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Logistics

WA 1 grades are posted. 

Project idea document is posted. Feel free to work on your own idea too. 
• The link is on the assignment page 

• Can work in groups of 2 

• Submit a one-page proposal describing what you want to work on by Oct. 26, 11:30 AM.
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Noise



�4https://medium.com/storm-shelter/the-importance-of-film-grain-255f0246cd64
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Noise

Without noise, raw pixel value is proportional to light luminance 
• ignore ADC quantization error, which itself also introduces noise 

Two forms of noise: 
• Fixed Pattern Noise; doesn’t vary from capture to capture but varies from pixel to pixel 

• Temporal Noise; does vary from capture to capture 

Temporal noise: 
• Charge domain noise: the number of collected charges (electrons) is noisy 

• Voltage domain noise: the voltage reading (converted from charges) is noisy 

Any amplification (gain) amplifies the noise accumulated before the gain.
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Temporal Noises 
and SNR



Temporal Noise

Varies from shot to shot, but could be observed from neighboring pixels in 
one shot if scene has relatively uniform luminance. 

Charge-domain noise: the noise is represented in the collected charges 
• Photon Shot Noise: due to random arrival of photons. 

• Dark Current Noise (electronic shot noise): random arrival of (temperature-dependent) 
thermal generation of electrons even without any incident photons. 

Voltage-domain noise: noise in circuits that convert charges to voltage; 
represented in the voltage measurement 

• a.k.a. Read Noise (as the noise is generated in the process of reading the charges)
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Observing Temporal Noise Spatially

Technically, temporal noise should be observed by comparing consecutive 
frames, which requires taking multiple frames. 

But if the scene has ~uniform illumination we can observe temporal noise 
spatially by analyzing pixels in a single image. 

• Think of M pixels in an image as taking M captures at a single pixel 

Or, for a real scene which is unlikely uniformly illuminated, we can analyze 
neighboring pixels, which likely are similarly illuminated. 

• such as the example on the next slide
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Photon Shot Noise Example

�10https://en.wikipedia.org/wiki/Shot_noise

Photon shot noise is less significant 
with longer exposure time (or 
equivalently brighter scenes)



Photon Shot Noise

Photon emission is a random process. A light source with constant power on 
average emits the same amount of photons per second, but in any given 
constant period, the absolute amount of photons emitted will vary. 

The relative deviation away from average is less significant for bright scenes 
(lots of photons on average) and is more significant for dark scenes (few 
photons on average).
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Photon Shot Noise Example

�12http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/

Histogram of raw pixel value distribution in an 
image of sky (Canon 1D3, green channel).
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Modeling Photon Shot Noise

The distribution of the number of photons received by a pixel is governed by 
the Poisson distribution.

�13https://en.wikipedia.org/wiki/Shot_noise

p(k; λ) =
λk × e−λ

k!

The probability that k photons actually 
arrive at a pixel when on average λ 

photons arrive (per unit time).



Signal: mean value 
Noise: Std. of value 
SNR = Signal / Noise

Signal to Noise Ratio (SNR)
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36 Essential Principles of Image Sensors

As the amplitude of noise is represented by its difference from a true value, the noise 
amplitude N is shown as
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In the case of a complete random temporal noise, the average value 〈N〉 is zero as follows:
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Using Equation 3.3, Equation 3.4 is rewritten as follows:

N Ni

i

total = ∑ 2 (3.5)

t
s(t): real output overlapped with noise

S0: true value

FIGURE 3.2
Signal overlapped with noise and the true signal value along a time axis.

Time Domain (1-D) Space Domain (2-D)

Random noise

(Temporal noise)
Circuit noise

Transistor noise
RTN

Optical shot noise

Fixed-pattern noise Synchronous noise Pixel characteristic variation
RTN

FIGURE 3.1
Classification of noise in image sensors.

Essential Principles of Image Sensors, Takao Kuroda



Signal to Noise Ratio (SNR)

Signal: mean value 
Noise: Std. of value 
For a Poisson distribution: 

• Mean µ is λ 

• Variance is λ 

• Standard deviation σ is sqrt(λ)

�15

p(k; λ) =
λk × e−λ

k!

https://en.wikipedia.org/wiki/Shot_noise



Signal to Noise Ratio (SNR)

Signal: mean value 
Noise: Std. of value 
For a Poisson distribution: 

• Mean µ is λ 

• Variance is λ 

• Standard deviation σ is sqrt(λ)

�15

p(k; λ) =
λk × e−λ

k!

SNR =
μ
σ

= λ

https://en.wikipedia.org/wiki/Shot_noise



When a pixel receives more photons (e.g., brighter scene, bigger pixel, 
longer exposure), the SNR is higher, i.e., less noisy.

What Dictates SNR?

�16

SNR =
μ
σ

= λ

https://www.flir.com/discover/iis/machine-vision/how-to-evaluate-camera-sensitivity



When a pixel receives more photons (e.g., brighter scene, bigger pixel, 
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SNR =
μ
σ

= λ

https://www.flir.com/discover/iis/machine-vision/how-to-evaluate-camera-sensitivity



When a pixel receives more photons (e.g., brighter scene, bigger pixel, 
longer exposure), the SNR is higher, i.e., less noisy.

What Dictates SNR?
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Bigger pixel

SNR =
μ
σ

= λ

https://www.flir.com/discover/iis/machine-vision/how-to-evaluate-camera-sensitivity



When a pixel receives more photons (e.g., brighter scene, bigger pixel, 
longer exposure), the SNR is higher, i.e., less noisy.

What Dictates SNR?
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Dark Current Noise (Electronic Shot Noise)

As temperature increases, electrons are 
dislodged even without any incident photon 
(unless sensor cooled to absolute zero 
temperature). 

Dark current adds a pedestal offset to the 
actual electron read-out. But the offset is not 
constant across time — hence “noise”. 

• If the offset was constant, the readings would still 
be incorrect but won’t constitute noise (since the 
offset is not random).
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3.2 Dark Current 37

to the semiconductor may be associated with energy states between the valence and
conductance band in the range where no energy states are available for carriers in
intrinsic semiconductor. Hence these impurities act as steps facilitating the transition
of electrons between the valance and conductance band as shown in Fig. 3.2. This
process is also known as the “hopping conduction”.

Figure3.3 shows different dark current sources in a CIS PPD. Dark current can
be generated at the level of the depleted area of the PPD. It can also be generated
at the level of the bulk in the field free area and then diffuse to the potential well.
It is known that the trap density increases at the surface and interfaces between
different materials due to impurities and process defects. Hence it is believed that an
important part of the dark current generation occurs at the level of the PPD surface
and the Si-SiO2 interface under the transfer gate and at the level of interfaces with
shallow trench channel (STI).

The dark current generation in semiconductors is governed by the Shockley-
Hall-Read equation [4 – 6 ] where the net carrier generation/recombination rate USHR

(carriers · s−1 · cm−3) is expressed as:

USHR = σpσnUT (pn− n2i )Nt

σn
(
n+ niexp(Et−EFi

kT )
)
+ σp

(
p+ niexp(EFi−Et

kT )
) , (3.3)

where σn and σp refer to the electron and hole cross sections (cm2),UT is the thermal
voltage, p and nare the electron and hole concentrations (cm−3), ni is the intrinsic
carrier concentration (electon-hole/cm3). Et − EFi is the gap between the energy of
the trap and the intrinsic Fermi level, k is theBoltzmann constant andT is the absolute
temperature.

Fig. 3.2 Trap assisted
carrier generation “hopping
conduction”
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Fig. 3.3 Dark current
carriers generation sources
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Ultra Low Noise CMOS Image Sensors. Assim Boukhayma.



Dark Current Noise (Electronic Shot Noise)

Dark current Id represents the average (expected value) # of dark electrons/
sec/pixel, which follows Poisson distribution (similar to photon shot noise). 

Over an exposure time t, average # of electrons (collected at each pixel) 
contributed by dark current is Id  × t. 

So the dark current noise is sqrt (Id  × t) 
• because dark current follows Poisson distribution 

• Id increases with the temperature 

• therefore dark current noise increases with temperature and t. 

• Id is also spatially non-uniform: a source of FPN.
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“Hot” Pixels From Dark Current Noise

�19

15s exposure time 30s exposure time

http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/

Usually dark current 
noise is negligible, 

since dark current is 
very low (e.g., 50 e-/s; 
c.f., full well capacity > 

10ke-), but can be 
significant if long 
exposure time is 
required, e.g., 

astrophysical imaging.



Cooling in James Webber Space Telescope

�20https://webb.nasa.gov/content/observatory/sunshield.html

Passive cooling: sunshield to cool 
three of the four cameras (37 K)



Cooling in James Webber Space Telescope

�21https://webb.nasa.gov/content/about/innovations/cryocooler.html

Active cooling: cryocooler (7 K)



Read Noise

The circuits that covert photons to digital values suffer voltage fluctuation 
• Remember eventually we read the voltage, not the photon count, so voltage fluctuation 

in the circuit introduces noise. 

• Could be thermal-induced (Johnson–Nyquist noise, which is fundamental to all circuits 
and is called kTC noise when manifested on capacitors), 1/f noise, or burst noise. 

• Sources: various amplifiers (e.g., FD, SF, other gain controls), ADC (with additional 
quantization errors), reset (of FD; can be suppressed by CDS), CDS circuit itself, etc. 

Read noise can be both positive and negative, since voltage fluctuation can 
be both positive and negative. 

Read noise is modeled as a 0-mean Gaussian distribution.
�22

https://en.wikipedia.org/wiki/Johnson%E2%80%93Nyquist_noise
https://en.wikipedia.org/wiki/Pink_noise
https://en.wikipedia.org/wiki/Burst_noise


Estimating Read Noise

�23

Could be measured by reading a bias frame, which is an image captured at 
dark (lens cap on or shutter closed) with 0 exposure time (or use highest possible shutter speed), i.e., 
no light gets to the photodiodes and dark current is negligible, so the major 
noise source is read noise (ignore FPN for now).
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Raw pixel value histogram of 
Canon 1D3 at ISO 800.

http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/

* Again, read noise should technically be 
observed temporally, but since scene is 

uniform (dark), noise across pixels spatially 
equates temporal noise, i.e., standard 

deviation of pixel values is the σ of read noise.

https://web.archive.org/web/20080317160806/http://users.libero.it/mnico/glossary/bias.htm


Three Slight Issues

�24

First, signal voltage could be negative (recall: read noise is a zero-mean 
Gaussian), which will be clipped to 0 by the ADC, contaminating analysis. 

