
CSC 261/461 – Database Systems
Lecture 15

Spring 2017
MW 3:25 pm – 4:40 pm

January 18 – May 3
Dewey 1101

Announcement

• Quiz 7 (Due Tomorrow at 11:59 pm)

• CIRC account

• Project 1 Milepost 3
– Will be out tonight
– HTML (for Forms) & PHP (for Query results)

• For graduate students:
– Term paper:

• Team formation
• Topic selection
• Term paper
• Poster submission
• Worth 8% of your final grade.

The IO Model & External Sorting

Today’s Lecture

1. Chapter	16	(Disk	Storage,	File	Structure	and	Hashing)
2. Chapter	17	(Indexing)

Simplified Database System Environment

What you will learn about in this section

1. Storage	and	memory	model

2. Buffer

1. THE BUFFER

High-level: Disk vs. Main Memory

• Disk:

– Slow
• Sequential access

– (although fast sequential
reads)

– Durable
• We will assume that once on

disk, data is safe!

– Cheap

• Random Access Memory (RAM) or Main Memory:

– Fast
• Random access, byte addressable

– ~10x faster for sequential access
– ~100,000x faster for random access!

– Volatile
• Data can be lost if e.g. crash occurs, power goes out, etc!

– Expensive
• For $100, get 16GB of RAM vs. 2TB of disk!

High-level: Disk vs. Main Memory

• Keep in mind the tradeoffs here as motivation for
the mechanisms we introduce

–Main memory: fast but limited capacity, volatile

– Vs. Disk: slow but large capacity, durable

High-level:	Disk	vs.	Main	Memory

How	do	we	effectively	utilize	both ensuring	certain	critical	guarantees?

Hardware Description of Disk Devices

• Information is stored on a
disk surface in concentric
circles (Track)

• Tracks with same diameter
on various surfaces is called
cylinder

• Tracks are divided into
sectors

• OS divides a track into
equal sized disk blocks
(pages)

A Simplified Filesystem Model

• For us, a page is a fixed-sized array of
memory
– One (or more) disk block (blocks)
– Interface:

• write to an entry (called a slot) or set to “None”

• And a file is a variable-length list of pages
– Interface: create / open / close; next_page();

etc.

Disk

1,0,3 1,0,3File

Page

The Buffer

Disk

Main	Memory

Buffer

• Transfer of data between main memory and
disk takes place in units of disk blocks.

• The hardware address of a block is a
combination of a cylinder number, track
number, and block number.

• A buffer is a region of physical memory used
to store a single block.

• Sometimes, several contiguous blocks can be
copied into a cluster

– In this lecture: We will mostly not distinguish
between a buffer and a cluster.

• Key idea: Reading / writing to disk is slow-
need to cache data!

Main	Memory

Buffer

The (Simplified) Buffer

• In this class: We’ll consider a
buffer located in main memory
that operates over pages and files:

Disk
1,0,31,0,3

• Read(page): Read	page	from	disk	->	
buffer	if	not	already	in	buffer

Main	Memory

Buffer

The (Simplified) Buffer

• In this class: We’ll consider a
buffer located in main memory
that operates over pages and files:

Disk
1,0,3

1,0,3
• Read(page): Read	page	from	disk	->	

buffer	if	not	already	in	buffer

02

Processes	can	then	read	from	
/	write	to	the	page	in	the	
buffer

Main	Memory

Buffer

The (Simplified) Buffer

• In this class: We’ll consider a
buffer located in main memory
that operates over pages and files:

Disk
1,0,3

1,2,3
• Read(page): Read	page	from	disk	->	

buffer	if	not	already	in	buffer

• Flush(page): Evict	page	from	buffer	&	
write	to	disk

Main	Memory

Buffer

The (Simplified) Buffer

• In this class: We’ll consider a
buffer located in main memory
that operates over pages and files:

Disk
1,0,3

1,2,3
• Read(page): Read	page	from	disk	->	

buffer	if	not	already	in	buffer

• Flush(page): Evict	page	from	buffer	&	
write	to	disk

• Release(page): Evict	page	from	buffer	
without writing	to	disk

Main	Memory

Buffer

Disk

• Database maintains its own
buffer

– Why? The OS already does this…

– DB knows more about access
patterns.

