Chapter 8:

* Will cover later; But self-study the chapter
* Everything except Section 8.4

— Chapter 14:

* Section 14.1 — 14.5
— Chapter 15:

* Section 1D.1 — 13.4

CSC 261, Fall 2017, UR

Superkeys and Keys

CSC 261, Fall 2017, UR

Keys and Superkeys

A superkey is a set of attributes A, ..., A, S.t. | all attributes are

for any other attribute B in R, functionally

we have {A,, .., A }>B determined by a
superkey

Meaning that no subset
of a key is also a
superkey

A key is a minimal superkey

Finding Keys and Superkeys

 For each set of attributes X
1. Compute X'
2. If X" = set of all attributes then X is a superkey

3. If X 1s miimal, then it 1s a key
Do we need to check all

sets of attributes? Which
sets?

CSC 261, Fall 2017, UR

Example of Finding Keys

Product(name, price, category,
color)

{name, category} = price
{category} = color

What is a key?

CSC 261, Fall 2017, UR

Example of Keys

Product(name, price, category,
color)

{name, category} = price
{category} = color

{name, category}* = {name, price, category, color}
= the set of all attributes
= this is a superkey
= this is a key, since neither name nor
category alone is a superkey

CSC 261, Fall 2017, UR

Today’s Lecture

1. 2NF, 3NF and Boyce-Codd Normal Form

2. Decompositions

CSC 261, Fall 2017, UR

Functional Dependencies (Graphical Representation)

(a)

EMP_DEPT

Ename Ssn | Bdate | Address | Dnumber | Dname | Dmgr_ssn
(b)

S
EMP_PRO)J

Ssn Pnumber | Hours | Ename | Pname | Plocation
FD1 A
FD2

FD3

CSC 261, Fall 2017, UR

Prime and Non-prime attributes

* A Prime attribute must be a member of some candidate key
* A Nonprime attribute is not a prime attribute —that is, it is
not a member of any candidate key.

(a)

EMP_DEPT
Ename Ssn | Bdate | Address | Dnumber | Dname | Dmgr_ssn
(b)

—1 t |
EMP_PRO)J

| Ssn | Pnumber | Hours I Ename | Pname | Plocation |
o |

FD2| T

FD3 ‘

CSC 261, Fall 2017, UR

Back to Conceptual Design

Now that we know how to find FDs, it’s a straight-forward
process:

1. Search for “bad” FDs

o. If there are any, then keep decomposing the table into sub-tables
until no more bad FDs

3. When done, the database schema 1s normalized

CSC 261, Fall 2017, UR

Boyce-Codd Normal Form (BCNF)

* Main idea is that we define “good” and “bad” FDs as follows:

— X 2> Ais a“good FD” if X is a (super)key
* In other words, if A 1s the set of all attributes

— X 2 Aisa “bad FFD’ otherwise

* We will try to eliminate the “bad” FDs!

— Via normalization

CSC 261, Fall 2017, UR

Second Normal Form

* Uses the concepts of FDs, primary key
* Definitions

— Full functional dependency:

*a FD Y = Z where removal of any attribute from Y means the FD
does not hold any more

EMP_PRO)J
‘ Ssn | Pnumber | Hours ‘ Ename | Pname ‘ Plocation |

T |

CSC 261, Fall 2017, UR

Second Normal Form (cont.)

