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Where to Find Stuff

e http://cs.rochester.edu/courses/572/fall2018/
— General info
— Various course materials

e Slack for all communication
— Only place for all announcements
- Q&A
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Basic Building Block: Transistors

MQOS = Metal Oxide Semiconductor
* two types: n-type and p-type

n-type (NMOS)

« when Gate has positive voltage,
short circuit between #1 and #2
(switch closed)

« when Gate has zero voltage,

open circuit between #1 and #2
(switch open)

Gate =1

Terminal #2 must be
connected to GND (0V).

Gate =0

#1

#2



Basic Building Block: Transistors

p-type is complementary to n-type (PMOS)
* when Gate has positive voltage,

open circuit between #1 and #2 #1

(switch open) 1
* when Gate has zero voltage,

short circuit between #1 and #2

(switch closed)
#2

Gate =1

Gate =0

Terminal #1 must be
connected to +1.2V




CMOS Circuit

* Complementary MOS

e Uses both n-type and p-type MOS transistors

* p-type
 Attached to + voltage
 Pulls output voltage UP when input is zero
* n-type
« Attached to GND
« Pulls output voltage DOWN when input is one



Inverter (NOT Gate)
- +1.2V

Y +0.0V



Inverter (NOT Gate)

1.2V

d—dg l PMOS

In L %—OUt
+0.0V




Inverter (NOT Gate)

fﬂlﬂ
|




Inverter (NOT Gate)
- +1.2V

Y +0.0V




Inverter (NOT Gate)

-

- +1.2V

— QUL

L

Y +0.0V




Inverter (NOT Gate)
- +1.2V

5
In — QUL

L

Y +0.0V

In Out




Dynamic Power

T Vad

4.

J—
|
||
@



Dynamic Power

T Vad Vdd |

{ ] -\ v(t)

t0

tl



Dynamic Power

T Vdd Vdd

—C

|

t0 t1

E,=| "P(t)dt = [ "W, —v)-i(t)dt = [ "W, —v)-c(dv/dt)dt =

=cV,, I'dv—crv-dv =cV,’ —1/2chd2 =1/2¢cV,,
lo ! P s

0




Dynamic Power

T Vdd Vdd

—C

|

t0 tl

E,.=| "P(t)dt = [ "W, —v)-i(t)dt = [ "W, —v)-c(dv/dt)dt =

=cV,, t'dv—crv-dv =cV,’ —l/2chd2 =1/2¢cV,,’
fo ! — ?

0

Energy dissipated for every transition (0->1 or 1->0): 2 C V2



Dynamic Power

T Vdd Vdd
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0

Energy dissipated for every transition (0->1 or 1->0): 2 C V2
P=a:(E/T)=a*Ef=%aCV,2f

a: switch activity factor. No switching, no dynamic power consumption
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Dynamic Power

P=KkCV2f

* Frequency f is proportional to Voltage V

* |ntuitively: higher voltage moves electrons faster, so the clock
speed can go up also (“overclocking” just increases clock
speed without increasing voltage => machine might crash)

* 15% reduction in voltage requires about 15% slow down in
frequency

* What'’s the impact on dynamic power? 0.853% = 60% -> 40%
dynamic power reduction.
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Multi-core Reduces Dynamic Power

P=kCf

e Dynamic power favors parallel processing over higher clock rate
* Jake a core and replicate it 4 times: 4x speedup & 4x power

* Jake a core and clock it 4 times faster: 4x speedup but 64x
dynamic power!