– Recovery and logging require
ability to flush to disk.

Managing Disk: The DBMS Buffer

The Buffer Manager

• A buffer manager handles supporting operations for the
buffer:

– Primarily, handles & executes the “replacement policy”
• i.e. finds a page in buffer to flush/release if buffer is full

and a new page needs to be read in

– DBMSs typically implement their own buffer management
routines

Use of Two Buffer

Buffer Replacement Strategies

• Least recently used (LRU)

• Clock policy

• First-in-first-out (FIFO)

• Refer 16.3..2 for details

Records and Files

• Data is usually stored in the form of records
• Each record consists of a collection of related data values or

items.
– Record usually describe entities

File Types

• Unordered Records (Heap Files)

• Ordered Records (Sorted Files)

Heap Files

• Insertion (of a record):
– Very efficient.
– Last disk block is copied into a buffer
– New record is added
– Block is rewritten back to disk

• Searching:
– Linear search

• Deletion:
– Rewrite empty block after deleting record. (or)
– Use deletion marker

Sorted Files

• Physically sort the records of a file
– Based on the values of one of the fields (ordering fields)
–Ordered and sequential file

• Searching:
– Can perform Binary Search.

• Insertion and Deletion:
– Expensive

Average Access Times for a File of b Blocks under Basic
File Organizations

2. EXTERNAL MERGE & SORT

Challenge: Merging Big Files with Small Memory

How do we efficiently merge two sorted files when both
are much larger than our main memory buffer?

External Merge Algorithm

• Input: 2 sorted lists of length M and N

• Output: 1 sorted list of length M + N

• Required: At least 3 Buffer Pages

• IOs: 2(M+N)

Key (Simple) Idea

To find an element that is no larger than all elements in two lists,
one only needs to compare minimum elements from each list.

If:
𝐴" ≤ 𝐴$ ≤ ⋯ ≤ 𝐴&
𝐵" ≤ 𝐵$ ≤ ⋯ ≤ 𝐵(

Then:
𝑀𝑖𝑛(𝐴", 𝐵") ≤ 𝐴/
𝑀𝑖𝑛(𝐴", 𝐵") ≤ 𝐵0

for	i=1….N	and	j=1….M	

External Merge Algorithm

7,11 20,3
1

23,24 25,30

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

Dis
k

Main	Memory

Buffer
1,5

2,22

F1

F2

External Merge Algorithm

7,11 20,3
1

23,24 25,30

Dis
k

Main	Memory

Buffer

1,5 2,22
Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2

External Merge Algorithm

7,11 20,3
1

23,24 25,30

Dis
k

Main	Memory

Buffer

5 22 1,2
Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2

External Merge Algorithm

7,11 20,3
1

23,24 25,30

Dis
k

Main	Memory

Buffer

5 22

1,2

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2

External Merge Algorithm

20,3
1

23,24 25,30

Dis
k

Main	Memory

Buffer

522

1,2

This	is	all	the	algorithm	
“sees”…	Which	file	to	load	a	
page	from	next?

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2

7,11

External Merge Algorithm

20,3
1

23,24 25,30

Dis
k

Main	Memory

Buffer

522

1,2

We	know	that	F2 only	
contains	values	≥ 22…	so	we	
should	load	from	F1!

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2

7,11

External Merge Algorithm

20,3
1

23,24 25,30

Dis
k

Main	Memory

Buffer

522

1,2

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2
7,11

External Merge Algorithm

20,3
1

23,24 25,30

Dis
k

Main	Memory

Buffer

5,722

1,2

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2
11

External Merge Algorithm

20,3
1

23,24 25,30

Dis
k

Main	Memory

Buffer

5,7

22

1,2

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2
11

External Merge Algorithm

23,24 25,30

Dis
k

Main	Memory

Buffer

5,7

22

1,2

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2
11

20,3
1

And	so	on…
See	IPython	demo!

We can merge lists of arbitrary
length with only 3 buffer pages.