* Examples:
—{Ssn, Pnumber} = Hours 1s a full FD since neither
* Ssn = Hours nor Pnumber = Hours hold

—{5Ssn, Pnumber} 2 EKname 1s not a full FD (it 1s called a partial
dependency) since Ssn 2 [iname also holds

EMP_PRO)J
‘ Ssn | Pnumber | Hours ‘ Ename | Pname ‘ Plocation |

T]

CSC 261, Fall 2017, UR

Second Normal Form (2)

* A relation schema R is in second normal form (2NF) if every
non-prime attribute A in R is fully functionally dependent
on the primary key

* R can be decomposed into 2NF relations via the process of
oNF normalization or “second normalization”

CSC 261, Fall 2017, UR

Third Normal Form (1)

* Definition:
— Transitive functional dependency:
* a D X - Z that can be derived from two FDs X 2> YandY =2 Z
* Examples:
— Ssn -> Dmgr_ssn 1s a transitive D

* Since Ssn -> Dnumber and Dnumber -> Dmgr_ssn hold
— Ssn -> [Kname 1s non-transitive
* Since there 1s no set of attributes X where Ssn 2 X and X =2 [Kname

(a)

EMP_DEPT
Ename Ssn | Bdate | Address | Dnumber | Dname | Dmgr_ssn

—1 1

CSC 261, Fall 2017, UR

Third Normal Form (2)

* A relation schema R is in third normal form (3NF) if it is in
oNI and no non-prime attribute A in R is transitively
dependent on the primary key

* R can be decomposed into SNF relations via the process of
3NF normalization

CSC 261, Fall 2017, UR

Normalizing into 2NF and 3NF

EMP_PROJ
| Ssn |Pnumber lHours |Ename |Pname |Plocation |

o | T

FD2|

FD3 |

2NF Normalization l

EP1 EP2 EP3
| Ssn |Pnumber |Hours | | Ssn |Ename ’ |Pnumber | Pname |Plocation ‘

FD1| | A FD2 A FD3| A A

(b)
EMP_DEPT
| Ename | Ssn | Bdate |Address | Dnumber |Dname |Dmgr_ssn |

N N N S R T

3NF Normalization

ED1 ED2
| Ename |Sﬂ |Bdate |Address | Dnumber | | Dnumber |Dname | Dmgr_ssn l

S R W Y S R S

CSC 261, Fall 2017, UR

Figure 14.12 Normalization into 2NF and 3NF

@ Candidlate Key
Figure 14.12 a
Normalization into 2NF L - | | -
and 3NF. (a) The LOTS | Property_id# | County_name | Lot# I Area | Price | Tax_rate |
relation with its FD1 | f f f f f
functional dependencies D2
FD1 through FDA4. f l | ? ? f
(b) Decomposing into FD3 | A
the 2NF relations LOTS1
and LOTS2. (c) R |
Decomposing LOTS1
into the 3NF relations (b)
LOTS1A and LOTS1B. ILOPI(? 1ert id# I County_name I Lot# I Area I Price | |Lgr$2t | T: t I
(d) Progressive =L X =L L
normalization of LOTS B ‘ * f ? ? FD3
into a 3NF design. FD2 f ’ | T f

FD4 \—f

(o)
LOTS1A LOTS1B
| Property_id# | County_name] Lot# | Area l

FD1 | A A A 4| 4
F02 § | | ¢

(d)

LOTS 1NF
LOTS1 LOTS2 2NF
LOTS1A LOTS1B LOTS2 3NF

CSC 261, Fall 2017, UR

Normal Forms Defined Informally

e ' normal form

— All attributes depend on the key

nd normal form

— All attributes depend on the whole key

* 9

* 3rd normal form
— All attributes depend on nothing but the key

CSC 261, Fall 2017, UR

General Definition of 2NF and 3NF (For Multiple Candidate Keys)

* A relation schema R is in second normal form (2NF) if every
non-prime attribute A in R is fully functionally dependent
on every key of R

* A relation schema R 1s in third normal form (3NF) if it 1s in
oNI and no non-prime attribute A in R is transitively

dependent on any key of R

CSC 261, Fall 2017, UR

1. BOYCE-CODD NORMAL FORM

What you will learn about in this section

1. Conceptual Design
2. Boyce-Codd Normal Form

3. The BCNF Decomposition Algorithm

CSC 261, Fall 2017, UR

5. BCNF (Boyce-Codd Normal Form)

* A relation schema R is in Boyce-Codd Normal Form (BCNFE)
if whenever an FD X - A holds in R, then X is a superkey
of R