* Another way to think about this

* |f atask can be perfectly parallelized by 4 cores, we can
reduce the clock frequency of each core to 1/4 while retaining
the same performance

* Dynamic power becomes 4 x (1/4)3 = 1/16
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Dynamic Voltage and Frequency Scaling

Time >
CPU : Low Frequency | Low Frequency.
veroy I

e DVFS: dynamic scales voltage and frequency depending on how much
slack there is to reduce power with little performance impact

e Mostly done in OS today as the “CPU frequency governor”: based on
CPU utilization, coarse-grained (e.g., ~10 ms)

e You can control it. Try it yourself.
 Hardware can do it in finer granularity, but more complex circuits

https://www.kernel.org/doc/Documentation/cpu-freg/governors.txt
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At MORGANNCLAYPOOL PUBLISHERS

Computer Architecture
Techniques for
Power Efficiency

Stefanos Kaxiras
Margaret Martonosi

S YNTHESIS LLECTURES ON
COMPUTER ARCHITECTURE

Mark D. Hill, Sevies Editor
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Moore’s Law

e Gordon Moore in 1965 predicted that the number of transistors
doubles every year

e |In 1975 he revised the prediction to doubling every 2 years
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Moore’s Law

e Gordon Moore in 1965 predicted that the number of transistors
doubles every year

e |In 1975 he revised the prediction to doubling every 2 years

e Today’s widely-known Moore’s Law: number of transistors double
about every 18 months (Moore never used the number 18...)
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Moore’s Law
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Dennard Scaling

Source Drain

p-type doped Si

Sody &\I.

Scale factor a<1
o =0.7=>2X more transistors!

Design of lon-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 14
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Scale factor a<1
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Dennard Scaling

v.
Source

\V 4

e

p-type doped Si

Boagy & Ve

Design of lon-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al.

Scale factor a<1
o =0.7=>2X more transistors!

Parameter Value Scaled
Value
Dopant Na, Nd |Na/a, Nd/
concentrations a
Dimensions L, W, alL, aWw,
Tox alox
Field E E
Voltage V aVv
Capacitance C aC
Current I al
Transistors/Area |d d/a?
Propagation time |t at
(~CV/)
Frequency (1/t) f f/a
Power (CV2) P a2P
Power/area Pd pd

(Power density)
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Dennard Scaling
* Every generation: 2.8X chip capability in same power

Scale chip features down 0.7x per process generation

1.4x faster
transistors : 0.7x
capacitance

1
2X more 0.7x
transistors voltage

|
o
2
o
a
2
c
O

yi
Chip Capability SANVIDIA

Challenges for future computing systems, Bill Dally, 2015
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Implications of Dennard Scaling

* Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power given the same area budget

e More transistors means better microarchitecture, which leads to
better performance even under the same frequency

* Higher frequency means better performance even under the
same microarchitecture

* QOverall, software gets a free ride: wait for the next generation of
hardware and performance will naturally increase without
consuming more power

Moore’s law gave us more transistors;

Dennard scaling made them useful.
Bob Colwell, DAC 2013, June 4, 2013
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Moore’s Law + Dennard Scaling Have Meant

e 1976 Cray 1 e 2014 iPhone 6
* Frequency: 80 MHz * Frequency: 1.4 GHz
e Speed: 250 M Ops/second e Speed: >4 B Ops/second
o Scale: 2.5 Million transistors * Scale: > 3 Billion transistors
« 5,000 kg, 115 KW e 120g,<5W
« Price: $9M * Price: $649
« 80 manufactured e 10 million sold in first 3 days

The CRAY-1 computer system, Russell, CACM 1978 17



Real Technology Scaling

e Slightly worse than ideal Dennard Scaling
* Power density steadily increasing, but still manageable

Parameter Value |Scaled
Value
Dimensions L, W, |0.7L, 0.7
Tox W, 0.7 Tox
Dopant Na, Nd [ 1.4 Na,
concentrations 1.4 Nd
Voltage V 0.7V
Frequency F 14F
Power/device |P ———
Power/chip P e —
Power density |P/A ———

09V

08P
1.2P

1.2 P/IA

18



Real Technology Scaling

e Slightly worse than ideal Dennard Scaling
* Power density steadily increasing, but still manageable

Power Density
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e Slightly worse than ideal Dennard Scaling
* Power density steadily increasing, but still manageable
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Real Technology Scaling

e Slightly worse than ideal Dennard Scaling
* Power density steadily increasing, but still manageable

