
CSC 261/461 – Database Systems
Lecture 18

Spring 2018



Announcement

• Quiz 8 WAS due at 2:59 pm today

• Project 2 Part 2 is due tomorrow:
– 03/29/2018 (11:59 pm)



TYPES OF INDEXES



Types of Indexing

• Primary Indexes

• Clustering Indexes

• Secondary Indexes

• Multilevel Indexes
– Dynamic Multilevel Indexes

• Hash Indexes

• Easy introduction: https://www.tutorialspoint.com/dbms/dbms_indexing.htm



Sorted Files

• Fig 16.7

Recap: No Indexing



Sorted Files (zoomed)

• Fig 16.7

Recap: No Indexing



Primary Indexes: Index for Sorted (Ordered) Files





Example 1

• Suppose that we have an ordered file with r = 30,000 records 
stored on a disk with block size B = 1024 bytes. 

• File records are of fixed size and are unspanned, with record length 
R = 100 bytes. Also, suppose that the ordering key field of the file is 
V = 9 bytes long, a block pointer is P = 6 bytes long, and we have 
constructed a primary index for the file.

• Find out:
1. Cost of searching for a record using Binary Search on the data file
2. Cost of searching for a record using the index



Example 1 (Part 1)

• Suppose that we have an ordered file with r = 30,000 records 
stored on a disk with block size B = 1024 bytes. 

• File records are of fixed size and are unspanned, with record length 
R = 100 bytes. Also, suppose that the ordering key field of the file is 
V = 9 bytes long, a block pointer is P = 6 bytes long, and we have 
constructed a primary index for the file.

Find out the cost of searching for a record using Binary Search on the 
data file



Answer

• Blocking factor:
• bfr = ⎣(B/R)⎦ = ⎣(1024/100)⎦ = 10 records per block.

• The number of blocks needed for the file is 
– b = ⎡(r/bfr)⎤ = ⎡(30000/10)⎤ = 3000 blocks. 

• A binary search on the data file would need approximately
• ⎡log2 b⎤= ⎡(log23000)⎤ = 12 block accesses.



Example 1  (Part 2)

• Suppose that we have an ordered file with r = 30,000 records 
stored on a disk with block size B = 1024 bytes. 

• File records are of fixed size and are unspanned, with record length 
R = 100 bytes. Also, suppose that the ordering key field of the file is 
V = 9 bytes long, a block pointer is P = 6 bytes long, and we have 
constructed a primary index for the file.

• Find out the cost of searching for a record using the index



Answer

• The size of each index entry :
– Ri= (9 + 6) = 15 bytes,
So the blocking factor for the index is bfri= ⎣(B/Ri)⎦ = ⎣(1024/15)⎦ = 68 entries per 
block. 

• The total number of index entries is equal to the number of blocks in the 
data file, which is 3000. 

• The number of index blocks is hence bi= ⎡(ri/bfri)⎤ = ⎡(3000/68)⎤ = 45 
blocks. 

• To perform a binary search on the index file would need
⎡(log2bi)⎤ = ⎡(log245)⎤ = 6 block accesses. 

• To search for a record using the index, we need one additional block 
access to the data file for a total of 6 + 1 = 7 block accesses—an 
improvement over binary search on the data file, which required 12 disk 
block accesses.





Clustering Indexes (Index for Sorted (on non-key) Files)



Clustering Indexes (Index for Sorted (on non-key) Files)

Don’t get confused by 
these two arrows. 
They are pointing to 
the same block

Points to the first block 
that contains the 
clustering field



Secondary Indexes (on a key field)

• Secondary 
means of 
accessing a 
data file

• File records 
could be 
ordered, 
unordered, 
or hashed

Note: The data file is a 
heap file, i.e., not sorted



Secondary Indexes (on a key field)

Note: The data file may be a 
heap file, i.e., not sorted



Secondary Indexes (on a non-key field)
Extra level of indirection

• Provides logical ordering
– Though records are not 

physically ordered



Secondary Indexes (on a non-key field)
Extra level of indirection



High-level Categories of Index Types

• Multilevel Indexes
–Very good for range queries, sorted data
– Some old databases only implemented B-Trees
–We will mostly look at a variant called B+ Trees

• Hash Tables 
–Very good for searching

Real difference between structures: costs of 
ops determines which index you pick and why



MULTILEVEL INDEXES



What you will learn about in this section

1. ISAM

2. B+ Tree



1. ISAM



Primary Indexes: Index for Sorted (Ordered) Files

Review Slide



Review Slide



ISAM

• Indexed Sequential 
Access Method

– For an index 
with	"!	blocks
• Earlier: log!	b"	block 

access
• Now: log#$	b" block 

access
• (&' = &)*'+,)



ISAM



1. B+ TREES



What you will learn about in this section

1. B+ Trees: Basics

2. B+ Trees: Design & Cost

3. Clustered Indexes



B+ Trees

• Search trees 
– B does not mean binary!