• A bias voltage is usually added to the signal voltage (e.g., in the previous slide). The bias 
is one reason why dark frame pixels are not zero (even without any noise present).

http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/

Pixel histogram at different illumination levels 
of Nikon D300, which doesn’t add ADC bias.



Three Slight Issues
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First, signal voltage could be negative (recall: read noise is a zero-mean 
Gaussian), which will be clipped to 0 by the ADC, contaminating analysis. 

• A bias voltage is usually added to the signal voltage (e.g., in the previous slide). The bias 
is one reason why dark frame pixels are not zero (even without any noise present). 

• Black level raw value is stored as metadata (part of EXIF tag) of a raw image. It can be 
read through raw processing APIs (e.g., rawPy) and must be subtracted from the raw 
value of each pixel by the raw image signal processing pipeline (usually called black-level 
correction/compensation). We will see this in the ISP programming assignment.

https://www.photonstophotos.net/GeneralTopics/Sensors_&_Raw/Black_Level_Range.htm


Three Slight Issues
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First, signal voltage could be negative (recall: read noise is a zero-mean 
Gaussian), which will be clipped to 0 by the ADC, contaminating analysis. 

Second, the read noise distribution should be measured for each ISO setting, 
which affects gains, which amplify noise. 

Third, it also assumes that no FPN is present, which is not true. 
• We will later see a more sophisticated method to estimate read noise isolated from FPN.



Reset Noise: a Special Read Noise

�27

Reset noise: Vreset is not the same for each capture, usually thermal induced. 
Eliminate reset noise by reading Vreset and Vtransfer and taking the delta; this is 
what Correlated Double Sampling does, among other things (in a few slides). 
Without CDS, we read only Vtransfer and the ADC circuit needs to be designed 
with a fixed, offline-determined Vreset in mind, introducing reset noise.

22 2 Low-Noise CMOS Image Sensors

Integration Transfer Readout

Vreset

Vtransfer

Reset

Vreset

Fig. 2.5 Hydraulic model of a PPD with the transfer gate and sense node regions showing the
different readout steps

2.2 CIS Global Architecture

Figure2.6 shows the overall block diagram of a conventional low noise CIS. The
pixels array is at the center of the imager. It occupies most of the chip silicon area.
Each pixel comprises a pinned photodiode with at least one amplifying transistor
and three MOS switches for reset, transfer and row selection. In order to achieve
high frame rates, a column parallel readout scheme is generally performed. The
pixels array is read line by line and all the pixels of the same line are read in parallel.
Hence, at the top of the lines, a mixed signal control block made of shift registers and
level shifters is generally implemented in order to drive the pixel lines by generating
the row selection, reset and transfer commands. At the bottom of the columns, analog
amplification is generally implemented before the correlated sampling and analog-
to-digital conversion. Figure2.7 shows the timing diagram of a conventional CIS
readout chain. It shows the main line control signals as well as the timing of the
column level signal processing. Each pixel line is generally addressed with the same
frequency as the frame rate. Hence the PPDs remain exposed to the light between
two consecutive readouts. In order to control the exposure time of the pixels, an
intermediate reset and transfer operation can be performed in order to empty the
PPDs between two consecutive readouts. The integration time is then set by the time
interval between that charge transfer resetting the PPD and the one performed during
the readout. At the column level, the correlated sampling and the analog-to-digital-
conversion (ADC) are performed after the column-level amplification. The digital
data is then stored in static random access memories SRAMs. These SRAMs are
then shifted horizontally to the digital output of the chip. For a higher frame rate,
the horizontal shift of each frame is performed at the beginning of the next frame as
shown in the timing diagram of Fig. 2.7.

PD

FD ΔV
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Gains and ISO



Signal Gain: ISO

A scaling factor (gain) applied to the actual measured voltage of a pixel. 
• Each camera has a base ISO value (e.g., ISO 400). Doubling ISO effectively doubles the 

measured voltage — equivalent to doubling exposure time. 

• ISO is informally called camera sensitivity, but don’t confuse it with the spectral 
sensitivity of the sensor. 

Why use ISO gain? 
• Boost image brightness at low light: increasing effective exposure time without 

increasing the actual exposure time 

• Reduce the exposure time, which reduces motion blur (if one were to increase the 
exposure time) and increases the frame rate 

• Big caveat: shorter exposure time also reduces the SNR: noisy photo!

�29



�30https://photographylife.com/what-is-iso-in-photography
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ISO 800 and 1/2000s exposure

https://photographylife.com/what-is-iso-in-photographyhttps://petapixel.com/2017/01/26/ultra-high-iso-big-deal-photography/

ISO 1800 and 60s exposure on Pentax KP



Noise From High ISO

�32https://www.exposureguide.com/iso-sensitivity/



Noise From High ISO

�33https://iphonephotographyschool.com/iphone-camera-controls/

Camera+2 app on iPhone

High ISO

Low ISO



Where to Apply ISO Gain?

�34https://www.edmundoptics.com/knowledge-center/application-notes/imaging/understanding-camera-sensors-for-machine-vision-applications/

One single amplifier at the end
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Fig. 2.6 Block diagram of a low noise CIS

2.3 Pixel Architectures

In any sensor readout chain, the low noise amplificationmust be applied at the earliest
stage of the readout chain. In the case of CCDs, the amplification was applied at the
output level of the chip since the CCDs do not offer the possibility of integrating any
electronics at the pixel level [22]. Indeed the charge was transferred from pixel to
pixel vertically then horizontally until the sense node located at the chip output. The

Column amplifiers

This is the SF; not 
for the ISO gain.



Where to Apply ISO Gain?
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2.3 Pixel Architectures

In any sensor readout chain, the low noise amplificationmust be applied at the earliest
stage of the readout chain. In the case of CCDs, the amplification was applied at the
output level of the chip since the CCDs do not offer the possibility of integrating any
electronics at the pixel level [22]. Indeed the charge was transferred from pixel to
pixel vertically then horizontally until the sense node located at the chip output. The
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Applying the gain to the signal applies 
the gain to the noise too! Applying 
the gain early before much noise 
trickles in helps SNR. 

• It’s common to use column-level 
amplification. Some cameras have digital 
gains (post ADC). 

• We could also use an in-pixel amplifier. 

• ISO gain circuity is usually called Adaptive 
Gain Control (AGC) or Programmable 
Gain Amplifier (PGA).

Column amplifiers

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6879509


Apply ISO Gain After ADC 

Applying ISO gains after ADC quantization, i.e., digital gain, magnifies the 
quantization artifact (contouring).

�36

Before quantization: 3.4, 4.1 
After quantization: 3, 4 
Increasing ISO by 10X: 30, 40

https://www.researchgate.net/figure/left-Input-image-quantized-to-16-levels-color-input-image-that-shows-visible-contouring_fig1_228982458



Many blocks in signal chain can be seen 
as applying gains even though their 
goals are not to amplify signals. 

• Photodiodes apply a photon to electron 
conversion; unit of gain is photon/electron. 

• FD converts charges to voltage, and has a 
conversion gain with a unit of Volt/electron. 

• ADCs convert voltages to raw pixel values, 
a.k.a., ADUs (analog-to-digital units) or 
DNs (data numbers). ADC gains have units 
of ADU/volt. 

They also amplify noises.

Gain Blocks

�37

BlockInput Output
Sin 

σin
Signal gain G

Sout 

σout

Sout = GSin

σout = Gσin

• Photon to electron conversion in PD 
• electron charge to voltage conversion in FD 
• SF in read-out 
• other amplifiers (e.g., for ISO control) 
• ADC, etc.



ADC gain is technically non-linear, 
but for the simplicity of noise 
analysis we assume it’s linear.

ADC Gain

�38https://www.allaboutcircuits.com/technical-articles/adc-offset-and-gain-error-specifications/

GADC =
2N

FSR

Approximate gain line

FSR = Vmax − Vmin

ΔVLSB =
FSR
2N

Full-scale range [V]

ADC Gain

Voltage equivalent 
to one LSB

ADC input 
voltage range

Resolution



ADC quantization error can be 
modeled as a “noise” source too. 

• All voltages v within a LSB are 
replaced with the same level Vd. 

Assuming analog values are 
uniformly distributed, the variance 
introduced by quantization is: 

ADC Quantization Error

�39https://www.ti.com/lit/eb/slyy192/slyy192.pdf?ts=1672692692703

Fundamentals of Precision ADC Noise Analysis    7 September 2020   I  Texas Instruments

Chapter 1: Introduction to ADC noise

If you map this LSB error relative to a quantized AC signal, 
you’ll get a plot like the one shown in Figure 4. Note the 
dissimilarity between the quantized, stair-step-shaped digital 
output and the smooth, sinusoidal analog input. Taking the 
difference between these two waveforms and plotting the 
result yields the sawtooth-shaped error shown at the bottom 
of Figure 4. This error varies between ±½ LSB and appears 
as noise in the result.

Similarly, for DC signals, the error associated with 
quantization varies between ±½ LSB of the input signal. 
However, since DC signals have no frequency component, 
quantization “noise” actually appears as an offset error in 
the ADC output.

Finally, an obvious but important result of quantization noise 
is that the ADC cannot measure beyond its resolution, as it 
cannot distinguish between sub-LSB changes in the input.

Unlike quantization noise, which is a byproduct of the 
analog-to-digital (or digital-to-analog) conversion process, 
thermal noise is a phenomenon inherent in all electrical 
components as a result of the physical movement of charge 
inside electrical conductors. Therefore, you can measure 
thermal noise even without applying an input signal.