Power Density

D) R = “eeaeaa. . R e & “on
: ' : : Nuclear
JOOO w -om. = - mm BN BN -EN- BN SN SN- BN BN BN BN BN - BN BN ERw . - - BN
00 15 S PR RS R P R A S e e T SR R L L Reactor
600- e e e e
) R e e e e e e SO ok o e e S W = ) U
£
§200 ......
- : Hot
100w . mm. =m. Sm B8 BN BN BN
............ T : 3 Plate
B0k ........... . e mme = uae ........... . ........... .....
) I o o e T, : . -
7. | | T ot L A e ) S e P
10
1985 1990 1995 2000 2005 2010

18



Real Technology Scaling

e Slightly worse than ideal Dennard Scaling

* Power density steadily increasing, but still manageable Sun
Surface
: (~10%
Power Density
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2005: End of Dennard Scaling

e What Happened?
« Supply voltage Vaa stops scaling (Can’t drop voltage below ~1 V)
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2005: End of Dennard Scaling

e What Happened?
« Supply voltage Vaq stops scaling (Can’t drop voltage below ~1 V)

« There is a fundamental limit as to how much voltage we need to
switch a transistor, called threshold voltage (Vin).

* Vin stopped scaling because leakage power/reliability/variation
becomes huge issues, and accordingly Vaq stops scaling
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2005: End of Dennard Scaling

e What Happened?
e Supply voltage Vaq stops scaling (Can’t drop voltage below ~1 V)

e Why?
e Thereis a 6 5 S T > need to
: ource: . Fackan (intel),
switch a i i L VR 2007 IEDM Short Course
e Vin stoppe \ Jriation
becomes 4

9

3 \
51 Gate Overdrive R
Voo= Vs l \_
| M—O——O—o——o

14 10 8 6 .35 .25 .18 .13 .09 .065
Technology Generation
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2005: End of Dennard Scaling

e What Happened?
« Supply voltage Vaq stops scaling (Can’t drop voltage below ~1 V)

« There is a fundamental limit as to how much voltage we need to
switch a transistor, called threshold voltage (Vin).

* Vin stopped scaling because leakage power/reliability/variation
becomes huge issues, and accordingly Vaq stops scaling

e The demise of Dennard Scaling coupled with power density
reaching the limit is a huge crisis for computing industry

e Power density reached limit even with Dennard scaling, now voltage
stops scaling, and things started becoming worse

19



Dark Silicon
n. [dark, sil'I-ken, -kon’]

More transistors on chip (Moore’s Law), but a growing fraction
cannot actually be used due to power limits.

20



2005: End of Dennard Scaling

* Initial response has been to lower frequency and increase cores / chip
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2005: End of Dennard Scaling

* Initial response has been to lower frequency and increase cores / chip
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Appears in the Proceedings of the 38" International Symposium on Computer Architecture (ISCA °11)

Dark Silicon and the End of Multicore Scaling

Hadi Esmaeilzadeh® Emily Blem# Renée St. Amantt Karthikeyan Sankaralingam* Doug Burger-

TUniversity of Washington

#University of Wisconsin-Madison

$The University of Texas at Austin °Microsoft Research
hadianeh@cs.washington.edu blem@cs.wisc.edu stamant@cs.utexas.edu karu@cs.wisc.edu dburger@microsoft.com

ABSTRACT

Since 2005, processor designers have increased core counts to ex-
ploit Moore’s Law scaling, rather than focusing on single-core per-
formance. The failure of Dennard scaling, to which the shift to mul-
ticore parts is partially a response, may soon limit multicore scaling
just as single-core scaling has been curtailed. This paper models
multicore scaling limits by combining device scaling, single-core
scaling, and multicore scaling to measure the speedup potential for
a set of parallel workloads for the next five technology generations.
For device scaling, we use both the ITRS projections and a set
of more conservative device scaling parameters. To model single-
core scaling, we combine measurements from over 150 processors
to derive Pareto-optimal frontiers for area/performance and pow-
er/performance. Finally, to model multicore scaling, we build a de-
tailed performance model of upper-bound performance and lower-
bound core power. The multicore designs we study include single-
threaded CPU-like and massively threaded GPU-like multicore chip
organizations with symmetric, asymmetric, dynamic, and composed
topologies. The study shows that regardless of chip organization
and topology, multicore scaling is power limited to a degree not
widely appreciated by the computing community. Even at 22 nm
(just one year from now), 21% of a fixed-size chip must be powered
off, and at 8 nm, this number grows to more than 50%. Through
2024, only 7.9x average speedup is possible across commonly used
parallel workloads, leaving a nearly 24-fold gap from a target of
doubled performance per generation.

