

 1

Two Advanced Optimization Approaches for SQL Queries

Fangzhou Liu

University of Rochester
Computer Science Department

fliu14@ur.rochester.edu

Jiang Shang

University of Rochester
Data Science Department

jshang5@ur.rochester.edu

ABSTRACT
Today’s complex world requires numerous data manipulations,
over massive data sets stored in large database systems. It can be as
simple as "finding the address of a person with SSN# 123-45-
6789," or more complex like "finding the average salary of all the
employed married men in California between the ages 30 to 39, that
earn less than their wives”. So, speeding up the query can
significantly increase the efficiency and guarantee the service
quality. In this paper, we mainly focused on the query optimization
techniques from two perspectives, one is in heuristics level that can
help speed up the SQL queries, the other are techniques that can
accelerate the query during the compile or executing phase.

1. INTRODUCTION
Optimization has always been, and still is, a central topic in
database research [1]. In database systems, the term Query refers to
extract specific tuples or data according to some pre-set conditions.
In modern database system, there embeds a specific software called
Optimizer that mainly take the responsibility of Query optimization.
Figure 1 shows the architecture of an Optimizer. Generally, it
works with the following procedure:

1) Take a SQL Query statement as input.

2) Rewrite the SQL Query statement into a semantically
equivalent statement with lower costs.

3) Generate a bunch of Execution Plans with the same
semantic.

4) Selected the best plan with minimum cost calculated
by an internal Estimator.

5) Executed the selected plan and output the queried data.

Fig. 1. Query Optimizer Architecture

Query Transformation is a simple level of query optimization, it
firstly transfers the SQL statement into a Query Tree or Query
Graph and then apply heuristic query-processing strategies to
rewrite the query. The Query transformation was deployed based
on the following rules: [1]

• Perform Selection/Projection operations early.

• Perform operations with smaller join first when doing
consecutive join operations.

• Compute common expressions once and save result.

However, the query statement can be further optimized if we can
further accelerate the Plan Selection time given that the number of
candidate plans can grow exponentially as the query becomes more
and more complex. Cited from [2], “more time is spent in
evaluating the query plan than actually calculating the query
result”. The optimizer should strike a balance between selecting
best performance, which will cost more time in plan selecting phase,
and less selecting time, which will lead to less optimized plan. In
addition, thus the Query statements will be finally translated to
machine code, we can borrow the ideas coming from Complier
Optimization Theory to further improve the performance of SQL
Queries.

The next session will briefly introduce a robust algorithm that
yields better performance when selecting plans for complex SQL
queries with multiple JOIN operations. Then, we will introduce a
novel system that combines the compiler technology with SQL
optimizations, that can execute SQL queries more efficiently on
large volumes of data.

2. SKYLINE DYNAMIC PROGRAMMING
One common algorithm that was applied for plan selecting is
Dynamic Programming (DP). It can enumerate and identify the
most optimal plan in a shorter time. However, the tradition DP
Selecting algorithm only works well with moderately complex
queries, when it comes to more complex queries, the performance
drops, even though some refinement was added, like Iterative
Dynamic Programming (IDP), which is doing DP iteratively with a
significantly reduced subset of executing plans. In this session, we
will introduce a more powerful DP algorithm called Skyline
Dynamic Programming (SDP).

2.1 SDP Algorithm Detail
The novel metrics for this algorithm is that (a) It applies pruning on
segment of the join graph, instead of the entire join graph. (b) It
adopts a multi-way pruning strategy based on combination of
Selectivity, Cardinality and Costs. So, comparing with the
traditional DP algorithm, it saves both executing time and space.

 2

2.1.1 Skyline Definition
Skyline is an operator that works as a filter in a SQL query. It keeps
those objects that are not worse than others. For example, when
buying international flight ticket from US to China, we would like
to choose those flight with minimum stops, however, a direct flight
without stopping is extremely expensive. In this case, the Skyline
operator would only present those flight plan that are not worse than
others in both price and number of stops.

2.1.2 Pruning Strategies in SDP
Next, we present the special pruning strategies in this algorithm.
Before passing to this algorithm, each input, which is the Join-
Composite-Relations(JCRs) will be tagged with a feature-vector
includes the following attributes: [ROWS(R), COSTS(C),
SELECTIVITY(S)]. Then, the algorithm will apply the Skyline
operator mentioned before to filter objects based on their RC, CS
and RS values. Then, all these three subsets were united and all
JCRs that do not belong to this set will be pruned.