Unfortunately, you cannot affect your ADC’s thermal noise 
because it is a function of the device design. Throughout the 
rest of this section, I’ll refer to all ADC noise sources other 
than quantization noise as the ADC’s thermal noise.

Figure 5 depicts thermal noise in the time domain, which 
typically has a Gaussian distribution.

Although you cannot affect the ADC’s inherent thermal noise, 
you can potentially change the ADC’s level of quantization 
noise due to its dependence on LSB size. Quantifying the 
significance of this change depends on whether you’re 
using a “low-resolution” or “high-resolution” ADC, however. 
Let’s quickly define these two terms so that you can better 
understand how to use LSB size and quantization noise to 
your advantage.

Low- vs. high-resolution ADCs

A low-resolution ADC is any device whose total noise 
is more dependent on quantization noise such that 
NADC,Quantization >> NADC,Thermal. Conversely, a high-
resolution ADC is any device whose total noise is more 
dependent on thermal noise, such that  
NADC,Quantization << NADC,Thermal. The transition between low 
and high resolution typically occurs at the 16-bit level, with 
anything <16 bits considered low resolution and anything 
>16 bits considered high resolution. While not always true, 
I’ll keep this general convention throughout the remainder of 
this e-book.
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Digital Image Processing 5e, Bernd Jähne



Other ADC Noises/Errors

�40https://www.allaboutcircuits.com/technical-articles/adc-offset-and-gain-error-specifications/

Offset error 
(ADC specific)

Gain error 
(ADC specific)

Offset error and gain error are fixed for an ADC and can be compensated once characterized. They are 
technically errors, not noises, just like quantization errors, but can be modeled as noises. Usually in modeling 
we lump all ADC noise sources together as a single ADC noise.

Read noise 
(General to any circuit)

https://www.nwengineeringllc.com/article/thermal-noise-in-communication-and-optical-systems.php
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Noise Propagation



Recall that scaling a random 
variable by a constant scales the 
variance by the square of that 
constant. 

• Var(a X) = a2Var(X) 

• σ(a X) = a σ(X) 

Amplifying a signal amplifies the 
noise as well; SNR is unchanged 
(assuming the block has no inherent 
noise)!

Noise Amplification in the Signal Chain

�42

BlockInput Output
Sin 

σin
Signal gain G

Sout 

σout

Sout = GSin

σout = Gσin

• Photon to electron conversion in PD 
• electron charge to voltage conversion in FD 
• SF in read-out 
• other amplifiers (e.g., for ISO control) 
• ADC, etc.



Noise Amplification in the Signal Chain
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BlockInput Output
Sin 

σin

Signal gain G 
Block noise σb

• Photon to electron conversion in PD 
• electron charge to voltage conversion in FD 
• SF in read-out 
• other amplifiers (e.g., for ISO control) 
• ADC, etc.

Sout = GSin

σout = G2σ2
in + σ2

b

Sout 

σout

Each block in the signal 
processing chain introduces 
noises, which can be modeled as 
independent random variables. 
The variance of their sum is the 
sum of their variances. 

• Var(X+Y) = Var(X) + Var(Y) 

In general, SNR is worsened by 
the signal processing chain.



Example (ignore FPN)
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PDIncident 
Photons

Output 
Voltage

Sin 

σphoton

QE 

0*
Sout 

σout

Read-out

Gread 

σread

Dark current 
σdark-current

Sout = QE × Gread × Sin

σout = QE2G2
readσ2

photon + G2
readσ2

dark−current + σ2
read

+

* assuming no noise in photon to electron conversion



Apply Gains Earlier Improves SNR
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Input Output

Sout 

σout

Gain
σout = G2

aσ2
in + σ2

a + σ2
bSin 

σin

Block

σb
Ga 

σa

Input Output

Sout 

σout

Block

Sin 

σin

Gain

σb
Ga 

σa

σout = G2
a(σ2

in + σ2
b) + σ2

a



Modeling Multiple Blocks as One Block
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S = SinG1G2 = SinG

σ = (σ2
inG

2
1 + σ2

1)G2
2 + σ2

2 = σ2
inG

2
1G2

2 + σ2
1G2

2 + σ2
2 = σ2

in(G1G2)2 + σ2

B1Input OutputB2
Sin 

σin

G1 
σ1

G2 
σ2

Sout 

σout

G = G1G2

σ = σ2
1G2

2 + σ2
2

G = G1G2G3

σ = σ2
1G2

2G2
3 + σ2

2G2
3 + σ2

3

If three gains are 
combined:



Example (ignore FPN)
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PDIncident 
Photons

Output 
Voltage

Sin 

σphoton

QE 

0*
Sout 

σout

Read-out

Gread 

σread

Dark current 
σdark-current

Sout = QE × Gread × Sin

σout = QE2G2
readσ2

photon + G2
readσ2

dark−current + σ2
read

+

* assuming no noise in photon to electron conversion

If the read-out chain consists of FD, SF, and an Adaptive Gain Control (e.g., column-level amp):

Gread = GFDGSFGAGC

σread = σ2
FDG2

SFG2
AGC + σ2

SFG2
AGC + σ2

AGC



SNR and Input- vs. Output-Referred Noise
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Output-referred noise 
(expressed in Volts)

Input-referred noise 
(expressed in photon counts)

SNR =
QE × Gread × Sin

QE2G2
readσ2

photon + G2
readσ2

dark−current + σ2
read

=
QE × Sin

QE2σ2
photon + σ2

dark−current + σ2
read /G2

read

Sometimes input-referred 
noise is also expressed in 

electron counts

=
Sin

σ2
photon + σ2

dark−current /QE2 + σ2
read /QE2/G2

read



SNR =
QE × Sin

QE2σ2
photon + σ2

dark−current + σ2
read /G2

read

SNR vs. Exposure Time
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# of photons/sec/pixel
Exposure 

time

Dark current: # of 
electrons/sec/pixel

=
P × QE × t

P × QE × t + Idark × t + σ2
read /G2

read

Recall: photon shot 
variance = mean



SNR Examples

�50https://andor.oxinst.com/learning/view/article/ccd-signal-to-noise-ratio



A Sensor Model with Temporal Noise
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Q(x, y) = ∫t ∫λ ∫
y+v

y ∫
x+u

x
(Y(x, y, λ, t) QE(λ) dxdydλ + Id)q dt

# of incident photons at pixel (x, y); varies 
with λ and t.  Subject to photon-shot noise.

Elementary 
charge

ΔV(x, y) =
Q(x, y)

C
G + ηread

n(x, y) = ⌊
ΔV(x, y)

Vmax
(2N − 1)⌋

Max voltage corresponding 
to max raw valueRaw pixel value

Dark 
currentRead noise

Gain (SF, ISO gain, etc.)
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Fixed Pattern 
Noise



Fixed Pattern Noise (FPN): Spatial Non-Uniformity

Better be called spatial non-uniformity; due to manufacturing variation of 
circuity components across pixels, columns, etc. The variation is spatially 
different (“noise”) but doesn’t vary with shots (“fixed”). 

Two FPN components: 
• Dark signal non-uniformity (DSNU): non-uniformity without illumination 

• Photo response non-uniformity (PRNU): non-uniformity under illumination 

FPN can be removed/reduced by subtracting the pattern (at each exposure 
time, illumination level, and/or ISO setting) if the pattern is known offline. 

• ISO setting affects gains, which amplify noise.

�53



Two Components of DSNU

DCNU (dark current non-uniformity): 
• Think of DCNU as the fact that each pixel has a different (but fixed) mean dark current. 

Since actual dark current is inherently temporally varying, the effect of DCNU is not a 
constant voltage offset, but we can average multiple frames to get the average dark 
current of each pixel, which can be seen as the pattern of DCNU. 

The effects of DCNU: 
• increase with exposure time 

• unaffected by irradiance 

• increase with ISO setting

�54Ultra Low Noise CMOS Image Sensors, Assim Boukhayma. Chapter 3.5.

Illumination level}



Two Components of DSNU

SONU (spatial offset non-uniformity): 
• Many circuit blocks add a voltage offset/bias (e.g., in-pixel amplifiers/column ADC) or 

inherently introduce a voltage offset (e.g., charge injection on FD after PD to FD 
transfer). The offset voltage, while a constant for a pixel/column, varies across pixels. 

• Think of SONU as adding a constant voltage offset to each pixel/column. 

The effects of SONU: 
• unaffected by exposure time 

• unaffected by irradiance 

• increase with ISO setting

�55Ultra Low Noise CMOS Image Sensors, Assim Boukhayma. Chapter 3.5.

Illumination level}



DSNU Pattern (Dark Frame) Examples

�56http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/https://www.photometrics.com/learn/advanced-imaging/pattern-noise-dsnu-and-prnu

DSNU pattern under an exposure time T and ISO setting is obtained by 
averaging multiple dark frames.

DSNU pattern in a Teledyne camera 
from averaging 100 dark images 

captured at 0 exposure time

DSNU pattern in a Canon 20D from averaging 16 dark 
images captured at ISO 800 (1ms exposure time)



Removing DSNU Using Dark-Frame Subtraction

Capture N dark frames, each captured 
at dark (with lens cap on; 0 incident 
photon) with an exposure time T and an 
ISO setting. 

Average the N dark frames to obtain an 
averaged dark frame at <T, ISO>. 

For an actual capture with <T, ISO>, 
subtract the corresponding averaged 
dark frame.

�57

A raw Canon 20D image @ ISO 800 & 1ms exposure

http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/



The calibrated image after dark-frame subtraction

Removing DSNU Using Dark-Frame Subtraction

Capture N dark frames, each captured 
at dark (with lens cap on; 0 incident 
photon) with an exposure time T and an 
ISO setting. 

Average the N dark frames to obtain an 
averaged dark frame at <T, ISO>. 

For an actual capture with <T, ISO>, 
subtract the corresponding averaged 
dark frame.

�57http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/



PRNU

Think of/model PRNU as gain variations across pixels/columns. 
• Under illumination, electrical output given the same amount of incident photons isn’t 

uniform across pixels/columns (e.g., variation in full well capacity, quantum efficiency, 
capacitances and transistors at each pixel/column, etc.). 

