CSC 261/461 — Database Systems
Lecture 23

Spring 2017
MW 3:25 pm — 4:40 pm
January 18 — May 3

Dewey 1101

Announcements

* Term Paper due on April 20
* Project 1 Milestone 4 will be out tonight.

* The last (mini) project would be out before Wednesday.

CSC 261, Spring 2017, UR

Topics for Today

* ‘Iransactions (Deadlock and Recovery)

* Spark

CSC 261, Spring 2017, UR

DEADLOCK

Deadlock Detection: Example

Waits-for graph:

T1 | S(A) | R(A) @ @

First, T, requests a shared lock
on A to read from it

T, | S(A)

R(A)

Deadlock Detection: Example

S(B)

R(B)

Next, T, requests a shared lock
on B to read from it

Waits-for graph:

@ @

>

T, | S(A)

R(A)

Deadlock Detection

S(B)

R(B)

X(A) \irig

: Example

Waits-for graph:

OO

T, then requests an exclusive
lock on A to write to it-now T,
is waiting on T,...

Performance of Locking

e Resolve conflicts between transactions and use two basic
mechanisms:

— Blocking
— Aborting
* Both incurs performance penalty.
— Blocking: Other transactions need to wait)
— Aborting: Wastes the work done thus far)

 Deadlock:

— Extreme instance of blocking

— A set of transactions are forever blocked unless one of the

deadlocked transactions is aborted by the DBMS

CSC 261, Spring 2017, UR

Deadlocks

* Deadlock: Cycle of transactions waiting for locks to be
released by each other.

* Two ways of dealing with deadlocks:
. Deadlock prevention

2. Deadlock avoidance

Deadlock Prevention

* Use timestamp ordering mechanism of transactions in order
to predetermine a deadlock situation.

* Wait-Die Scheme
* Wound-Wait Scheme

CSC 261, Spring 2017, UR

Timestamp Ordering

Each transaction is assigned a unique
increasing timestamp

FEarlier transactions receives
a smaller timestamp

Ty s Ta Ts

new)s °**

Notation: Old Transaction T,;; New
Transaction T,,,,,

CSC 261, Spring 2017, UR

Tora

Tnew

Wait-Die

T,y is allowed to wait for T,,,,,

T..0,, Will die when it waits for T,

Holds Lock Requests
Lock

Id k Requests
Holds Loc Lok

>
«

CSC 261, Spring 2017, UR

Wound Wait

To1a Willwound 75,

T, 0, Waits for T4

Holds Lock Requests
Lock
Requests
Holds Lock Lok

CSC 261, Spring 2017, UR

Deadlock Avoidance

* Waits-for graph:
— For each transactiop entering into
the system, a node 1s created.

— When a transaction T requests for
a lock on an item, say X, which 1s
held by some other transaction T, Ti
a directed edge is created from
to T]
— IfTi releases item X, the edge
between them is dropped and
1" locks the data item. Tj

* The system maintains this wait-
for graph for every transaction aits.for Lock(X)
waiting for some data items
held by others. The system
keelps checking if there's any
cycle in the graph.

Waits-for Lock(Y)

CSC 261, Spring 2017, UR

* Here, we can use any of the two following approaches —

* Iirst, do not allow any request for an item, which is already
locked by another transaction.

— This 1s not always feasible and may cause starvation, where a
transaction indefinitely waits for a data item and can never
acquire 1t.

* Second, roll back one of the transactions.

— It 1s not always feasible to roll back the younger transaction, as it
may be important than the older one.

— With the help of some relative algorithm, a transaction 1s chosen,
which 1s to be aborted.

— This transaction 1s known as the vietim and the process 1s known
as victim selection.