Categories and Subject Descriptors: C.0 [Computer Systems Or-
oanizationl General — Modeline of computer architecture: C 0O

ture, and compiler advances, Moore’s Law, coupled with Dennard
scaling [11], has resulted in commensurate exponential performance
increases. The recent shift to multicore designs has aimed to in-
crease the number of cores along with transistor count increases,
and continue the proportional scaling of performance. As a re-
sult, architecture researchers have started focusing on 100-core and
1000-core chips and related research topics and called for changes
to the undergraduate curriculum to solve the parallel programming
challenge for multicore designs at these scales.

With the failure of Dennard scaling—and thus slowed supply volt-
age scaling—core count scaling may be in jeopardy, which would
leave the community with no clear scaling path to exploit contin-
ued transistor count increases. Since future designs will be power
limited, higher core counts must provide performance gains despite
the worsening energy and speed scaling of transistors, and given
the available parallelism in applications. By studying these charac-
teristics together, it is possible to predict for how many additional
technology generations multicore scaling will provide a clear ben-
efit. Since the energy efficiency of devices is not scaling along with
integration capacity, and since few applications (even from emerg-
ing domains such as recognition, mining, and synthesis [5]) have
parallelism levels that can efficiently use a 100-core or 1000-core
chip, it is critical to understand how good multicore performance
will be in the long term. In 2024, will processors have 32 times the
performance of processors from 2008, exploiting five generations
of core doubling?

Such a study must consider devices, core microarchitectures,
chip orgamzatlons and benchmark characteristics, applying area

I R LY Y T D T Iz i T 1
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2007: A Revolutionary New Computer
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. OPINION

No Moore’s Law for batteries

Fred Schlachter’

American Physical Society, Washington, DC 20045

The public has become accustomed to
rapid progress in mobile phone technol-
ogy, computers, and access to information;
tablet computers, smart phones, and other
powerful new devices are familiar to most
people on the planet.

These developments are due in part to the
ongoing exponential increase in computer
processing power, doubling approximately
every 2 years for the past several decades.
This pattern is usually called Moore’s Law
and is named for Gordon Moore, a co-
founder of Intel. The law is not a law like
that for gravity; it is an empirical obser-
vation, which has become a self-fulfilling
prophecy. Unfortunately, much of the
public has come to expect that all technol-
ogy does, will, or should follow such a law,
which is not consistent with our everyday
observations: For example, the maximum

there is a Moore’s Law for computer pro-
cessors is that electrons are small and they
do not take up space on a chip. Chip per-
formance is limited by the lithography tech-
nology used to fabricate the chips; as lithog-
raphy improves ever smaller features can be
made on processors. Batteries are not like
this. Ions, which transfer charge in batter-
ies, are large, and they take up space, as do
anodes, cathodes, and electrolytes. A D-cell
battery stores more energy than an AA-cell.
Potentials in a battery are dictated by the
relevant chemical reactions, thus limiting
eventual battery performance. Significant
improvement in battery capacity can only
be made by changing to a different chem-
istry.

Scientists and battery experts, who have
been optimistic in the recent past about im-
proving lithium-ion batteries and about de-
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Mobile CPU’s Rise to Power: Quantifying the Impact of Generational
Mobile CPU Design Trends on Performance, Energy, and User Satisfaction

Matthew Halpern  Yuhao Zhu  Vijay Janapa Reddi
The University of Texas at Austin, Department of Electrical and Computer Engineering
{matthalp,yzhu}Qutexas.edu, vjlece.utexas.edu

Abstract

In this paper, we assess the past, present, and future of mo-
bile CPU design. We study how mobile CPU designs trends
have impacted the end-user, hardware design, and the holistic
mobile device. We analyze the evolution of ten cutting-edge
mobile CPU designs released over the past seven years. Specif-
ically, we report measured performance, power, energy and
user satisfaction trends across mobile CPU generations.