The effects of PRNU: 
• increase with exposure time 

• increase with irradiance 

• increase with ISO setting

�58Ultra Low Noise CMOS Image Sensors, Assim Boukhayma. Chapter 3.5.

Illumination level}



Noise Amplification With PRNU
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BlockInput Output
Sin 

σin

Signal gain G 
Gain noise σG 
Block noise σb

• Photon to electron conversion in PD 
• electron charge to voltage conversion in FD 
• SF in read-out 
• other amplifiers (e.g., for ISO control) 
• ADC, etc.

σout = G2σ2
in + S2

inσ
2
G + σ2

b
Sout 

σout

Var(XY ) = Var(X)Var(Y ) + Var(X)(E(Y ))2 + Var(Y )(E(X))2 ≈ Var(X)(E(Y ))2 + Var(Y )(E(X))2Ignoring second-order terms:



A Sensor Model with Temporal Noise and FPN
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PDIncident 
Photons

Output 
VoltageAGC

GAGC 

(e.g., col amp)
GFDNsig

FD

GQE

Dark current

+

(((Xt
Nsig

Xs
GQE

+ Xt
Ndc

)Xs
GFD

+ Xt
Vread−FD

)Xs
GSF

+ Xt
Vread−SF

+ Xs
Vpix−ofs

)Xs
GAGC

+ Xt
Vread−AGC

+ Xs
Vcol−ofs

SF

GSF

Temporal noise (expressed as 
random variables (r.v.) whose values 

vary across captures)

Xt
Nsig

∼ Poisson(μ = Nsig, σ = σsig = Nsig)

Xt
Ndc

∼ Poisson(μ = Xs
Ndc

, σ = σdc = Xs
Ndc

)

Xt
Vread−FD/read−SF/read−AGC

∼ N(μ = 0, σ = σVread−FD/read−SF/read−AGC
)

Xs
GQE/FD/SF/AGC

∼ N(μ = GQE/FD/SF/AGC, σ = σGQE/FD/SF/AGC
)

Xs
Vpix−ofs/col−ofs

∼ N(μ = Vpix−ofs/col−ofs, σ = σVpix−ofs/col−ofs
)

Xs
Ndc

∼ N(μ = Ndc, σ = σNdc
)

FPN (expressed as r.v. whose values 
are fixed across frames but vary 

across pixels; *see caveats next slide)

The output voltage of an arbitrary pixel in an arbitrary frame (assuming reset noise is taken care of)

Photon shot noise

Dark current noise

Read noise

PRNU

SONU

DCNU



It’s correct to model temporal noises using random variables. When calculate the mean and std across 
pixels (under uniform illumination) or frames, the goal is to use the sample mean/std to approximate the 
expected value/std of the underlying distribution, which is what we care about. 

It’s technically incorrect to model FPN of a given sensor using random variables. It’s true that there 
probably is an underlying distribution of pixel manufacturing variations (which could be Gaussian), but the 
spatial distribution on a given sensor is fixed once manufactured, which gives a distribution of samples.  

• Importantly, when we calculate mean/std of spatial non-uniformities over pixels, we are calculating the 
sample mean/std, which are indeed what we care about, because they are statistics specific to the 
sensor of interest. We are not using sample mean/std to approximate population mean/std (i.e., 
underlying distribution). For instance, GFD represents the sample mean of FD gain across the pixels on 
a particular sensor, not the expected value of the FD gain for a given manufacturing facility. 

Also note that the spatial distribution on a given sensor is most likely not perfectly Gaussian, although close; 
see https://www.emva.org/wp-content/uploads/EMVA1288General_4.0Release.pdf, Figure 13.

A Note About Probabilistic Sensor Modeling

�61

https://www.emva.org/wp-content/uploads/EMVA1288General_4.0Release.pdf


Reducing FPN Using CDS

The SONU portion of FPN can be eliminated by Correlated Double Sampling 
(CDS), which, for each pixel during each capture, reads twice — first the reset 
voltage and second the actual voltage signal under exposure — and then 
subtracts the two. 

CDS can’t remove PRNU/DCNU, because the effects of dark current and gain 
variations are not simply adding a constant voltage offset to each reading. 

CDS can also suppress: 
• reset noise (part of thermal-induced read noise). 

• some read noise (the 1/f part, which is correlated between the two samples).

�62

https://en.wikipedia.org/wiki/Correlated_double_sampling


CDS Circuits
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2.5 Correlated Sampling and Analog-to-Digital Conversion 29

OTA
CL

AZ

Cin

Cf
SN

VRST

TX
RST

RS

PPD

Pixel

Ccol

Column-level amplifier

CSH1

SSH1 Vout,1

CSH2

SSH2 Vout,2

CDS

OTA
CL

AZamp

Cin

Cf
SN

VRST

TX
RST

RS

PPD

Pixel

Ccol

Column-level 
amplifier

Column level CDS and ADC

VOut_comp

AZcomp

Ccomp

Analog 
Ramp

Counter

SRAM

(a)

(b)

(c) (d)

Fig. 2.11 Column level readout chain of a CIS with analog CDS implemented by two track-and-
holds (a) and the corresponding timing diagram (c). Column level readout chain of a CIS with
analog CDS implemented at the input of the ADC comparator (b) and the corresponding timing
diagram (d)

2.5.2 Correlated Multiple Sampling

Correlated multiple sampling (CMS) was introduced for CIS in [34– 36]. It combines
CDS with averaging. CMS of order M corresponds to averaging M samples at the
reset level and M samples after charge transfer and then differentiating the two
averages. Figure2.12 shows the timing diagram of CMS in case for a CIS readout
chain. A CMS of order M corresponds to averaging M samples in of the reset level
voltage andM other samples after transferring the charge from the PPD to the sense

Ultra Low Noise CMOS Image Sensors, Assim Boukhayma. Chapter 2.5.1

Usually sits right before column ADC 
• Therefore after FD, SF, and column amp. 

Two implementations: 
• two sampling caps for reset and signal, 

and then ADC takes differential input. 

• one sampling cap, and the subtraction 
happens on that cap by sequentially 
sampling the reset and signal; then ADC 
takes the subtraction result as input.



Effect of CDS
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XNsig
∼ Poisson(μ = Nsig, σ = σsig = Nsig)

XNdc
∼ Poisson(μ = Ndc, σ = σdc = Ndc)

XNrst
∼ N(μ = Nrst = VrstCFD, σ = σrst)

XVread−FD
, YVread−FD

∼ N(μ = 0, σ = σVread−FD
)

XVread−SF
, YVread−SF

∼ N(μ = 0, σ = σVread−SF
)

XVread−AGC
, YVread−AGC

∼ N(μ = 0, σ = σVread−AGC
)

XVread−ADC
, YVread−ADC

∼ N(μ = 0, σ = σVread−ADC
)

PDIncident 
Photons

Output 
VoltageAGC

GFDNsig

FD

GQE

+ SF

GSF

Dark current
GAGC 

(e.g., col amp)

For a specific pixel 
only temporal noises 

need to be considered

((XNrst
GFD + XVread−FD

)GSF + XVread−SF
+ Vpix−offset)GAGC + XVread−AGC

+ Vcol−offset

(((XNrst
− XNsig

GQE − XNdc
)GFD + YVread−FD

)GSF + YVread−SF
+ Vpix−offset)GAGC + YVread−AGC

+ Vcol−offset + YVread−CDS

First sample:

Second sample (subtract Nsig and Ndc because charge transfer discharges FD):



Effect of CDS
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PDIncident 
Photons

Output 
VoltageAGC

GFDNsig

FD

GQE

+ SF

GSF

Dark current

After subtraction:

(((XNsig
GQE + XNdc

)GFD + XVread−FD
− YVread−FD

)GSF + XVread−SF
− YVread−SF

)GAGC + XVread−AGC
− YVread−AGC

− YVread−CDS

• Eliminated: the offset portion of FPN, reset noise (kTC-induced), and some amount of read noise (1/f component) 
• Retained: PRNU/DCNU, other temporal noise (in fact, variance of non-reset/non-1/f read noise is doubled) 
• Introduced: read noise of the CDS circuitry itself

GAGC 

(e.g., col amp)

((XNrst
GFD + XVread−FD

)GSF + XVread−SF
+ Vpix−offset)GAGC + XVread−AGC

+ Vcol−offset

(((XNrst
− XNsig

GQE − XNdc
)GFD + YVread−FD

)GSF + YVread−SF
+ Vpix−offset)GAGC + YVread−AGC

+ Vcol−offset + YVread−CDS

First sample:

Second sample (subtract Nsig and Ndc because charge transfer discharges FD):



�66

Signal Processing For 
Noise Removal/Estimation



Recovering Noise-Free Images
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PDIncident 
Photons

Output 
Voltage

AGC

Gpix 

(SF and FD)
Nsig

Pix

GQE

+

Dark current
GAGC 

(e.g., col amp)

1. Under the same illumination level D, take N captures and average them pixel-wise; this effectively calculates the expected 
value of a composite random variable for each pixel:

Xt
Nsig

∼ Poisson(μ = Nsig, σ = σsig = Nsig)

Xt
Ndc

∼ Poisson(μ = Np
dc, σ = σdc = Np

dc)

Xt
Vread−FD/read−SF/read−AGC

∼ N(μ = 0, σ = σVread−FD/read−SF/read−AGC
)

^p terms are pixel-specific constants

E[XY] = E[X]E[Y]

E[X + Y] = E[X] + E[Y]

E[((Xt
Nsig

Gp
QE + Xt

Ndc
)Gp

pix + Xt
Vread−pix

+ Vp
pix−ofs)G

p
AGC + Xt

Vread−AGC
+ Vp

col−ofs] = ((NsigG
p
QE + Np

dc)G
p
pix + Vp

pix−ofs)G
p
AGC + Vp

col−ofs



Recovering Noise-Free Images
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PDIncident 
Photons

