
CSC 261/461 – Database Systems
Lecture 11

Fall 2017

CSC	261,	Fall	2017,	UR	

Announcement

• Read the textbook!
– Chapter 8:

• Will cover later; But self-study the chapter
• Everything except Section 8.4

– Chapter 14:
• Section 14.1 – 14.5

– Chapter 15:
• Section 15.1 – 15.4

CSC	261,	Fall	2017,	UR	

Superkeys and Keys

CSC	261,	Fall	2017,	UR	

Keys and Superkeys

A	superkey is	a	set	of	attributes	A1,	…,	An s.t.
for	any	other attribute	B in	R,
we	have		{A1,	…,	An}	à B

A	key is	a	minimal superkey

I.e.	all	attributes	are	
functionally	
determined by	a	
superkey

Meaning	that	no	subset	
of	a	key	is	also	a	
superkey

CSC	261,	Fall	2017,	UR	

Finding Keys and Superkeys

• For each set of attributes X

1. Compute X+

2. If X+ = set of all attributes then X is a superkey

3. If X is minimal, then it is a key

Do	we	need	to	check	all	
sets	of	attributes?	Which	

sets?	

CSC	261,	Fall	2017,	UR	

Example of Finding Keys

Product(name, price, category,
color)
{name, category} à price
{category} à color

What	is	a	key?

CSC	261,	Fall	2017,	UR	

Example of Keys

Product(name, price, category,
color)
{name, category} à price
{category} à color

{name, category}+ = {name, price, category, color}
= the	set	of	all	attributes
⟹ this	is	a	superkey
⟹ this	is	a	key,	since	neither	name nor	
category alone	is	a	superkey

CSC	261,	Fall	2017,	UR	

Today’s Lecture

1. 2NF,	3NF	and	Boyce-Codd Normal	Form

2. Decompositions

CSC	261,	Fall	2017,	UR	

Functional Dependencies (Graphical Representation)

CSC	261,	Fall	2017,	UR	

Prime and Non-prime attributes

• A Prime attribute must be a member of some candidate key

• A Nonprime attribute is not a prime attribute—that is, it is
not a member of any candidate key.

CSC	261,	Fall	2017,	UR	

Back to Conceptual Design

Now that we know how to find FDs, it’s a straight-forward
process:

1. Search for “bad” FDs

2. If there are any, then keep decomposing the table into sub-tables
until no more bad FDs

3. When done, the database schema is normalized

CSC	261,	Fall	2017,	UR	

Boyce-Codd Normal Form (BCNF)

• Main idea is that we define “good” and “bad” FDs as follows:

– X à A is a “good FD” if X is a (super)key
• In other words, if A is the set of all attributes

– X à A is a “bad FD” otherwise

• We will try to eliminate the “bad” FDs!
– Via normalization

CSC	261,	Fall	2017,	UR	

Second Normal Form

• Uses the concepts of FDs, primary key
• Definitions

– Full functional dependency:
• a FD Y à Z where removal of any attribute from Y means the FD

does not hold any more

CSC	261,	Fall	2017,	UR	

Second Normal Form (cont.)

• Examples:
– {Ssn, Pnumber} à Hours is a full FD since neither

• Ssn à Hours nor Pnumber à Hours hold
– {Ssn, Pnumber} à Ename is not a full FD (it is called a partial

dependency) since Ssn à Ename also holds

CSC	261,	Fall	2017,	UR	

Second Normal Form (2)

• A relation schema R is in second normal form (2NF) if every
non-prime attribute A in R is fully functionally dependent
on the primary key

• R can be decomposed into 2NF relations via the process of
2NF normalization or “second normalization”

CSC	261,	Fall	2017,	UR	

Third Normal Form (1)

• Definition:
– Transitive functional dependency:

• a FD X à Z that can be derived from two FDs X àY and Y à Z

• Examples:
– Ssn -> Dmgr_ssn is a transitive FD

• Since Ssn -> Dnumber and Dnumber -> Dmgr_ssn hold
– Ssn -> Ename is non-transitive

• Since there is no set of attributes X where Ssn à X and X à Ename

CSC	261,	Fall	2017,	UR	

Third Normal Form (2)