Transaction Characteristics in SQL

* SQL allows to specify three (3) characteristics of a
transaction
— Access mode
« READ ONLY and READ WRITE
— Diagnostics size
* (Determines # of error conditions.)
— Isolation level

 Controls the extent to which a given transaction is exposed to actions of
other transactions

CSC 261, Spring 2017, UR

Transaction Characteristics in SQL

Unrepeatable Read

Transaction 1 Transaction 2

Commit

Dirty read

Transaction 1 Transaction 2

(romm—mm—m—————
]
I
]
|
[€—— status=VALID
:
]
|
]
|
——— P status=INVALID

———» status=VALID

|
|
Rollback |

CSC 261, Spring 2017, UR

Phantom read

Transaction 1

Transaction 2

Commit

Transaction Characteristics in SQL

Isolation Level Dirty Read Unrepeatable
Read

READ UNCOMMITED Maybe Maybe Maybe
READ COMMITED No Maybe Maybe
REPEATABLE READ No No Maybe
SERIALIZABLE No No No

Example: SET TRANSACTION ISOLATION LEVEL SERIALIZABLE READ ONLY

CSC 261, Spring 2017, UR

Crash Recovery

* The recovery manager of a DBMS is responsible for
ensuring transaction atomicity and durability

— Atomicity by undoing the actions of transitions that do not
commit

— Durability by making sure that all actions of committed
transactions survive system crashes.

* The transaction manager of a DBMS controls the execution
of transactions.

— Before reading and writing objects during normal execution, locks
must be acquired (and released at some later time) according to a
chosen locking protocol.

CSC 261, Spring 2017, UR

Stealing Frames and Forcing Pages

* Writing objects rises two important questions:

— Can changes to an Object O made by a Transaction T be written to
disk before " commits?
* Other Transaction way 'steal’ the page.
 Steal approach
— When a transaction commits, must we ensure that all changes 1t
has made to objects are immediately forced to disk?

* If yes, we call that a force approach.

* [Easy: No Steal, force approach

* But have drawbacks

CSC 261, Spring 2017, UR

Drawbacks

* No-steal assumes all pages modified by ongoing transactions
can be accommodated in the buftfer pool

* [Force approach results in excessive page 1/O

* Most system uses a steal, no force approach.
— Allows writing dirty frames to disk

— Do not enforce immediate writing back after commit.

CSC 261, Spring 2017, UR

Who handles recovery?

* Recovery Manager

« Handles:
— Atomicity
* By undoing actions that do not commit

— Durability

* Making sure committed transactions survive system crashes

CSC 261, Spring 2017, UR

Solution?

* WAL (Write-Ahead lLog)

* Enables the recovery manager to:
— Undo the actions of aborted and incomplete transactions

— Redo the actions of committed transactions.

* Example:

— Changes of transactions that did not commit prior to crash might
have written to the disk (due to steal approach)

* Changes can be identified from the log and undone.

— A transactions that committed before the crash may have updates
not written to the disk. (due to no-force)

» Changes can be identified from the log and written to disk

Example of Recovery Algorithm: ARIES

CSC 261, Spring 2017, UR

Overview of ARIES

* Algorithms for Recovery and Isolation Exploiting
Semantics, or ARIES

— A recovery algorithm designed to work with a no-force, steal
database approach

— Used by IBM DB2, Microsoft SQL. Server and many

other database systems

CSC 261, Spring 2017, UR

3 main principles

* Three main principles lie behind ARIES:
— Write-ahead logging:
* Any change to an object is first recorded in the log, and the log must be

written to stable storage before changes to the object are written to

disk.Repeating history during
— Redo:

* On restart after a crash, ARIES retraces the actions of a database before
the crash and brings the system back to the exact state that it was in before
the crash. Then 1t undoes the transactions still active at crash

— Undo:

* Changes made to the database while undoing transactions are logged to
ensure such an action isn't repeated in the event of repeated restarts.

* (Refer: https://en.wikipedia.org/wiki/Algorithms for Recovery and Isolation Exploiting Semantics)

CSC 261, Spring 2017, UR

Summary

* Concurrency achieved by interleaving TXNs such that
isolation & consistency are maintained

— We formalized a notion of serializability that captured such a
“good” interleaving schedule

* We defined conflict serializability, which implies
serializability

* Locking allows only contlict serializable schedules
— If the schedule completes... (it may deadlock!)

Acknowledgement

Some of the slides in this presentation are taken from the

slides provided by the authors.

Many of these slides are taken from csi145 course offered by
Stanford University.

https://vladmihalcea.com/2014/01/05/a-beginners-guide-to-
acid-and-database-transactions/

Spark slides and material: Jonathan Carroll-Nellenback
(CIRC, UofR)

CSC 261, Spring 2017, UR