If	lists	of	size	M	and	N,	then
Cost: 2(M+N)	IOs

Each	page	is	read	once,	written	once

2. HASHING TECHNIQUES

“IF YOU DON’T FIND IT IN THE INDEX, LOOK
VERY CAREFULLY THROUGH THE ENTIRE
CATALOG”

- Sears, Roebuck and Co., Consumers Guide, 1897

HASING – GENERAL IDEAS

- Hashing first proposed by Arnold Dumey (1956)
- Hash codes
- Chaining
- Open addressing

Top level view

Arbitrary	objects
(strings,	doubles,	ints)

n Objects	
actually	
used

Hash	
code

{0,1,…,m-1}
int with	
wide	range

h(object)

Compression	
function

m

We	will	also		call
this	the	hash	function

Good Hash Function

• If key1 ≠ key2, then it’s extremely unlikely that
h(key1) = h(key2)
– Collision problem!

• Pigeonhole principle
– K+1 pigeons, K holes à at least one hole with ≥ 2 pigeons

Division method

• How does this function perform for different m?
h(s) = s mod m

COLLISION RESOLUTION

Separate chaining

Open addressing

Cuckoo hashing

Separate Chaining

Turing

Cantor

Knuth

Karp

Dijkstra

Index Pointer

0

1

2

3

4

Turing Knuth Dijkstra

Karp Cantor

Open Addressing

• Store all entries in the hash table itself, no pointer to the
“outside”

• Advantage
– Less space waste
– Perhaps good cache usage

• Disadvantage
–More complex collision resolution
– Slower operations

Open Addressing

Turing

Cantor

Knuth

Karp

Dijkstra

Index Pointer

0

1

2

3

4

5

6

7

Turing

Knuth

Dijkstra
Karp

Cantor

h(“Knuth”,	0)
h(“Knuth”,	1)

h(“Karp”,	0) h(“Karp”,	1)

h(“Dijkstra”,	0)

h(“Dijkstra”,	1)

h(“Dijkstra”,	2)

External Hashing

• Hashing for disk files
• Target address space is made of buckets
• Hashing function maps a key into relative bucket number
• Convert the bucket number into corresponding disk block

address

Bucket Number to Disk Block address

Bucket Number to Disk Block address

1. B+ TREES

B+ Trees

• Search trees
– B does not mean binary!

• Idea in B Trees:
–make 1 node = 1 physical page
– Balanced, height adjusted tree (not the B either)

• Idea in B+ Trees:
–Make leaves into a linked list (for range queries)

B+ Tree Basics

10 20 30

Each	non-leaf	(“interior”)	
node has	≥ d	and	≤	2d	
keys*
*except	for	root	node,	which	
can	have	between	1	and	2d	keys

Parameter	d =	the	
degree

B+ Tree Basics

10 20 30

k	<	10

10	≤ 𝑘	<	20

20	≤ 𝑘	<	30
30	≤ 𝑘

The	n	keys	in	a	
node	define	n+1	
ranges	

B+ Tree Basics

10 20 30

Non-leaf	or	internal	node

22 25 28

For	each	range,	in	a	non-leaf	
node,	there	is	a	pointer to	
another	node	with	keys	in	
that	range

B+ Tree Basics

10 20 30

Leaf	nodes	also	have	
between	d	and	2d	keys,	
and	are	different	in	that:

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf	or	internal	node

12 17

B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf	or	internal	node

12 17

Leaf	nodes	also	have	
between	d	and	2d	keys,	
and	are	different	in	that:

Their	key	slots	contain	
pointers	to	data	records

21 22 27 28 30 33 35 371
5

1
1

B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf	or	internal	node

12 17

21 22 27 28 30 33 35 371
5

1
1

Leaf	nodes	also	have	
between	d	and	2d	keys,	
and	are	different	in	that:

Their	key	slots	contain	
pointers	to	data	records

They	contain	a	pointer	
to	the	next	leaf	node	as	
well,	for	faster	
sequential	traversal

B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf	or	internal	node

12 17

Note	that	the	pointers	at	
the	leaf	level	will	be	to	the	
actual	data	records	(rows).		

We	might	truncate	these	
for	simpler	display	(as	
before)…

Name:	John
Age:	21

Name:	Jake
Age:	15

Name:	Bob
Age:	27

Name:	Sally
Age:	28

Name:	Sue
Age:	33

Name:	Jess
Age:	35

Name:	Alf
Age:	37Name:	Joe

Age:	11

Name:	Bess
Age:	22

Name:	Sal
Age:	30

Acknowledgement

• Some of the slides in this presentation are taken from the
slides provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

