[L10)

TMELIORA]

&

ROCHESTER

Distributed Databases: SQL vs. NoSQL
Gul Seda Unal [21], Yuchen Zheng [87]

University of Rochester, New York

Introduction

Distributed Database is a database where portions of the database are stored in multiple
physical locations and processing is distributed among multiple database nodes.

SQL Structured Query Language, is the standard language for relational database man-
agement systems.

NoSQL The need to store, process and analyze the unstructured data led to the devel-
opment of schema-less alternatives to SQL, namely NoSQL known as not only SQL.
SQL vs. NoSQL for Distributed Databases a thorough comparison between SQL and
NoSQL for distributed databases is provided on many aspects from model features, data
integrity and flexibility to scalability.

NoSQL
REY X @ [« [

Gaming Social

sQl
@ =

i = -
= b Mobie Enterprise Mobile Data mart

> [BER

Document
database

Enterprise

Relational table storage

o
L
'|I. ",
1 g
Hl. :
",
'|I.
Y,
":

T I|' - -] =
Key/value store Column family store

Relationships use joins

Figure 1: SQL Database for Social Media [1]

SQL vs. NoSQL in Distributed Databases

SQL and NoSQL are both great inventions to keep data storage and retrieval optimized
and smooth with one having some advantages over the other in certain scenarios.
NoSQL has gained greater interest with the increasing demand in social networks. There-
fore, a nice comparison of SQL and NoSQL can be achieved through a social media
database where users interact with each other by posts and comments.

Consider a social platform where users engage with each other in terms of posts associ-
ated with images, audio, video, comments, links to websites in a live stream. Using SQL
a query with many joins is necessary to retrieve the content. With SQL, many queries

and joins will be necessary to complete the task.

redied
I:',l

many

with many
assigned

by -

ma my

f}—written by with many

with many

Wwith many

with many

Figure 2: SQL Database for Social Media [1]

A solution to this problem from a relational perspective can be using JSON, as it is the
supported dynamic data format in SQL. Another approach, from a nonrelational perspec-
tive would be using NoSQL. NoSQL simplifies the approach for this specific scenario.

Due to its simplicity, the use of NoSQL has grown with the social media platforms in

order to successfully handle the growing need of loT (Internet of Things).

SQL

Scalability in relational SQL databases has been an important issue until Google an-
nouncing F1, a SQL database that is trivial to scale up, to run at the core of AdWords
business; SQL is guaranteed to be available for distributed databases [2].

Figure 3: Google's AdWords business running on SQL distributed (scalable) database [2]

Traditional Relational

[L10)

TMELIORA]

&

ROCHESTER

Clustered Hierarchical

Customer(Customerld, ...)
Campaign(Campaignid, Customerid, ...)

Customer(Customerld, ...)
L—*Dampaign{ﬂustnmeﬂd, Campaignid, ...)

;:E;?::l AdGroup(AdGroupld, Campaignid, ...) AdGroup(Customerld, Campaignld, AdGroupld, ...)
~— _/
_ Primary kEy includes
Foreign key references only foreign keys that reference
the parent record. all ancestor rows.
.. : 4 ™
Joining related data often requires reads Customer(l,...) W
spanning multiple machines. campaign(l,3)
Ad ' 3 ! 6 Related data is clustered
customer(l,...) - ~ Rroup (1,3:9s:---) > for fast common-case
AdGroup(6,3,...) AdGroup (1,3,7,...) join processing.
Physical Customer(2,...) _
Layout AdGroup(7,3,...) Campaign(1l,4,...)
AdGroup(8,4,...) \AdGroup (1,4,8,...) ,)

Campaign(3,1,...)
Campaign(4,1,...)

AdGroup(9,5,...)
\ A

Campaign(5,2,...)

Physical data partition
boundaries occur
between root rows.

Customer(2,...)
Campaign(2,5,...)

AdGroup (2,5,9,...)

NoSQL

SQL vs. NoSQL

NoSQL 5QL
Model Mon-relational Relational
St data in JSON d ts, k I ' .
ores data in ccuments, key/value pairs, Stores data in 3 table
wide column stores, or graphs
Data Offers flexibility as not every record needs to Great for solutions where every record has the
store the same properties same properties
. Addi ire alteri
MNew properties can be added on the fly g 8 new pru:u.pfartj.r ey TEqUITE aftering
schemas or backfilling data
Relationships are often captured by Relationships are often captured in normalized
denormalizing data and presenting all data for model using joins to resclve references across
an cbject in a single record tables
Good f I-structured I sted
cod for semi-structured, complex, or neste Good for structured data
data
Schema Dynamic or fleable schemas Strict schema
Database is sch - stic and the sch ' _ .
ranase [s sefEmaragnustc and e stNEMa s ¢ hema must be maintained and kept in sync
dictated by the application. This allows for .
- . : . between application and database
agility and highly iterative development
Transactions ACID transaction support varies per solution Supports ACID transactions
Consist 8 Eventual to st It rted .
nEsreney VEMHIaT e SHONY Consistenty sUppertes Strong consistency enforced
Availability depending on sclution
Consistency, availability, and performance can . S N
‘) . Consist tized labil d
be traded to meet the needs of the application :rr;;lrm?:gels prioritized over availability an
(CAP theorem) P
Insert and update performance 15 dependent
. . upcn how fast a write 1s committed, as strong
Performance can be maximized by reducing . .
Performance . . censistency 1s enforced. Performance can be
consistency, iIf needed _ . . .
maxirmized by using scaling up available
rescurces and using in-memory structures,
All information about an entity 15 typically in a Infermation about an entity may be spread
single record, so an update can happen in one across many tables or rows, requinng many
cperation joins to complete an update or a query
Scale Scaling 1s typically achieved hornizontally with Scaling 1s typically achieved vertically with more
data partitioned to span servers SEMVET FESOUNCES
ol

Figure 4: SQL vs NoSQL [1]

Conclusions

Distributed databases have better reliability, higher speed and low communication cost
compared to the traditional databases. With big data and increasing user activity in
social platforms distributed databases are in increasing demand.

NoSQL supporting a nonrelational, flexible, dynamic and horizontally scalable databases
is the frequently selected programming language for distributed database systems. SQL,
on the other hand, enforces strict schema, structured data, strong consistency and ver-
tical scalability. Depending on the needs, the best fit between SQL and NoSQL can be
decided. In distributed systems, due the the scalability problems of SQL, mostly NoSQL
is preferred. However, there is evidence that scalability in SQL can be achieved with

clustered hierarchical distributed databases [2].

References

[1] NoSQL vs. SQL, Microsoft Azure:

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-nosql-vs-sql

[2] lan Rae et.al. August 26th 2013, Proceedings of the VLDB Endowment, Vol. 6, No. 11

Database Systems, Spring 2017, University of Rochester

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-nosql-vs-sql