Output 
Voltage

AGC

Gpix 

(SF and FD)
Nsig

Pix

GQE

+

Dark current
GAGC 

(e.g., col amp)

1. Under the same illumination level D, take N captures and average them pixel-wise; this effectively calculates the expected 
value of a composite random variable for each pixel:

Xs
GQE/pix/AGC

∼ N(μ = GQE/pix/AGC, σ = σGQE/pix/AGC
)

Xs
Vpix−ofs/col−ofs

∼ N(μ = Vpix−ofs/col−ofs, σ = σVpix−ofs/col−ofs
)

Xs
Ndc

∼ N(μ = Ndc, σ = σNdc
)

2. Average across all the pixels in the averaged frame obtained before. This effectively calculates the expected value of a 
composite random variable:

E[((NsigXs
GQE

+ Xs
Ndc

)Xs
Gpix

+ Xs
Vpix−ofs

)Xs
GAGC

+ Xs
Vcol−ofs

] = ((NsigGQE + Ndc)Gpix + Vpix−ofs)GAGC + Vcol−ofs

E[((Xt
Nsig

Gp
QE + Xt

Ndc
)Gp

pix + Xt
Vread−pix

+ Vp
pix−ofs)G

p
AGC + Xt

Vread−AGC
+ Vp

col−ofs] = ((NsigG
p
QE + Np

dc)G
p
pix + Vp

pix−ofs)G
p
AGC + Vp

col−ofs



Recovering Noise-Free Images
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PDIncident 
Photons

Output 
Voltage

AGC

Gpix 

(SF and FD)
Nsig

Pix

GQE

+

Dark current
GAGC 

(e.g., col amp)

1. Under the same illumination level D, take N captures and average them pixel-wise; this effectively calculates the expected 
value of a composite random variable for each pixel:

2. Average across all the pixels in the averaged frame obtained before. This effectively calculates the expected value of a 
composite random variable:

E[((NsigXs
GQE

+ Xs
Ndc

)Xs
Gpix

+ Xs
Vpix−ofs

)Xs
GAGC

+ Xs
Vcol−ofs

] = ((NsigGQE + Ndc)Gpix + Vpix−ofs)GAGC + Vcol−ofs

3. We subtract the two above arithmetically, we get the expected value of FPN at D for a pixel:

E[((Xt
Nsig

Gp
QE + Xt

Ndc
)Gp

pix + Xt
Vread−pix

+ Vp
pix−ofs)G

p
AGC + Xt

Vread−AGC
+ Vp

col−ofs] = ((NsigG
p
QE + Np

dc)G
p
pix + Vp

pix−ofs)G
p
AGC + Vp

col−ofs

FPN = ((NsigG
p
QE + Np

dc)G
p
pix + Vp

pix−ofs)G
p
AGC + Vp

col−ofs − ((NsigGQE + Ndc)Gpix + Vpix−ofs)GAGC − Vcol−ofs



Recovering Noise-Free Images
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4. We take a capture of a scene of interest, and for a pixel whose illumination level is D, we subtract its voltage reading (a 
composite random variable itself) with the FPN at D corresponding to that pixel (we do this subtraction for all pixels):

Vp = ((Xt
Nsig

Gp
QE + Xt

Ndc
)Gp

pix + Xt
Vread−pix

+ Vp
pix−ofs)G

p
AGC + Xt

Vread−AGC
+ Vp

col−ofs − FPN

= ((Xt
Nsig

Gp
QE + Xt

Ndc
)Gp

pix + Xt
Vread−pix

+ Vp
pix−ofs)G

p
AGC + Xt

Vread−AGC
+ Vp

col−ofs

−((NsigG
p
QE + Np

dc)G
p
pix + Vp

pix−ofs)G
p
AGC − Vp

col−ofs + ((NsigGQE + Ndc)Gpix + Vpix−ofs)GAGC + Vcol−ofs

= (Xt
Nsig

− Nsig)Gp
QEGp

pixG
p
AGC + (Xt

Ndc
− Np

dc)G
p
pixG

p
AGC + Xt

Vread−pix
Gp

AGC + Xt
Vread−AGC

+((NsigGQE + Ndc)Gpix + Vpix−ofs)GAGC + Vcol−ofs

Given this, there are a few interesting conclusions we can draw. 4.1: the expected value of each so-calculated pixel is the 
true signal of that pixel, which means if we average over many frames, we will get a completely noise-free image.

E[Vp] = ((NsigGQE + Ndc)Gpix + Vpix−ofs)GAGC + Vcol−ofs

The dark current offset and pixel/column voltage offsets are still there, but they are constant across pixels (hence not noise). 
Consequently, the black level voltage won’t be 0. If the sensor first performs CDS before going through our subtraction 
procedure, the constant voltage offsets will be eliminated, but dark current offset is still there.



Recovering Noise-Free Images
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4.2: each pixel itself, without averaging across frames, has a noise of the following form. We can see that the SONU is gone, 
but the PRNU and DSNU, although fixed for the pixel, is still there in addition to temporal noises. So the effect is similar to 
using CDS (which removes 1/f read noise and amplifies other read noises; see before).

Var[Vp] = Var[(Xt
Nsig

− Nsig)Gp
QEGp

pixG
p
AGC + (Xt

Ndc
− Np

dc)G
p
pixG

p
AGC + Xt

Vread−pix
Gp

AGC + Xt
Vread−AGC

]

= σ2
sig(G

p
QEGp

pixG
p
AGC)2 + Np

dc(G
p
pixG

p
AGC)2 + σ2

Vread−pix
(Gp

AGC)2 + σ2
Vread−AGC

4.3: if we want to show the noise both spatially and temporally (i.e., capture both FPN and temporal noises), then the 
voltage value at each pixel is expresses as a random variable below:

The variance of this random variable is:

Var = (σ2
sigG

2
QEG2

pix + σ2
sigσ

2
GQE

G2
Gpix

+ σ2
sigG

2
QEσ2

Gpix
+ σ2

sigσ
2
GQE

σ2
Gpix

+ Np
dcσ

2
Gpix

+ Np
dcG

2
pix + σ2

read−pix)G
2
AGC + σ2

read−AGC

We can see that when omitting high-order terms, the noise is the same as that without any FPN. So in general we can say 
that the so-obtained image is FPN-free. Alternatively, we can say that given a uniform illumination D, the pixel value 
differences in the image are due only to temporal noises.

≈ (σ2
sigG

2
QEG2

pix + Np
dcG

2
pix + σ2

read−FD)G2
AGC + σ2

read−AGC

(Xt
Nsig

− Nsig)Xs
GQE

Xs
Gpix

Xs
GAGC

+ (Xt
Ndc

− Np
dc)X

s
Gpix

Xs
GAGC

+ Xt
Vread−pix

Xs
GAGC

+ Xt
Vread−AGC Var(X1X2⋯Xn) =

n

∏
i=1

(σ2
i + μ2

i ) −
n

∏
i=1

μ2
i



Dark-Frame Subtraction to Remove DSNU
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PDIncident 
Photons

Output 
Voltage

AGC

Gpix 

(SF and FD)
Nsig

Pix

GQE

+

Dark current
GAGC 

(e.g., col amp)

1. Under the same illumination level D, take N captures and average them pixel-wise; this effectively calculates the expected 
value of a composite random variable for each pixel:

When the illumination is 0, the frame is called a dark frame. After averaging above what we get is essentially a DSNU 
pattern (including both DCNU and SONU) under a given exposure time. Figure 3 of this article obtains the DSNU pattern 
under an 1ms exposure time by averaging 16 dark frames.

E[((Xt
Nsig

Gp
QE + Xt

Ndc
)Gp

pix + Xt
Vread−pix

+ Vp
pix−ofs)G

p
AGC + Xt

Vread−AGC
+ Vp

col−ofs] = ((NsigG
p
QE + Np

dc)G
p
pix + Vp

pix−ofs)G
p
AGC + Vp

col−ofs

(Np
dcG

p
pix + Vp

pix−ofs)G
p
AGC + Vp

col−ofs

If the exposure time is set to 0, each capture is called a bias frame. Figure 2 of this article is obtained by averaging 100 bias 
frames. In an averaged bias frame, the voltage reading of each pixel is (no dark current):

Vp
pix−ofsG

p
AGC + Vp

col−ofs

https://homes.psd.uchicago.edu/~ejmartin/pix/20d/tests/noise/
https://en.wikipedia.org/wiki/Bias_frame
https://www.photometrics.com/learn/advanced-imaging/pattern-noise-dsnu-and-prnu#:~:text=The%20basic%20difference%20between%20these,(hence%20'photo')
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2. We take a capture of a scene of interest with an exposure time T, and subtract, pixel-wise, the averaged dark frame 
obtained at T. The voltage reading of each pixel is a random variable:

Vp = ((Xt
Nsig

Gp
QE + Xt

Ndc
)Gp

pix + Xt
Vread−pix

+ Vp
pix−ofs)G

p
AGC + Xt

Vread−AGC
+ Vp

col−ofs − (Np
dcG

p
pix + Vp

pix−ofs)G
p
AGC − Vp

col−ofs

= Xt
Nsig

Gp
QEGp

pixG
p
AGC + (Xt

Ndc
− Np

dc)G
p
pixG

p
AGC + Xt

Vread−pix
Gp

AGC + Xt
Vread−AGC

The expected value of this random variable (which can be approximated by averaging multiple frames) is the true signal 
without dark current and voltage offsets, but PRNU is still there. In other words, the noise in the frame is due only to PRNU.

E[Vp] = NsigG
p
QEGp

pixG
p
AGC

It’s called dark-frame subtraction, which eliminates dark current noise and SONU. In astrophotography, it’s called dark 
current and bias correction (bias being the constant voltage offsets in our language). Note that it removes the impact of 
dark current altogether (both DCNU and the shot noise of dark current). That’s why it’s often used in astrophotography, 
where the exposure time is usually excessively long. 