A key contribution of our work is that we contextualize the
mobile CPU’s evolution in terms of user satisfaction, which
has largely been absent from prior mobile hardware studies.
To bridge the gap between mobile CPU design and user sat-
isfaction, we construct and conduct a novel crowdsourcing
study that spans over 25,000 survey participants using the
Amazon Mechanical Turk service. Our methodology allows
us to identify what mobile CPU design techniques provide the
most benefit to the end-user’s quality of user experience.

Our results quantitatively demonstrate that CPUs play a
crucial role in modern mobile system-on-chips (SoCs). Over
the last seven years, both single- and multicore performance
improvements have contributed to end-user satisfaction by
reducing user-critical application response latencies. Mo-
bile CPUs aggressively adopted many power-hungry desktop-
oriented design techniques to reach these performance levels.
Unlike other smartphone components (e.g. display and radio)
whose peak power consumption has decreased over time, the
mobile CPU’s peak power consumption has steadily increased.

As the limits of technology scaling restrict the ability of
desktop-like scaling to continue for mobile CPUs, specialized
accelerators appear to be a promising alternative that can help
sustain the power, performance, and energy improvements that
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Fig. 1: Breakdown of yearly ARM Cortex-A CPU design market
share. Mobile CPU core designs have rapid design iteration
and innovation. At least one new core design is released each
year and newer designs overshadow the older ones.

rate to keep pace with end-user demands. Fig. 1, based on
data mined from over 1700 Android smartphone specifica-
tions, conveys the fast pace at which mobile CPU designs
have evolved. Considering the ARM-based Cortex-A series
alone, the most dominant mobile CPU design in smartphones
and tablets to date [1], at least one new CPU core design has
been released each year for the last six years — each signifi-
cantly more advanced than the last. In comparison, x86-based
desktop CPU designs did not exhibit as dramatic changes.
Intel-based desktop processors only exhibited four significant
core design changes throughout the same time span.

The rapid design innovation, pervasiveness in society, and
power-constrained nature of mobile hardware necessitate the
need to understand the implications of their current design
trends on future desiens. Mobile CPUs have evolved from em-
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Sources of Energy-Inefficiencies

General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010
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General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

L~

Pure Overhead
IF: Instruction fetch

Ctrl: Other control logics
Pipe: Pipeline reg, bus, clock
D$: Data cache

RF: Register file

ALU: Functional units

Doing Actual Work

Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010
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Sources of Energy-Inefficiencies

General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

64-bit DP DRAM
20p) 256pJ 16nJ M /W,

256-bit buses

Efficient
200 W 5. chip link

256-bit access
8 kB SRAM

Challenges for future computing systems, Bill Dally, 2015
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Entering the Era of Specialization

* Instead of building general-purpose processors that can do
everything, but inefficiently, let’s build specialized processors
that can only do limited things, but extremely efficiently.
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Entering the Era of Specialization

* Instead of building general-purpose processors that can do
everything, but inefficiently, let’s build specialized processors
that can only do limited things, but extremely efficiently.

e Extreme example: Application-Specific Integrated Circuit (ASIC)

* Imagine the entire processor is an FP adder with 2 registers
* Instruction delivery: none. Instructions are implicit (add).

Data feeding: simple.

Control: little: clock the adder, simple pipeline, etc.

