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Introduction

Distributed Database is a database where portions of the database are stored in multiple
physical locations and processing is distributed among multiple database nodes.

SQL Structured Query Language, is the standard language for relational database man-
agement systems.

NoSQL The need to store, process and analyze the unstructured data led to the devel-
opment of schema-less alternatives to SQL, namely NoSQL known as not only SQL.
SQL vs. NoSQL for Distributed Databases a thorough comparison between SQL and
NoSQL for distributed databases is provided on many aspects from model features, data
integrity and flexibility to scalability.
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Figure 1: SQL Database for Social Media [1]

SQL vs. NoSQL in Distributed Databases

SQL and NoSQL are both great inventions to keep data storage and retrieval optimized
and smooth with one having some advantages over the other in certain scenarios.
NoSQL has gained greater interest with the increasing demand in social networks. There-
fore, a nice comparison of SQL and NoSQL can be achieved through a social media
database where users interact with each other by posts and comments.

Consider a social platform where users engage with each other in terms of posts associ-
ated with images, audio, video, comments, links to websites in a live stream. Using SQL
a query with many joins is necessary to retrieve the content. With SQL, many queries

and joins will be necessary to complete the task.
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Figure 2: SQL Database for Social Media [1]

A solution to this problem from a relational perspective can be using JSON, as it is the
supported dynamic data format in SQL. Another approach, from a nonrelational perspec-
tive would be using NoSQL. NoSQL simplifies the approach for this specific scenario.

Due to its simplicity, the use of NoSQL has grown with the social media platforms in

order to successfully handle the growing need of loT (Internet of Things).

SQL

Scalability in relational SQL databases has been an important issue until Google an-
nouncing F1, a SQL database that is trivial to scale up, to run at the core of AdWords
business; SQL is guaranteed to be available for distributed databases [2].

Figure 3: Google's AdWords business running on SQL distributed (scalable) database [2]
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Figure 4: SQL vs NoSQL [1]

Conclusions

Distributed databases have better reliability, higher speed and low communication cost
compared to the traditional databases. With big data and increasing user activity in
social platforms distributed databases are in increasing demand.

NoSQL supporting a nonrelational, flexible, dynamic and horizontally scalable databases
is the frequently selected programming language for distributed database systems. SQL,
on the other hand, enforces strict schema, structured data, strong consistency and ver-
tical scalability. Depending on the needs, the best fit between SQL and NoSQL can be
decided. In distributed systems, due the the scalability problems of SQL, mostly NoSQL
is preferred. However, there is evidence that scalability in SQL can be achieved with

clustered hierarchical distributed databases [2].
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