• Idea in B Trees:
–make 1 node = 1 physical page
– Balanced, height adjusted tree (not the B either)

• Idea in B+ Trees:
–Make leaves into a linked list (for range queries)

https://en.wikipedia.org/wiki/B-tree



B+ Tree Basics

10 20 30

Each non-leaf (“interior”) 
node has ≥ d and ≤	2d 
keys*

*except for root node, which 
can have between 1 and 2d keys

Parameter d = degree 
The minimum number of key an 
interior node can have 



B+ Tree Basics

10 20 30

k < 10

10 ≤ "	< 20

20 ≤ "	< 30
30 ≤ "

The n keys in a 
node define n+1 
ranges 



B+ Tree Basics

10 20 30

Non-leaf or internal node

22 25 28

For each range, in a non-leaf 
node, there is a pointer to 
another node with keys in 
that range



B+ Tree Basics

10 20 30

Leaf nodes also have 
between d and 2d keys, 
and are different in that:

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17



B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

Leaf nodes also have 
between d and 2d keys, 
and are different in that:

Their key slots contain 
pointers to data records

21 22 27 28 30 33 35 371511



B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

21 22 27 28 30 33 35 371511

Leaf nodes also have 
between d and 2d keys, 
and are different in that:

Their key slots contain 
pointers to data records

They contain a pointer 
to the next leaf node as 
well, for faster 
sequential traversal



B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

Note that the pointers at 
the leaf level will be to the 
actual data records (rows).  

We might truncate these 
for simpler display (as 
before)…

Name: John
Age: 21

Name: Jake
Age: 15

Name: Bob
Age: 27

Name: Sally
Age: 28

Name: Sue
Age: 33

Name: Jess
Age: 35

Name: Alf
Age: 37Name: Joe

Age: 11

Name: Bess
Age: 22

Name: Sal
Age: 30



Some finer points of B+ Trees



Searching a B+ Tree

• For exact key values:
– Start at the root
–Proceed down, to the leaf

• For range queries:
–As above
–Then sequential traversal

SELECT name
FROM people
WHERE age = 25

SELECT name
FROM people
WHERE 20 <= age
AND  age <= 30



B+ Tree Exact Search Animation

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 12 15 20 28 30 40 60 63 80 84 89

K = 30? 

30 < 80

30 in [20,60)

To the 
data!

Not all nodes pictured

30 in [30,40)



B+ Tree Range Search Animation

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 12 15 20 28 30 40 59 63 80 84 89

K in [30,85]? 

30 < 80

30 in [20,60)

To the 
data!

Not all nodes pictured

30 in [30,40)



B+ Tree Design

• How large is d?

• Example:
– Key size = 4 bytes
– Pointer size = 8 bytes
– Block size = 4096 bytes

• We want each node to fit on a single block/page
– 2d x 4  + (2d+1) x 8  <=  4096 à d <= 170



B+ Tree: High Fanout = Smaller & Lower IO

• As compared to e.g. binary search trees, 
B+ Trees have high fanout (between d+1 
and 2d+1)

• This means that the depth of the tree is 
small à getting to any element requires 
very few IO operations!
– Also can often store most or all of the B+ Tree 

in main memory!

The fanout is defined as the 
number of pointers to child 
nodes coming out of a node

Note that fanout is dynamic-
we’ll often assume it’s 
constant just to come up with 
approximate eqns!



Simple Cost Model for Search

• Let:
– f = fanout, which is in [d+1, 2d+1] (we’ll assume it’s constant for our 

cost model…)
– N = the total number of pages we need to index
– F = fill-factor (usually ~= 2/3)

• Our B+ Tree needs to have room to index N / F pages!
– We have the fill factor in order to leave some open slots for faster 

insertions

• What height (h) does our B+ Tree need to be?
– h=1 à Just the root node- room to index f pages
– h=2 à f leaf nodes- room to index f2 pages
– h=3 à f2 leaf nodes- room to index f3 pages
– …
– h à fh-1 leaf nodes- room to index fh pages!