Two things need to be noted. First, the dark frame to be subtracted must be taken under the same exposure time as the 
intended capture. Second, dark-frame subtraction does not eliminate FPN (which is a common misconception in online 
articles) because PRNU is still there.

https://en.wikipedia.org/wiki/Dark-frame_subtraction
https://www.cs.rochester.edu/courses/572/fall2022/decks/lect15-astro.pdf#page=17
https://www.cs.rochester.edu/courses/572/fall2022/decks/lect15-astro.pdf#page=17
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Here are a few interesting things we can do now that we have dark and bias frames. 
1: If we subtract an averaged bias frame from a single bias frame and plot the pixel value histogram (or plot the histogram 
over multiple frames), what we get is the output-referred read noise distribution of the sensor.

(Xt
Vread−pix

+ Vp
pix−ofs)G

p
AGC + Xt

Vread−AGC
+ Vp

col−ofs − (Vp
pix−ofsG

p
AGC + Vp

col−ofs) = Xt
Vread−pix

Gp
AGC + Xt

Vread−AGC

Alternatively, we could also just plot the histogram of a single bias frame, in which case we will see a Gaussian with a non-
zero mean, where the mean is due to the constant pixel/column voltage biases, but the distribution still shows read noise.

Physics of Digital Photography, Chapter 3.9.2.

This means that the value of g at the selected ISO setting is obtained as the inverse of
the gradient of the fitted straight line [32, 35, 36].

3.9.2 Read noise measurement

Although a read noise estimate will emerge when performing the temporal noise
measurement described above, alternative methods can be used to determine the
read noise more accurately.

Recall from section 3.8.5 that a bias frame is a frame taken with zero integration
time. Dark current will be absent when the integration time is zero, and so a bias
frame contains only read noise. A bias frame can be approximated by a dark frame
taken using the shortest exposure duration available in manual mode, for example,
1/8000 s. In order to ensure the frame is dark, it should be taken in a dark room with
the lens cap covering the lens.

Recall from section 3.7.4 that some camera manufacturers leave a bias offset in
the raw data. In this case, the mean of the read noise distribution in a bias frame will
be the bias offset, nDN,bias, and the standard deviation of the distribution can be
measured accurately. Example read noise distributions for the Olympus® E-M1 are
shown in figure 3.33 for several ISO settings. This camera includes a bias offset
centred at DN = 256, and the read noise appears to have ideal Gaussian character.
Any non-Gaussian character that may arise, such as periodic pattern components
due to circuit interference, can be analysed by taking the FT of the bias frame.

The mean of the read noise distribution will be centred at DN = 0 if the camera
manufacturer does not leave a bias offset in the raw data, and this makes analysis
more difficult since half of the distribution will be clipped to zero [35].

Figure 3.33. Gaussian read noise distribution measured in DN for the Olympus® E-M1 at a selection of high
ISO settings. The distribution is centred at the DN = 256 bias offset present in the raw data.

Physics of Digital Photography (Second Edition)

3-67

• Gaussian read noise distribution measured in raw values of a single bias 
frame for the Olympus E-M1 at a selection of high ISO settings. 

• The distributions are centered at the DN = 256, which shows the bias offset 
added by the sensor (ADC bias or other pixel/column offsets). Without no 
bias/offset, the negative values will be clipped to 0. 

• The std increases with the ISO setting, because the ISO setting dictates the 
gain, which amplifies the variance (noise). 

• Strictly speaking, the distribution is not purely from read noise, as PRNU/
SONU are still there. Subtracting the averaged bias frame eliminates SONU.

https://web.archive.org/web/20150410033107/http://qsimaging.com/ccd_noise_measure.html
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2: If we subtract an averaged bias frame from an averaged dark frame, what we get is the dark current component of each 
pixel or, more specifically, the expected value of output-referred dark current-induced voltage of a pixel:

(Np
dcG

p
pix + Vp

pix−ofs)G
p
AGC + Vp

col−ofs − (Vp
pix−ofsG

p
AGC + Vp

col−ofs) = Np
dcG

p
pixG

p
AGC

3: Take a look at the expected value of a pixel after dark-frame subtraction (i.e., averaging over multiple frames with dark 
frame subtraction), what we get is the PRNU distribution of the sensor, because the noise in the frame is due only to PRNU.

E[Vp] = NsigG
p
QEGp

pixG
p
AGC

We can see that the affect of PRNU is dependent on the illumination level (incident irradiance and exposure time).

https://en.wikipedia.org/wiki/Bias_frame
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1. Take a raw capture of a scene of interest R = ((Xt
Nsig

Gp
QE + Xt

Ndc
)Gp

pix + Xt
Vread−pix

+ Vp
pix−ofs)G

p
AGC + Xt

Vread−AGC
+ Vp

col−ofs

2. Obtain an averaged dark frame D = (Np
dcG

p
pix + Vp

pix−ofs)G
p
AGC + Vp

col−ofs

3. Obtain an averaged flat-field frame, i.e., 
averaging frames under uniform illumination

F = ((NsigG
p
QE + Np

dc)G
p
pix + Vp

pix−ofs)G
p
AGC + Vp

col−ofs

4. Obtain dark noise and bias-corrected flat-field frame F − D = NsigG
p
QEGp

pixG
p
AGC

5. Calculate the pixel average of the corrected flat-field frame m = NsigGQEGpixGAGC

6. Obtain dark noise and bias-corrected raw frame R − D = Xt
Nsig

Gp
QEGp

pixG
p
AGC + (Xt

Ndc
− Np

dc)G
p
pixG

p
AGC + Xt

Vread−pix
Gp

AGC + Xt
Vread−AGC

7. Calculate the final, calibrate image. After frame averaging, the only noise is photon shot noise

(R − D)m
F − D

=
Xt
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Gp

QEGp
pixG

p
AGC + (Xt

Ndc
− Np

dc)G
p
pixG

p
AGC + Xt

Vread−pix
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NsigGp
QEGp
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× NsigGQEGpixGAGC

= Xt
Nsig

GQEGpixGAGC + (Xt
Ndc

− Np
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GQE

Gp
QE

GpixGAGC + Xt
Vread−pix

GQEGpix

Gp
QEGp

pix
GAGC + Xt
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GQEGpixGAGC

Gp
QEGp

pixG
p
AGC

E[
(R − D)m

F − D
] = Xt

Nsig
GQEGpixGAGC

* See flat-field images taken by the telescope at the Mees Observatory 

https://web.archive.org/web/20130407013841/http://www.princetoninstruments.com/cms/index.php/ccd-primer/152-flat-field-correction
https://en.wikipedia.org/wiki/Flat-field_correction
https://www.cs.rochester.edu/courses/572/fall2022/decks/lect15-astro.pdf#page=22


Estimating Temporal Noise and FPN

�77

Described by Emil Martinec here, which is very similar to the EMVA Standard 1288 (Release 4.0), which is a black-box model that 
doesn’t specify the exact analytical form of the noise being measured, which we show here. Ignore dark current and DCNU.

1. Take two captures under uniform illumination D; voltages of the same pixel in the two images:

2. Subtract the two images pixel-wise; each pixel is expressed as:

3. Now we want to calculate the variance across all pixels in this residual image, in which case FPN terms become random 
variables. So the voltage of each pixel in the residual image is expressed as a new random variable:

Xs
GQE/pix/AGC

∼ N(μ = GQE/pix/AGC, σ = σGQE/pix/AGC
)

Note that it’s incorrect to use the following random variable, which assumes we sample both temporally AND spatially before 
subtraction; instead, we sample temporally, subtract, and then sample spatially.

(Xt
Nsig

Gp
QEGp

pix + Xt
Vread−pix

+ Vp
pix−ofs)G

p
AGC + Xt

Vread−AGC
+ Vp

col−ofs

(Yt
Nsig

Gp
QEGp

pix + Yt
Vread−pix

+ Vp
pix−ofs)G

p
AGC + Yt

Vread−AGC
+ Vp

col−ofs

((Xt
Nsig

− Yt
Nsig

)Gp
QEGp

pix + (Xt
Vread−pix

− Yt
Vread−pix

))Gp
AGC + (Xt

Vread−AGC
− Yt

Vread−AGC
)

((Xt
Nsig

− Yt
Nsig

)Xs
GQE

Xs
Gpix

+ (Xt
Vread−pix

− Yt
Vread−pix

))Xs
GAGC

+ (Xt
Vread−AGC

− Yt
Vread−AGC

)

(Xt
Nsig

Xs
GQE

Xs
Gpix

+ Xt
Vread−pix

+ Vp
pix−ofs)X

s
GAGC

+ Xt
Vread−AGC

+ Vp
col−ofs− ((Yt

Nsig
Xs

GQE
Xs

Gpix
+ Yt

Vread−pix
+ Vp

pix−ofs)X
s
GAGC

+ Yt
Vread−AGC

+ Vp
col−ofs)

Xt
Nsig

, Yt
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∼ Poisson(μ = Nsig, σ = σsig = Nsig)
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Vread−FD/read−SF/read−AGC

, Yt
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)

https://homes.psd.uchicago.edu/~ejmartin/pix/20d/tests/noise/noise-p2.html
https://www.emva.org/wp-content/uploads/EMVA1288General_4.0Release.pdf


4. Now calculate the variance across N pixels. Assuming N is sufficiently large, the sample variance approaches the population 
variance, which is expressed as:
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≈ (2σ2
sigG

2
QEG2

pix + 2σ2
read−pix)G

2
AGC + 2σ2

read−AGC Var(X − Y ) = Var(X) + Var(Y )

Var[((Xt
Nsig

− Yt
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)Xs
GQE
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Vread−pix

− Yt
Vread−pix

))Xs
GAGC

+ (Xt
Vread−AGC

− Yt
Vread−AGC

)]

= 2σ2
output−referred−temporal−noise

5. Ignore high-order terms, the variance turns out to be exactly the output-referred temporal noise without any FPN:

It is worth noting that this methodology to estimate temporal noise is almost exactly the same as that used in the EMVA 
Standard 1288 (see Equation 18) with one caveat: the EMVA standard also subtracts the difference of the mean values of the 
two images, which in the ideal case should be exactly the same. The standard does this correction to give “an unbiased 
estimate even if the mean values are slightly different by a temporal noise source that causes all pixels to fluctuate in sync.”

https://www.emva.org/wp-content/uploads/EMVA1288General_4.0Release.pdf
https://www.emva.org/wp-content/uploads/EMVA1288General_4.0Release.pdf
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6. Look at the temporal noise expression, we can see that the temporal noise scales linearly with the illumination level (Nsig) 
and has a constant intercept, which is the read noise.