Execution: will be the major power consumer.
Flexibility/programmability: very limited: addition only, nothing elsel!
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Entering the Era of Specialization

* Another example: Graphics Processing Unit (GPU)
* SIMT: Single instruction multiple thread
* SIMT amortizes control/instruction delivery overhead
» Data feeding is still very complex
* More efficient execution for applications that are massively parallel
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Example: Video (De)-Compression

Numbers credit: Kayvon Fatahalian



Example: Video (De)-Compression

30 second video: 1920 x 1080, @ 30fps
8-bits per color = 24 bits/pixel = 6.2MB/frame (6.2 MB*30 sec*30 fps = 5.2 GB)
Actual H.264 video file size: 65.4 MB (80-to-1 compression ratio)
Compression/encoding performed in real time on iPhone 5s
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Example: Video (De)-Compression

* Main ldea: Exploiting Redundancies

Slides credit: Kayvon Fatahalian
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* Main ldea: Exploiting Redundancies

e Spatial redundancy: value of pixels in neighboring regions of a
frame are good predictor of values for other pixels in the frame,

* Temporal redundancy: pixels from nearby frames in time are a
good predictor for the current frame’s pixels (e.g., objects move
slightly on screen between frames)
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Example: Video (De)-Compression

* Key Operation: Motion Estimation

e Remember, must execute motion estimation in real-time for HD
video (1920x1080), on a low-power smartphone.

A
Limit search window:
e T
gray area: /
search region Decoded picture Current frame

buffer: frame 0

Slides credit: Kayvon Fatahalian



Example: Video (De)-Compression

* Specialized hardware for H.264 video codec is virtually in every
(mobile) platforms. Very efficient for video (de)-compression, but
can’t do much else.

Source
Video
Frame

Intra-frame
Prediction

Inter-frame

— | Prediction
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Example: Computational Photography

* High-quality cameras are key product differentiators for today’s
consumer smartphones.

40



Example: Computational Photography

* High-quality cameras are key product differentiators for today’s
consumer smartphones.

e But smartphone cameras aren’t as good as high-end digital
single-lens reflex cameras.

* Aperture, focal length, pixels, dynamic range, sensors, resolution, etc.

40



Example: Computational Photography

* High-quality cameras are key product differentiators for today’s
consumer smartphones.

e But smartphone cameras aren’t as good as high-end digital
single-lens reflex cameras.

* Aperture, focal length, pixels, dynamic range, sensors, resolution, etc.
* How to achieve DSLR-like quality in a smartphone form factor?

40



Example: Computational Photography

* High-quality cameras are key product differentiators for today’s
consumer smartphones.

e But smartphone cameras aren’t as good as high-end digital
single-lens reflex cameras.

* Aperture, focal length, pixels, dynamic range, sensors, resolution, etc.
* How to achieve DSLR-like quality in a smartphone form factor?
* Computational photography: digitally post-processing images

* E.g., High-dynamic range (HDR)

* Used to be just in desktop photo editing software (e.g., PhotoShop),
but now in high-end smartphones
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Example: Computational Photography

* ISP (Image Signal Processor): Specialized processors for
Imaging and computational photography algorithms.

* Fast, energy-efficient, but only for imaging

[ 1PU IO Block

. PU IPU
* Core2 | Core1

Google | SN IPU PU
Pixel 2 " Cored4 @ Core3l

IPU IPU
i Core 6 | Core 5

i IPU IPU.
4] Core8 | Core'7
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Example: Machine Learning

* Machine learning (e.g., Neural Networks) takes over the world

e Computer vision is the poster-child example

* Natural language processing, Precision medicine, robotics
planning, house rent/load prediction, games, etc.
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Example: Machine Learning

* Neural networks make heavy use of the convolution operation
e Convolution can be transformed to matrix-multiplication

* Convolutional neural networks (CNN) are by far the most popular NN,
especially effectively for computer vision tasks
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Example: Machine Learning

* Google Tensor Processing Unit (TPU)

» Specialized processor (i.e., systolic array architecture) for tensor
processing (matrix multiply)

* (Arguably) 30x~80x more power-efficient than GPU
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[ Accumulators ]
(o)
S— [Nmb.lPool ]
[[] on-cxe vo
[7] oata Butrer
[[] cComputation




Today’s Mobile Processor Chips
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The Role of a Computer System Designer

e | ook Up

Problem
e Nature of the problems
* Look Down Algorithm
e Nature of the circuit
technology and physics
e Look Backward Program

e Evaluating old ideas in light
of new technologies
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e Listen to dreamers and Microarchitecture
predict the future
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