* Fach normal form is strictly stronger than the previous one
— Every oNF relation 1s in 1INF
— Every 3NF relation 1s in 2NF
— Every BCNF relation is in 3NF

CSC 261, Fall 2017, UR

Figure 14.13 Boyce-Codd normal form

(a) LOTS1A
Property_id# | County_name | Lot# | Area
FD1 | A
FD2 * | +
FD5 A |
BCNF Normalization
LOTS1AX LOTS1AY
Property_id# | Area |Lot# Area | County_name
(b) R
A Bl C Figure 14.13

FD1 _[_+
FD2{ |

Boyce-Codd normal form. (@) BCNF normalization of
LOTS1A with the functional dependency FD2 being lost in

the decomposition. (b) A schematic relation with FDs; it is

in 3NF, but not in BCNF due to the f.d. C > B.

CSC 261, Fall 2017, UR

General Definition of 2NF and 3NF (For Multiple Candidate Keys)

* A relation schema R is in second normal form (2NF) if every
non-prime attribute A in R is fully functionally dependent
on every key of R

* A relation schema R 1s in third normal form (3NF) if it 1s in
oNI and no non-prime attribute A in R is transitively

dependent on any key of R

Slide 14- 26

4.3 Interpreting the General Definition of Third Normal Form (2)

B ALTERNATIVE DEFINITION of 3NF: We can restate the

definition as:

A relation schema R is in third normal form (3NF) if,
whenever a nontrivial FD X—> A holds in R, either

a) X 1s a superkey of R or
b) A 1s a prime attribute of R

The condition (b) takes care of the dependencies that

“slip through” (are allowable to) 3NI* but are “caught
by” BCNIF which we discuss next.

Slide 14- 27

5. BCNF (Boyce-Codd Normal Form)

Definition of 3NF:

A relation schema R 1s in 3NF if, whenever a nontrivial FD X—> A
holds in R, either

a) X 1s a superkey of R or
b) A is a prime attribute of R

A relation schema R is in Boyce-Codd Normal Form (BCNF) if
whenever an FD X = A holds in R, then

a) X 1s a superkey of R
—brthereisnob
Each normal form is strictly stronger than the previous one
— Every 2NI relation 1s in 1IN

— Every 3NF relation is in 2NF
— Every BCNF relation is in 3NF

Slide 14- 28

Boyce-Codd normal form

(a) LOTS1A

Property_id# | County_name |Lot# |Area

A

L

| 4

FD5 A |

BCNF Normalization

LOTS1AY

Area

Lot#

Area County_name

FD1 |

F2 A

LOTS1AX

Property_id#
(b) R

A|l B|C

FD1 |_[_+
FDQ{ |

Slide 14- 29

Figure 14.13

Boyce-Codd normal form. (@) BCNF normalization of
LOTS1A with the functional dependency FD2 being lost in
the decomposition. (b) A schematic relation with FDs; it is
in 3NF, but not in BCNF due to the f.d. C > B.

A relation TEACH that is in 3NF but not in BCNF

TEACH
Student Course Instructor
Narayan | Database Mark
Smith Database Navathe
Smith Operating Systems | Ammar
Smith Theory Schulman
Wallace | Database Mark
Wallace | Operating Systems | Ahamad
Wong Database Omiecinski
Zelaya Database Navathe
Narayan | Operating Systems | Ammar

Slide 14- 30

Two FDs exist in the relation

TEACH:

X 2> A

— {student, course} -2 istructor
— mstructor - course

{student, course} 1s a candidate key
for this relation

So this relation is in 3NV but not in
BCNF
A relation NOT in BCNF should be

decomposed

* while possibly forgoing the preservation of all
functional dependencies in the decomposed
relations.

