
CSC 261/461 – Database Systems
Lecture 23

Spring 2017
MW 3:25 pm – 4:40 pm

January 18 – May 3
Dewey 1101

Announcements

• Term Paper due on April 20

• Project 1 Milestone 4 will be out tonight.

• The last (mini) project would be out before Wednesday.

CSC	261,	Spring	2017,	UR	

Topics for Today

• Transactions (Deadlock and Recovery)
• Spark

CSC	261,	Spring	2017,	UR	

DEADLOCK

CSC	261,	Spring	2017,	UR	

Deadlock Detection: Example

First,	T1 requests	a	shared	lock	
on	A	to	read	from	it

T1
T2

S(A) R(A)

Waits-for	graph:

T1 T2

Deadlock Detection: Example

Next,	T2 requests	a	shared	lock	
on	B	to	read	from	it

T1
T2 S(B) R(B)

S(A) R(A)

Waits-for	graph:

T1 T2

Deadlock Detection: Example

T2 then	requests	an	exclusive	
lock	on	A	to	write	to	it- now	T2
is	waiting	on	T1…

T1
T2 X(A)S(B) R(B)

S(A) R(A)

Waits-for	graph:

T1 T2
W(A)Waiting

…

Performance of Locking

• Resolve conflicts between transactions and use two basic
mechanisms:
– Blocking
– Aborting

• Both incurs performance penalty.
– Blocking: Other transactions need to wait)
– Aborting: Wastes the work done thus far)

• Deadlock:
– Extreme instance of blocking
– A set of transactions are forever blocked unless one of the

deadlocked transactions is aborted by the DBMS

CSC	261,	Spring	2017,	UR	

Deadlocks

• Deadlock: Cycle of transactions waiting for locks to be
released by each other.

• Two ways of dealing with deadlocks:

1. Deadlock prevention

2. Deadlock avoidance

Deadlock Prevention

• Use timestamp ordering mechanism of transactions in order
to predetermine a deadlock situation.

• Wait-Die Scheme
• Wound-Wait Scheme

CSC	261,	Spring	2017,	UR	

Timestamp Ordering

• Each transaction is assigned a unique
increasing timestamp

• Earlier transactions receives
a smaller timestamp

• T1 (old) , T2, T3 (new), ...

• Notation: Old Transaction 𝑇"#$ New
Transaction 𝑇%&'

CSC	261,	Spring	2017,	UR	

𝑇"#$

𝑇%&'

Wait-Die

𝑇"#$	 is allowed towait for	𝑇%&'	
𝑇%&'	 will die when	it waits for	𝑇"#$

CSC	261,	Spring	2017,	UR	

X Wait

DieX

Requests	
Lock

Requests	
LockHolds	Lock

Holds	Lock

X

Wound Wait

𝑇"#$	 will	wound	𝑇%&'	
𝑇%&'	waits	for	𝑇"#$

CSC	261,	Spring	2017,	UR	

X

Wait

Wound

X

Requests	
Lock

Requests	
LockHolds	Lock

Holds	Lock

X

Deadlock Avoidance

• Waits-for graph:
– For each transaction entering into

the system, a node is created.
– When a transaction Ti requests for

a lock on an item, say X, which is
held by some other transaction Tj,
a directed edge is created from
Ti to Tj.

– If Tj releases item X, the edge
between them is dropped and
Ti locks the data item.

• The system maintains this wait-
for graph for every transaction
waiting for some data items
held by others. The system
keeps checking if there's any
cycle in the graph.

CSC	261,	Spring	2017,	UR	

• Here, we can use any of the two following approaches −
• First, do not allow any request for an item, which is already

locked by another transaction.
– This is not always feasible and may cause starvation, where a

transaction indefinitely waits for a data item and can never
acquire it.

• Second, roll back one of the transactions.
– It is not always feasible to roll back the younger transaction, as it

may be important than the older one.
–With the help of some relative algorithm, a transaction is chosen,

which is to be aborted.
– This transaction is known as the victim and the process is known

as victim selection.

CSC	261,	Spring	2017,	UR	

Transaction Characteristics in SQL

• SQL allows to specify three (3) characteristics of a
transaction
– Access mode
• READ ONLY and READ WRITE

– Diagnostics size
• (Determines # of error conditions.)