• A relation schema R is in third normal form (3NF) if it is in
2NF and no non-prime attribute A in R is transitively
dependent on the primary key

• R can be decomposed into 3NF relations via the process of
3NF normalization

CSC	261,	Fall	2017,	UR	

Normalizing into 2NF and 3NF

CSC	261,	Fall	2017,	UR	

Figure 14.12 Normalization into 2NF and 3NF

Figure 14.12
Normalization into 2NF
and 3NF. (a) The LOTS
relation with its
functional dependencies
FD1 through FD4.
(b) Decomposing into
the 2NF relations LOTS1
and LOTS2. (c)
Decomposing LOTS1
into the 3NF relations
LOTS1A and LOTS1B.
(d) Progressive
normalization of LOTS
into a 3NF design.

CSC	261,	Fall	2017,	UR	

Normal Forms Defined Informally

• 1st normal form
– All attributes depend on the key

• 2nd normal form
– All attributes depend on the whole key

• 3rd normal form
– All attributes depend on nothing but the key

CSC	261,	Fall	2017,	UR	

General Definition of 2NF and 3NF (For Multiple Candidate Keys)

• A relation schema R is in second normal form (2NF) if every
non-prime attribute A in R is fully functionally dependent
on every key of R

• A relation schema R is in third normal form (3NF) if it is in
2NF and no non-prime attribute A in R is transitively
dependent on any key of R

CSC	261,	Fall	2017,	UR	

1. BOYCE-CODD NORMAL FORM

CSC	261,	Fall	2017,	UR	

What you will learn about in this section

1. Conceptual	Design

2. Boyce-Codd Normal	Form

3. The	BCNF	Decomposition	Algorithm

CSC	261,	Fall	2017,	UR	

5. BCNF (Boyce-Codd Normal Form)

• A relation schema R is in Boyce-Codd Normal Form (BCNF)
if whenever an FD X → A holds in R, then X is a superkey
of R

• Each normal form is strictly stronger than the previous one
– Every 2NF relation is in 1NF
– Every 3NF relation is in 2NF
– Every BCNF relation is in 3NF

CSC	261,	Fall	2017,	UR	

Figure 14.13 Boyce-Codd normal form

Figure 14.13
Boyce-Codd normal form. (a) BCNF normalization of

LOTS1A with the functional dependency FD2 being lost in
the decomposition. (b) A schematic relation with FDs; it is

in 3NF, but not in BCNF due to the f.d. C → B.

CSC	261,	Fall	2017,	UR	

General Definition of 2NF and 3NF (For Multiple Candidate Keys)

• A relation schema R is in second normal form (2NF) if every
non-prime attribute A in R is fully functionally dependent
on every key of R

• A relation schema R is in third normal form (3NF) if it is in
2NF and no non-prime attribute A in R is transitively
dependent on any key of R

Slide 14- 26

4.3 Interpreting the General Definition of Third Normal Form (2)

n ALTERNATIVE DEFINITION of 3NF: We can restate the
definition as:

A relation schema R is in third normal form (3NF) if,
whenever a nontrivial FD XàA holds in R, either

a) X is a superkey of R or
b) A is a prime attribute of R

The condition (b) takes care of the dependencies that
“slip through” (are allowable to) 3NF but are “caught
by” BCNF which we discuss next.

Slide 14- 27

5. BCNF (Boyce-Codd Normal Form)

• Definition of 3NF:
• A relation schema R is in 3NF if, whenever a nontrivial FD XàA

holds in R, either
a) X is a superkey of R or
b) A is a prime attribute of R

• A relation schema R is in Boyce-Codd Normal Form (BCNF) if
whenever an FD X → A holds in R, then

a) X is a superkey of R
b) There is no b

• Each normal form is strictly stronger than the previous one
– Every 2NF relation is in 1NF
– Every 3NF relation is in 2NF
– Every BCNF relation is in 3NF

Slide 14- 28

Slide 14- 29

Boyce-Codd normal form

Figure 14.13
Boyce-Codd normal form. (a) BCNF normalization of

LOTS1A with the functional dependency FD2 being lost in
the decomposition. (b) A schematic relation with FDs; it is

in 3NF, but not in BCNF due to the f.d. C → B.