à We need a B+ Tree 
of height h = log! "#



Fast Insertions & Self-Balancing

– Same cost as exact search
– Self-balancing: B+ Tree remains balanced (with respect to height) 

even after insert

B+ Trees also (relatively) fast for single insertions!
However, can become bottleneck if many insertions (if fill-

factor slack is used up…)



Example

• Calculate the order p (order is same as fan-out) of a B+-tree.
• Suppose that the search key field is V = 9 bytes long, the block size 

is B = 512 bytes, a record pointer is Pr = 7 bytes, and a block 
pointer is P = 6 bytes. 



Answer

• An internal node of the B+-tree can have up to p tree pointers and 
p – 1 search field values; these must fit into a single block. 

• Hence, we have:
(p * P) + ((p – 1) * V) ≤ B
(P * 6) + ((P − 1) * 9) ≤ 512
(15 * p) ≤ 521

So: p = 34



Order of the leaf nodes

The leaf nodes of the B+-tree will have the same number of values and
pointers, except that the pointers are data pointers and a next pointer. 
Hence, the
order pleaf for the leaf nodes can be calculated as follows:

(pleaf* (Pr + V)) + P ≤ B
(pleaf* (7 + 9)) + 6 ≤ 512
(16 * pleaf) ≤ 506

It follows that each leaf node can hold up to pleaf= 31 key value/data 
pointer combinations,
assuming that the data pointers are record pointers.



Insertion

• Perform a search to determine what bucket the new record should go 
into.

• If the bucket is not full (at most (b-1) entries after the insertion), add the 
record.

• Otherwise, split the bucket.
– Allocate new leaf and move half the bucket's elements to the new bucket.
– Insert the new leaf's smallest key and address into the parent.
– If the parent is full, split it too.

• Add the middle key to the parent node.
– Repeat until a parent is found that need not split.

• If the root splits, create a new root which has one key and two pointers. 
(That is, the value that gets pushed to the new root gets removed from 
the original node)

• Note: B-trees grow at the root and not at the leave

b = f = branching factor/ fan-out



Insertion (Insert 85)

b = f = branching factor/ fan-out = 3

20 40 80 90

40 80



Insertion (Insert 85)

b = f = branching factor/ fan-out = 3

20 40 80 90

40 80

85

This is what we would 
like. But the maximum 
number of keys in any 
node is (3-1) = 2 
So, split.



Insertion (Insert 85)

b = f = branching factor/ fan-out = 3

20 40 80

40 80

85

Allocate new leaf 
and move half the 
bucket's elements 
to the new bucket.

90



Insertion (Insert 85)

b = f = branching factor/ fan-out = 3

20 40 80

40 80

85

Insert the new 
leaf's smallest key 
and address into 
the parent.

90

85



Insertion (Insert 85)

b = f = branching factor/ fan-out = 3

20 40 80

40 80

85

This is not allowed, 
as the parent is 
full. Need to split

90

85



Insertion (Insert 85)

b = f = branching factor/ fan-out = 3

20 40 80

40

80

85

If the parent is full, split it too. 
Add the middle key to the 
parent node.

Repeat until a parent is found 
that needs no spliting

90

85



Insertion (Insert 85)

b = f = branching factor/ fan-out = 3

20 40 80

40

80

85

If the root splits, create a new 
root which has one key and 
two pointers. 

(That is, the value that gets 
pushed to the new root gets 
removed from the original 
node)

90

85



Deletion

• Start at root, find leaf L where entry belongs.
• Remove the entry.
– If L is at least half-full, done!
– If L has fewer entries than it should,

• If sibling (adjacent node with same parent as L) is more than half-full, re-distribute, 
borrowing an entry from it.

• Otherwise, sibling is exactly half-full, so we can merge L and sibling.
• If merge occurred, must delete entry (pointing to L or sibling) from 

parent of L.
• Merge could propagate to root, decreasing height.

• https://www.cs.usfca.edu/~galles/visualization/BPlus
Tree.html

• The degree in this visualization is actually fan-out f or branching factor b.

Not required for quiz or 
exam



• Find 86



• Delete it



• Stealing from right sibling (redistribute).
• Modify the parent node



• Finally,
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