– Isolation level
• Controls the extent to which a given transaction is exposed to actions of

other transactions

CSC	261,	Spring	2017,	UR	

Transaction Characteristics in SQL

CSC	261,	Spring	2017,	UR	

Unrepeatable	Read

Transaction Characteristics in SQL

Isolation	Level Dirty	Read Unrepeatable
Read

Phantom	

READ	UNCOMMITED Maybe Maybe Maybe
READ	COMMITED No Maybe Maybe
REPEATABLE READ No No Maybe
SERIALIZABLE No No No

CSC	261,	Spring	2017,	UR	

Example:	SET	TRANSACTION	ISOLATION	LEVEL	SERIALIZABLE	READ	ONLY

Crash Recovery

• The recovery manager of a DBMS is responsible for
ensuring transaction atomicity and durability
– Atomicity by undoing the actions of transitions that do not

commit
– Durability by making sure that all actions of committed

transactions survive system crashes.

• The transaction manager of a DBMS controls the execution
of transactions.
– Before reading and writing objects during normal execution, locks

must be acquired (and released at some later time) according to a
chosen locking protocol.

CSC	261,	Spring	2017,	UR	

Stealing Frames and Forcing Pages

• Writing objects rises two important questions:
– Can changes to an Object O made by a Transaction T be written to

disk before T commits?
• Other Transaction way ’steal’ the page.
• Steal approach

–When a transaction commits, must we ensure that all changes it
has made to objects are immediately forced to disk?
• If yes, we call that a force approach.

• Easy: No Steal, force approach
• But have drawbacks

CSC	261,	Spring	2017,	UR	

Drawbacks

• No-steal assumes all pages modified by ongoing transactions
can be accommodated in the buffer pool

• Force approach results in excessive page I/O

• Most system uses a steal, no force approach.
– Allows writing dirty frames to disk
– Do not enforce immediate writing back after commit.

CSC	261,	Spring	2017,	UR	

Who handles recovery?

• Recovery Manager
• Handles:
– Atomicity
• By undoing actions that do not commit

– Durability
• Making sure committed transactions survive system crashes

CSC	261,	Spring	2017,	UR	

Solution?

• WAL (Write-Ahead Log)
• Enables the recovery manager to:
– Undo the actions of aborted and incomplete transactions
– Redo the actions of committed transactions.

• Example:
– Changes of transactions that did not commit prior to crash might

have written to the disk (due to steal approach)
• Changes can be identified from the log and undone.

– A transactions that committed before the crash may have updates
not written to the disk. (due to no-force)
• Changes can be identified from the log and written to disk

CSC	261,	Spring	2017,	UR	

Example	of	Recovery	Algorithm:	ARIES	

Overview of ARIES

• Algorithms for Recovery and Isolation Exploiting
Semantics, or ARIES
– A recovery algorithm designed to work with a no-force, steal

database approach
– Used by IBM DB2, Microsoft SQL Server and many

other database systems

CSC	261,	Spring	2017,	UR	

3 main principles

• Three main principles lie behind ARIES:
–Write-ahead logging:
• Any change to an object is first recorded in the log, and the log must be

written to stable storage before changes to the object are written to
disk.Repeating history during

– Redo:
• On restart after a crash, ARIES retraces the actions of a database before

the crash and brings the system back to the exact state that it was in before
the crash. Then it undoes the transactions still active at crash

– Undo:
• Changes made to the database while undoing transactions are logged to

ensure such an action isn't repeated in the event of repeated restarts.

• (Refer: https://en.wikipedia.org/wiki/Algorithms_for_Recovery_and_Isolation_Exploiting_Semantics)

CSC	261,	Spring	2017,	UR	

Summary

• Concurrency achieved by interleaving TXNs such that
isolation & consistency are maintained
–We formalized a notion of serializability that captured such a

“good” interleaving schedule

• We defined conflict serializability, which implies
serializability

• Locking allows only conflict serializable schedules
– If the schedule completes… (it may deadlock!)

CSC	261,	Spring	2017,	UR	

Acknowledgement

• Some of the slides in this presentation are taken from the
slides provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

• https://vladmihalcea.com/2014/01/05/a-beginners-guide-to-
acid-and-database-transactions/

• Spark slides and material: Jonathan Carroll-Nellenback
(CIRC, UofR)

CSC	261,	Spring	2017,	UR	