σ2
output−referred−temporal−noise ≈ σ2

sigG
2
QEG2

pixG
2
AGC + σ2

read−pixG
2
AGC + σ2

read−AGC

= NsigG2
QEG2

pixG
2
AGC + σ2

read

Output-referred photon shot noise; increases linearly 
with σ2sig=Nsig, which is the incident photon count

Output-referred read noise; a constant 
w.r.t. to incident photon count

σ2
output−referred−temporal−noise ≈ σ2

sigG
2
QEG2

pixG
2
AGCG2

ADC + (σ2
read−pixG

2
AGCG2

ADC + σ2
read−AGCG2

ADC + σ2
ADC)

But ultimately what we can measure is in ADU/DN, so we have to consider ADC and its gain, in which case the output-referred 
temporal noise, now in the unit of ADU/DN, is expressed as:

= NADUG + σ2
read

= NsigG2
QEG2

pixG
2
AGCG2

ADC + σ2
read = (NsigGQEGpixGAGCGADC)GQEGpixGAGCGADC + σ2

read

G; unit is ADU/photonNsig G = NADU
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= NADUG + σ2
read

Nsig G = NADU

To estimate the read noise, we regress a linear function of output-referred temporal noise vs. ADU under different illumination 
levels. The ADU is calculated by first adding the two frames together, calculating the mean raw value, and divide that by two. 

The intercept of the linear function is the best-fit read noise. The slope of the linear function has a unit of ADU/photon, i.e., 
how many ADUs are increased for one photon, which is sometimes called the “conversion factor” and is proportional to the 
ISO and inversely proportional to the overall gain (how many incident photons are needed to increase ADU by 1). 

Note that Nsig G = NADU is true only when all noises are eliminated. This is not achieved in what’s described above, which 
includes the voltage offset (below), and that’s why Martinec’s article says we need to subtract the bias when calculating NADU.

σ2
output−referred−temporal−noise ≈ NsigG2

QEG2
pixG

2
AGCG2

ADC + σ2
read = (NsigGQEGpixGAGCGADC)GQEGpixGAGCGADC + σ2

read

NsigG + Vpix−ofsGAGCGADC + Vcol−ofsGADC

G; unit is ADU/photon
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2

7: To calculate FPN, take a capture and calculate its the pixel variance, and subtract the temporal noise calculated before.  
Intuitively, the capture has FPN+temporal noise, from which we subtract the temporal noise. What we are calculating is:

= N2
sigσ

2(Zs
GQE

Zs
Gpix

Zs
GAGC

) + σ2(Zs
pix−ofsZ

s
GAGC

) + σ2
col−ofs

This method to estimate FPN is exactly the same as that used in the EMVA Standard 1288 (see Equations 16, 17, 18, 27).

Zt
Nsig

∼ Poisson(μ = Nsig, σ = σsig = Nsig)

Zt
Vread−FD/read−SF/read−AGC

∼ N(μ = 0, σ = σVread−FD/read−SF/read−AGC
)

Xs
GQE/pix/AGC

∼ N(μ = GQE/pix/AGC, σ = σGQE/pix/AGC
)

Xs
Vpix−ofs/col−ofs

∼ N(μ = Vpix−ofs/col−ofs, σ = σVpix−ofs/col−ofs
)

In fact, we get the overall output-referred FPN, not 
just PRNU as the article describes, and the results 
are exact, i.e., no omission of high-order terms.

We can report the FPN directly using the std (e- for input-referred noise or mV for output-referred noise) or as the ratio of std/
full-well capacity or std/voltage swing, which then is a % number.
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GQE
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) + σ2(Zs
pix−ofsZs

GAGC
) + σ2

col−ofs

FWC × GPixGAGC

https://www.emva.org/wp-content/uploads/EMVA1288General_4.0Release.pdf
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1. Under the same illumination level D, take N captures and average them pixel-wise; this effectively calculates the expected 
value of a composite random variable for each pixel:

2. Calculate the standard deviation/variance across all the M pixels in the averaged frame obtained before. Given that M and 
N are sufficiently large, this effectively calculates the standard deviation/variance of a composite random variable:
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)
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https://isl.stanford.edu/~abbas/ee392b/lect07.pdf

This is the same procedure as a method described in EMVA Standard 1288 (see Equations 28). The standard isn’t very clear 
about the difference in applicability of the two methods (subtracting two images vs. averaging over multiple images).
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https://www.emva.org/wp-content/uploads/EMVA1288General_4.0Release.pdf
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Dynamic Range of a Sensor

DR is a single number characterizing the ability of a camera to simultaneously 
sense the brightness and the darkest points of a scene.

Ideally: maximal signal is full-well capacity; minimal signal: 0

Bigger sensors improve DR, as we saw before.
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Dynamic Range and Signal to Noise Ratio

High DR doesn’t mean less noisy. 

DR is a single number characterizing 
the ability of a camera to 
simultaneously sense the brightness 
and the darkest points of a scene. 

SNR varies with light levels. At a given 
light level, the SNR characterizes “how 
noisy” the image it. 

• Higher light level leads to higher SNR.
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 [dB] (3.45)

In the example of Figure 3.19, DR is calculated as 20◊log(20,000/12) = 64.4 dB.
For SNR, the noise, n, is the total temporal noise at the signal level Nsig. When the
read noise is dominant in the total noise, SNR is given by

(3.46)

and in cases in which the photon shot noise is dominant, it is represented by

(3.47)

Figure 3.20 shows the SNR as a function of the number of incident photons.
From Equation 3.47, it is understood that the maximum SNR is determined by the
full-well capacity only and is given by

(3.48)

FIGURE 3.19 Example of photoconversion characteristics. Apix = 25 mm2; C.G. = 40 mV/e–,
Nsat = 20,000 e–, nread = 12 e–.
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Consider only photon shot noise and read noise and 
ignore dark-current noise here.

Image Sensor and Signal Processing for Digital Still Cameras, 2006. Junichi Nakamura



DR and SNR Units

Often DR and SNR are 
expressed in decibel or “stop”.
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SNRdB = 20log10(SNR)

DRdB = 20log10(DR)

SNRstop = log2(SNR)

DRstop = log2(DR)

Factor (power) Decibels Stops
1 0 0
2 3.01 1

3.16 5 1.66
4 6.02 2
5 6.99 2.32
8 9.03 3

10 10 3.32
16 12.0 4
20 13.0 4.32

31.6 15 4.98
32 15.1 5
50 17.0 5.64

100 20 6.64
1000 30 9.97
1024 30.1 10

10000 40 13.3
100000 50 16.6

1000000 60 19.9
1048576 60.2 20

100000000 80 26.6
1073741824 90.3 30

10000000000 100 33.2
https://en.wikipedia.org/wiki/Dynamic_range



Typical Dynamic Range

Input “device”: (maximal signal/noise floor) 
• Smartphone camera: 10 stops (iPhone 11) 

• DSLR: 14.8 stops (Sony A7R4) 

• Human eyes: 10-14 stops (instantaneous, i.e., when the pupil size doesn’t change)
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https://blog.halide.cam/inside-the-iphone-11-camera-part-1-a-completely-new-camera-28ea5d091071
https://www.dxomark.com/sony-a7r-iv-sensor-review/
https://www.cambridgeincolour.com/tutorials/cameras-vs-human-eye.htm


Dynamic Range of “Output Devices”

DR of light-emitting output “devices” is defined slightly differently.
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http://scarlet.stanford.edu/~brian/papers/pdc/CIC10_Paper88.pdf
https://www.displayspecifications.com/en/model/fc6f10a4
https://www.cnet.com/news/what-is-uhd-alliance-premium-certified/
http://lumita.com/site_media/work/whitepapers/files/pscs3_rendering_image.pdf


Dynamic Range of “Output Devices”

DR of light-emitting output “devices” is defined slightly differently.

DR = highest illumination/lowest illumination 
• Natural scenes: ~20 stops (measurement) 

• Typical Display: ~10 stops (LG 27UK850); of course every display you buy touts HDR… 

• HDR Display: 14.2 stops (UHD Alliance Certified HDR LCD display) 

• Paper: 6-8 stops (typical value); related to pigment density

�88

http://scarlet.stanford.edu/~brian/papers/pdc/CIC10_Paper88.pdf
https://www.displayspecifications.com/en/model/fc6f10a4
https://www.cnet.com/news/what-is-uhd-alliance-premium-certified/
http://lumita.com/site_media/work/whitepapers/files/pscs3_rendering_image.pdf


Output “Device” Illumination

�89Rendering the Print: the Art of Photography

LG 27UK850-W Brightness: 350 cd/m2

Displays will never reproduce the same 
luminance in a scene (power of the sun!), 
but tries to maintain the relative ratio.



Natural Scenes Have High Dynamic Range
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Scene

Eyes
Rendering the Print: the Art of Photography



The Problem
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Scene

Camera

Display

Print

Eyes

LCD display DR is 
not much better

Rendering the Print: the Art of Photography



Two Related Tasks in Sensor Signal Processing
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Scene

Camera

Display

Print

High DR (natural) scenes

Lower DR capturing 
device (e.g., camera)

Even lower DR output 
device (e.g., display, paper)

1. HDR Imaging: how to capture an 
HDR scene with a lower DR capturing 

device. Limited by the camera.