Table 1. Multi-way Skyline Pruning1

Input
JCRs

Feature Vector
[R, C, S]

Skyline

RC CS RS

1-2-3 [187638, 49386, 3.9E-5] √ √ -

1-2-5 [122879, 52132, 1.0E-5] √ √ √

1-3-5 [242620, 49386, 1.0E-5] - - -

1-4-5 [241562, 55388, 6.65E-6] - - √

1-5-6 [385275, 52632, 4.5E-6] - √ √

As Table 1 shows, the algorithm input is a lists of JCRs {1-2-3, 1-
2-5, 1-3-5, 1-4-5, 1-5-6}, the survivor of this algorithm is {1-2-3,
1-2-5, 1-4-5, 1-5-6}, which was selected by Skyline Operator at
least once based on three criteria. Here the JCR {1-3-5} will be
pruned.

2.1.3 SDP Algorithm Running Step
Known the concept of skyline and the pruning strategy, we now
present the running procedure for this SDP algorithm.

STEP 1: Apply the standard DP algorithm for the first iteration,
select the best plan for each relation.

STEP 2: Enumerate each join relation pairs in standard DP and
split these pairs into two groups: PruneGroup (PG) and
FreeGroup (FG), with the criteria that whether the Join
Composite Relations (JCR) is a hub relation.

STEP 3: Apply the Skyline Pruning Strategy on PG and Apply the
standard DP on FG until there are only two additional relations to
be joined for each composite.

2.2 SDP Performance Evaluation
Here is the quantity evaluation of this algorithm. Table 2 and Table
3 show the overall optimization quality and overheads of this
algorithm comparing with standard DP and IDP after applying that
to a star-chain-15 query. In Table2, I means IDEAL solution, G
means GOOD plan, A means ACCEPTABLE plan, B means BAD

1 Data for Table 1-5 comes from [3]

plan, W means WORST-CASE plan-cost increase ratio. We use the
DP as the standard one.

Table 2. Plan Quality (DP, IDP, SDP)

Query
Join

Graph
Technique

Plan Quality (%)

I G A B W

Star-
Chain-15

DP 100 0 0 0 1

IDP 2 44 54 2 10.9

SDP 80 20 0 0 1.2

In this table (Table 2), IDP can select only 2% IDEAL plans and it
will select about 56% percent of the inefficient query plans, while
for SDP, all plans it selects located in the Good region or beyond.
This means that the SDP algorithm lead to more efficient queries.
We can see from the other table (Table 3) that SDP has better
performance with less Memory and Time consumption.

Table 3. Optimization Overheads

Query
Join

Graph
Technique

Memory
 (in MB)

Time
(in sec)

Costing
(in plans)

Star-
Chain-15

DP 32.39 1.00 8.3E5

IDP 7.39 0.20 1.3E5

SDP 4.33 0.10 0.5E5

Furthermore, when it comes to scaling queries with more join nodes,
the performance is far better than other DP algorithms. Table 4, 5
show the optimization results when applying to star-chain-23 query.
Here we let the SDP result as the standard one. From Table 4, it is
obvious that the SDP works significantly better than IDP whose
selected plan all located below Good level.

Table 4. Scaled Plan Quality

Query
Join

Graph
Technique

Plan Quality (%)

I G A B W

Star-
Chain-23

DP * * * * *

IDP 0 0 12 88 25.3

SDP 100 0 0 0 1

Table 5. Scaled Optimization Overheads

Query
Join

Graph
Technique

Memory
(in MB)

Time
(in sec)

Costing
(in plans)

Star-
Chain-23

DP * * *

IDP 460.37 54.7 4.5E6

SDP 55.33 1.08 0.4E6

 3

3. QUERY OPTIIZATION SYSTEM
Now we can go a step deeper to see whether we can apply some
compiler optimization technology when transferring the SQL code
into machine code. According to [4], the current query processing
model doesn’t fully utilize the advantage of modern system
architecture with large main memory space, faster CPUs, register
and caches. So, it puts forward a system that enhance the SQL
performance.

3.1 Compilation-level Optimization
In modern database systems, queries will be finally interpreted into
executable code by an internal interpreter, followed the iterator-
model described in [2]. Basically, each SQL operator consists of a
combination of open (), next()2 and close() methods. However, as
the weakness of most Dynamic Languages, which were interpreted
by an interpreter, whose performance are lower than those static
programming languages, which was compiled by a compiler, SQL
execution speed can also be improved by utilizing compiler
optimization techniques. In the meanwhile, getting the benefit of
modern CPUs pipelining and SIMD (Single Instruction Multiple
Data) instructions.