Achieving the BCNF by Decomposition

* Three possible decompositions for relation TEACH
— Dr: {student, instructor} and {student, course}

— Da: {course, instructor } and {course, student}

v~ D3: {instructor, course } and {instructor, student}

Slide 14- 31

Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

A relation R is in BCNF if:
if {X, ..., X,} = A'is a non-trivial FD in R

then {X,, ..., X} is a superkey for R

In other words: there are no “bad” FDs

32

Example

Name [SSN PhoneNumber | City {SSN} > {Name,City}
Fred |123-45-6789 |206-555-1234 |Seattle
Fred |123-45-6789 |206-555-6543 |Seattle This FD is bad
Joe 987-65-4321 [908-555-2121 | Westfield because it is not a
Joe 087-65-4321 |908-555-1234 | Westfield superkey

What is the key?

— Not in BCNF

{SSN, PhoneNumber}

33

Example

Name | SSN City
Fred |123-45-6789 Seattle
Joe 987-65-4321 Madison
SSN PhoneNumber
123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121
987-65-4321 908-555-1234

Now in BCNF!

{SSN} > {Name,City}

This FD is now
good because it is
the key

Let’s check anomalies:
e Redundancy ?
e Update ?
e Delete ?

34

BCNF Decomposition Algorithm

BCNFDecomp(R):

35

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X* #

[all attributes]

Find a set of attributes X
which has non-trivial
“bad” FDs, i.e. is not a
superkey, using closures

36

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X* #

[all attributes] .
If no “bad” FDs found, in

if (not found) then Return R BCNF!

37

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X* #

[all attributes]
Let Y be the attributes

if (not found) then Return R that X functionally
determines (+ that are
letY=X"-X, Z=(X"¢ not in X)

And let Z be the other
attributes that it doesn’t

38

BCNF Decomposition Algorithm

BCNFDecomp(R): Split into one relation

Find a set of attributes X s.t.: X* # X and X* # (tab.le) with X plus the .
[all attributes] attributes that X determines

(Y)...
if (not found) then Return R

letY=X"-X, Z=(X*)C
decompose R into R;(X U Y) and R,(X U Z)

39

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X* #
[all attributes]

if (not found) then Return R

letY=X"-X, Z=(X*)C
decompose R into R;(X U Y) and R,(X U Z)

And one relation with X plus
the attributes it does not
determine (2)

40

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X* #
[all attributes]

if (not found) then Return R

letY=X"-X, Z=(X")¢
decompose R into R;(X U Y) and R,(X U 2)
Proceed recursively until no

more “bad” FDs!
Return BCNFDecomp(R;), BCNFDecomp(R,)

41

Another way of representing the same concept

BCNFDecomp(R):
If X=> A causes BCNF violation:

Decompose R into

R1= XA
R2=R-A

(Note: X is present in both R1 and R2)

CSC 261, Spring 2017, UR

Example

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X* #
[all attributes]

if (not found) then Return R

let Y =X"-X, Z= (X*)C R(A,B,C,D,E)
decompose R into R, (XU Y) and R,(X L 2)
Return BCNFDecomp(R;), BCNFDecomp(R,) {A} > {B,C}
{C} > {D}
BCNFDecomp(R):

If X=> A causes BCNF violation:
Decompose R into

R1= XA
R2=R-A

(Note: X is present in both R1 and R2)

Example

R(A,B,C,D,E)
{A} = {A,B,C,D} # {A,B,C,D,E}

R,(A,B,C,D)
{C}* ={C,D} #{A,B,C,D}

R(A,B,C,D,E)

{A} > {B,C}
{C} > {p}

44

Acknowledgement

* Some of the slides in this presentation are taken from the

slides provided by the authors.

* Many of these slides are taken from csi45 course offered by
Stanford University.

* Thanks to You'Tube, especially to Dr. Daniel Soper for his

useful videos.

CSC 261, Fall 2017, UR