A relation TEACH that is in 3NF but not in BCNF

Slide 14- 30

• Two FDs exist in the relation
TEACH:

– {student, course} à instructor
– instructor à course

• {student, course} is a candidate key
for this relation

• So this relation is in 3NF but not in
BCNF

• A relation NOT in BCNF should be
decomposed
• while possibly forgoing the preservation of all

functional dependencies in the decomposed
relations.

X à A

Achieving the BCNF by Decomposition

• Three possible decompositions for relation TEACH
– D1: {student, instructor} and {student, course}

– D2: {course, instructor } and {course, student}

– D3: {instructor, course } and {instructor, student}

Slide 14- 31

ü

32

Boyce-Codd Normal Form

BCNF	is	a	simple	condition	for	removing	anomalies	from	relations:

In	other	words:	there	are	no	“bad”	FDs

A	relation	R	is	in	BCNF if:

if	{X1,	...,	Xn}	à A is	a	non-trivial FD	in	R

then	{X1,	...,	Xn}		is	a	superkey for	R

33

Example

What	is	the	key?
{SSN,	PhoneNumber}

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield
Joe 987-65-4321 908-555-1234 Westfield

{SSN} à {Name,City}

⟹	Not in	BCNF

This	FD	is	bad	
because	it	is	not a	
superkey

34

Example

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Madison

SSN PhoneNumber
123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121
987-65-4321 908-555-1234

Let’s	check	anomalies:
• Redundancy	?
• Update	?
• Delete	?

{SSN} à {Name,City}

Now	in	BCNF!

This	FD	is	now	
good	because	it	is	
the	key

35

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find	X	s.t.:	X+ ≠	X	and	X+	≠	[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	
BCNFDecomp(R2)

36

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find	a	set	of	attributes X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	
BCNFDecomp(R2)

Find	a	set	of	attributes	X	
which	has	non-trivial	
“bad”	FDs,	i.e.	is	not	a	
superkey,	using	closures

37

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find	a set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	
BCNFDecomp(R2)

If	no	“bad”	FDs	found,	in	
BCNF!

38

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find	a	set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	
BCNFDecomp(R2)

Let	Y	be	the	attributes	
that	X	functionally	
determines	(+	that	are	
not	in	X)

And	let	Z	be	the	other	
attributes	that	it	doesn’t

39

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find	a	set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	
BCNFDecomp(R2)

X ZY

R1 R2

Split	into	one	relation	
(table)	with	X	plus	the	
attributes	that	X	determines	
(Y)…

40

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find	a	set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	
BCNFDecomp(R2)

X ZY

R1 R2

And	one	relation	with	X	plus	
the	attributes	it	does	not	
determine	(Z)

41

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find	a	set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2)

Proceed	recursively	until	no	
more	“bad”	FDs!

Another way of representing the same concept

CSC	261,	Spring	2017,	UR	

BCNFDecomp(R):
If	Xà A	causes	BCNF	violation:

Decompose	R	into

R1=	XA
R2	=	R	–A

(Note:	X	is	present	in	both	R1	and	R2)

R(A,B,C,D,E)

BCNFDecomp(R):
Find	a	set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2) {A} à {B,C}
{C} à {D}

BCNFDecomp(R):
If	Xà A	causes	BCNF	violation:

Decompose	R	into

R1=	XA
R2	=	R	–A

(Note:	X	is	present	in	both	R1	and	R2)

Example

44

Example

R(A,B,C,D,E)
{A}+ =	{A,B,C,D}	≠	{A,B,C,D,E}

R1(A,B,C,D)
{C}+ =	{C,D}	≠	{A,B,C,D}

R2(A,E)R11(C,D) R12(A,B,C)

R(A,B,C,D,E)

{A} à {B,C}
{C} à {D}

Acknowledgement

• Some of the slides in this presentation are taken from the
slides provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

• Thanks to YouTube, especially to Dr. Daniel Soper for his
useful videos.

CSC	261,	Fall	2017,	UR	