3.1.1 Vectorization
Vectorization is a process that can transfer a bunch of series
executed instructions into vectorized expression, processing one or
more input arrays and store the result in an output array
homogeneously. In DBMS, instead of calling functions for each
single tuple, we now calling the same function with a block of
tuples. Thus the data is represented in single-dimension array
format. So, using vectorization, we can significantly accelerate the
data accessing rate. Work [2] doing the performance evaluations
for vectorization processing in PROJECT, SELECT and HASH
JOIN operations. The result is that the vectorization can produce
the best executing performance for SQL queries combined with
compilation.

3.1.2 Data Centric Query Compiling
Instead of passing data between operator to the other, this
compiling technique maximize the data locality by keeping the
attributes in CPU register as long as possible by introducing the
pipeline. When data was loaded, it will pass through all operators
that can work on it directly until meet a pipeline breaker. All
operators perform their work, but do not write their result back to
the memory. The goal of this approach is to access the memory as
rarely as possible thus the memory access is quite expensive. That’s
also the reason why we introduced the index or B tree structure
when processing the queries.

Fig. 2 From SQL to Executable Code

2 next(): produces one new tuple

Figure 2 shows the process how the code was generated based on a
SQL query in this method. The region marked by each color
indicates different pipeline fragment. Tuples will flow through
these fragment and kept in registers.

The performance of this compiling methods was given by [5]. The
conclusion is that this Data Centric Query execution, with
produce/consume model and LLVM compiler backend, works
efficiently.

3.2 System Architecture
By analyzing previous researches, we here also introduce a JIT
(Just-in-time) based DBMS systems. This system transforms SQL
queries into machine independent IR at the query plan or operator
level and then applies various optimizations on it and finally output
the machine code generated by JIT compiler. Figure 3 presents this
system architecture. Next, we’ll briefly explain some components
that were newly added in this new system.

Fig. 3. System Architecture Overview

• Query Workload Analyzer decides whether user’s
ad-hoc query is JIT applicable or not.

• IR Syntax Optimization Rules provides
optimization rules considering only on the IR level,
not the SQL semantics.

• IR Manager caches IRs generated from previous
SQL and provides the IR if the same SQL query are
executed.

• Micro Optimizer is the place where the IR Syntax
Optimization Rule was applied. Some optimizations
like SIMD and pipelining are performed here.

4. CONCLUSION
In this paper, we first analyze the current SQL optimization
methods and then discuss two additional ways in which we can
further accelerate the query speed, one is through plan selecting and
the other is through query executing. For the first one, we introduce
a Skyline Dynamic Programming (SDP) that can improve the
performance comparing with the standard DP algorithm, especially
in complex query conditions which contains numerous JOIN
operations. Then, for the query executing part, we explain some
modern compilation-level optimization approaches, like
vectorization and pipelining, that can significantly accelerate the
executing speed for SQL queries in modern hardware architectures.
And in the end, we put forward a refined SQL optimization system

 4

that combines the current SQL Optimizer with the JIT Compilers
together when optimizing the query statements.

5. REFERENCES
[1] Danda Li, Lu Han; Yi Ding, “SQL Query Optimization

Methods of Relational Database System,” Second
International Conference on Computer Engineering and
Applications, pages 557-560, 2010

[2] J. Sompolski, M. Zukowski, and P. Boncz, “Vectorization vs.
Compilation in Query Execution,” Proc. of DaMoN ’11,
New York, NY, USA, 33-40, 2011

[3] Gopal Chandra Das, and Jayant R. Haritsa, “Robust
Heuristics for Scalable Optimization of Complex SQL
Queries,” IEEE 23rd Internation Conference on Data
Engineering, pages 1281-1283, 2007

[4] Myungcheol Lee; Miyoung Lee; ChangSoo Kim. A JIT
Compilation-Based Unified SQL Query Optimization
System. In 6th International Conference on IT Convergence
and Security (ICITCS). 2016

[5] T. Neumann and V. Leis, “Compiling Database Queries into
Machine Code,” IEEE Data Engineering Bulletin, vol. 37,
2014

[6] G. Graefe and W. J . McKenna, “The Volcano Optimizer
Generator: Extensibility and Efficient Search,” Proc. of
ICDE ’93, pages 209-218, 1993

[7] Query Optimizer, Oracle Database SQL Tuning Guide,
https://docs.oracle.com/database/121/TGSQL/tgsql_optcncpt
.htm#TGSQL194, Figure 4-1, Figure 4-2

[8] S.B. Navathe, R. Elmasri, Fundamental of Database Systems
7th Edition, Chapter 19.1, Chapter 19.5.5, pp 692, pp 725-
726

[9] Borzsonyi, Stephan; Kossmann, Donald; Stocker, Konrad
(2001). "The Skyline Operator". Proceedings 17th
International Conference on Data Engineering: 421–430.