2. Tone Mapping: how to display HDR 
images on lower DR display devices. 

Limited by the display medium.
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Color Sensing



Goal of Color Sensing

�94https://www.eyeworld.org/research-finds-human-visual-cortex-continues-development-mid-30s

Cone 
responses

LMS 
space

CIE XYZ 
space

CIE RGB 
space

sRGB 
space

CMYK 
space

Sensor color 
space

https://9to5mac.com/2017/12/07/iphone-flikr-most-used-camera/

https://www.eyeworld.org/research-finds-human-visual-cortex-continues-development-mid-30s
https://9to5mac.com/2017/12/07/iphone-flikr-most-used-camera/


Goal of Color Sensing
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Cone 
responses

LMS 
space

CIE XYZ 
space

CIE RGB 
space

sRGB 
space

CMYK 
space

Sensor color 
space

https://9to5mac.com/2017/12/07/iphone-flikr-most-used-camera/

What if this is not true? Metamers in human 
vision would not be metamers in camera 

vision: colors appearing different to your eyes 
would look the same in photos and vise versa.

https://www.eyeworld.org/research-finds-human-visual-cortex-continues-development-mid-30s
https://9to5mac.com/2017/12/07/iphone-flikr-most-used-camera/


How to Sense Color?

Principle of univariance: once a photon is converted to an electron, we lose 
wavelength/color information (there is no red electron vs. blue electron). 

How do humans sensor color? We have three types of cones, each has a 
different spectral sensitivity to light. 

• Light spectrum gets transformed to three numbers (L, M, S cone responses, or 
equivalently the tristimulus values in a color space). 

Cameras also need to somehow generate three numbers from light too. 

The three values should ideally be the same as the LMS cone responses. 
• Or can be converted to tristumulus values in one of the known color spaces.
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Sensor Spectral Sensitivity
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Effectively we need to have 
three kinds of sensors, each 
has a unique spectral 
sensitivity function (SSF). 

SSF(𝛌): generated electrical 
energy per unit incident light 
energy at a given 𝛌.

https://www.cs.rochester.edu/courses/572/colorvis/camcolor.html



Sensor Spectral Sensitivity
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https://www.cs.rochester.edu/courses/572/colorvis/camcolor.html

How should SSFs look like? 
• Ideally: each sensor’s SSF 

mimics LMS and XYZ, since 
CMFs in other color space 
usually involve negative values 
that are physically unrealizable. 

• Reality: hard to be exact. SSF 
depends on lots of things 
(sensor quantum efficiency, 
microlens, filters, 
manufacturability, etc.).



Sensor Spectral Sensitivity
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https://www.cs.rochester.edu/courses/572/colorvis/camcolor.html



Sensor Spectral Sensitivity
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https://www.cs.rochester.edu/courses/572/colorvis/camcolor.html



Astrophysical Imaging Uses More Filters

�100https://www.asahi-spectra.com/opticalfilters/sdss.html

Spectral transmittance of the five filters in the first SDSS camera
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An image from SDSS (False Colors)

https://www.iac.es/en/projects/sloan-digital-sky-survey-iii-sdss
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Realizing “Three 
Kinds of Sensors”



Take Three Separate Shots and Combined Them

�103http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15463-f11/www/proj1/www/machongm/

Sergey Prokudin-Gorsky 
(1836 — 1944)

https://www.loc.gov/exhibits/empire/making.html

1906 by Dr. Adolf Miethe

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15463-f11/www/proj1/www/machongm/
https://en.wikipedia.org/wiki/Sergey_Prokudin-Gorsky
https://www.loc.gov/exhibits/empire/making.html


Use Three Sensors
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a colour image. Similarly, digital image sensors require
some mechanism for the separation of light into different
wavelength bands. There are various methods employed in
digital cameras to achieve colour separation, as introduced
in Chapter 9 and summarized below.

Three-sensor cameras
These early digital cameras employ a beamsplitter, usually
a dichroic prism, to separate the incoming light into three
components (see Figure 14.3). These are directed to three
separate sensors, filtered for red, green and blue wavelengths
respectively. Each sensor produces a monochromatic record
of the filtered light only, corresponding to one of the three
channels of the image. The images from the three separate
sensors require careful registration to produce the full colour
image. Because each sensor produces a full-resolution record
of the image, these cameras do not suffer from chromatic
aliasing typical of cameras using Bayer arrays (see below).
The use of three sensors, however, means that these cameras
are both expensive and bulky.

Sequential colour cameras
These cameras capture successive red, green and blue
filtered exposures, using a colour filter wheel or a tunable
LCD filter to separate the light into the three components
(see Figure 14.3b). The image is then formed by a combi-
nation of the three resulting images. As for three-sensor
cameras, each channel is captured at the full resolution of
the sensor, resulting in very-high-quality images. However,
the colour sequential method is only suitable for static
subjects, because the three channels are captured at slightly
separate times and any misregistration of the subject will
result in colour fringes at edges. An additional problem is
that of illumination, which may vary during the successive
exposures. Therefore, this approach is confined to a limited
number of professional studio cameras.

Scanning backs for large-format cameras have similar
limitations to colour sequential cameras. Most commonly
they employ a trilinear CCD array, which scans across the
image format. All three channels are captured at the same

time in this case, so misregistration of the three channels is
not a problem, but subject movement may result in image
distortion. Inconsistent illumination produces changes in
exposure across the image plane.

Colour filter array (CFA) cameras
Nearly all commercially available digital cameras (other
than those using a Foveon sensor, described in the next
section) use a colour filter array positioned directly in front
of a single sensor, capturing separate wavelength bands to
individual pixels. Each pixel therefore contributes to only
one of the colour channels and the values for the other two
channels at that pixel must be interpolated. The process of
interpolating colour values is known as demosaicing. If
rendered images are being produced by the camera, which
is most commonly the case, then demosaicing is performed
by the camera digital signal processor. Alternatively, if RAW
camera data are to be output (in unrendered camera pro-
cessing), then demosaicing will usually be performed later
during RAW conversion (see Chapters 17, 25 and 26).

A number of different CFA patterns have been devel-
oped, but the two most frequently employed are the Bayer
array and the complementary mosaic pattern. These are shown
in Figure 14.4a and b (see also Figure 9.21).

The Bayer array is the most common, consisting of red,
green and blue filters, with twice the number of green to red
and blue filtered pixels. As described in Chapter 9, the
spectral sensitivity of the green filtered pixels most closely
corresponds to the peak luminance sensitivity of the human
visual system, hence the higher allocation, providing better
luminance discrimination. This results in a higher Nyquist
frequency for the green channel than that of the red and blue
channels. Differing Nyquist frequencies produce different
amounts of aliasing across the three channels, appearing as
chromatic aliasing at high spatial frequencies. The effect,
which is indicated by colour fringing, is counteracted by the
use of the OLPF described earlier in this chapter.

The complementary mosaic pattern, used in some digital
still cameras, consists of equal numbers of cyan, magenta,
yellow and green filtered photosites. Because complemen-
tary filters absorb less light than primary filters, these CFAs

(a) (b)

Figure 14.3 (a) Three-sensor camera. (b) Sequential colour camera.

Chapter 14 The Manual of Photography
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Similar to “three shots” (previous slide)Use three sensors



Use Three Sensors
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a colour image. Similarly, digital image sensors require
some mechanism for the separation of light into different
wavelength bands. There are various methods employed in
digital cameras to achieve colour separation, as introduced
in Chapter 9 and summarized below.

Three-sensor cameras
These early digital cameras employ a beamsplitter, usually
a dichroic prism, to separate the incoming light into three
components (see Figure 14.3). These are directed to three
separate sensors, filtered for red, green and blue wavelengths
respectively. Each sensor produces a monochromatic record
of the filtered light only, corresponding to one of the three
channels of the image. The images from the three separate
sensors require careful registration to produce the full colour
image. Because each sensor produces a full-resolution record
of the image, these cameras do not suffer from chromatic
aliasing typical of cameras using Bayer arrays (see below).
The use of three sensors, however, means that these cameras
are both expensive and bulky.

Sequential colour cameras
These cameras capture successive red, green and blue
filtered exposures, using a colour filter wheel or a tunable
LCD filter to separate the light into the three components
(see Figure 14.3b). The image is then formed by a combi-
nation of the three resulting images. As for three-sensor
cameras, each channel is captured at the full resolution of
the sensor, resulting in very-high-quality images. However,
the colour sequential method is only suitable for static
subjects, because the three channels are captured at slightly
separate times and any misregistration of the subject will
result in colour fringes at edges. An additional problem is
that of illumination, which may vary during the successive
exposures. Therefore, this approach is confined to a limited
number of professional studio cameras.

Scanning backs for large-format cameras have similar
limitations to colour sequential cameras. Most commonly
they employ a trilinear CCD array, which scans across the
image format. All three channels are captured at the same

time in this case, so misregistration of the three channels is
not a problem, but subject movement may result in image
distortion. Inconsistent illumination produces changes in
exposure across the image plane.

Colour filter array (CFA) cameras
Nearly all commercially available digital cameras (other
than those using a Foveon sensor, described in the next
section) use a colour filter array positioned directly in front
of a single sensor, capturing separate wavelength bands to
individual pixels. Each pixel therefore contributes to only
one of the colour channels and the values for the other two
channels at that pixel must be interpolated. The process of
interpolating colour values is known as demosaicing. If
rendered images are being produced by the camera, which
is most commonly the case, then demosaicing is performed
by the camera digital signal processor. Alternatively, if RAW
camera data are to be output (in unrendered camera pro-
cessing), then demosaicing will usually be performed later
during RAW conversion (see Chapters 17, 25 and 26).

A number of different CFA patterns have been devel-
oped, but the two most frequently employed are the Bayer
array and the complementary mosaic pattern. These are shown
in Figure 14.4a and b (see also Figure 9.21).

The Bayer array is the most common, consisting of red,
green and blue filters, with twice the number of green to red
and blue filtered pixels. As described in Chapter 9, the
spectral sensitivity of the green filtered pixels most closely
corresponds to the peak luminance sensitivity of the human
visual system, hence the higher allocation, providing better
luminance discrimination. This results in a higher Nyquist
frequency for the green channel than that of the red and blue
channels. Differing Nyquist frequencies produce different
amounts of aliasing across the three channels, appearing as
chromatic aliasing at high spatial frequencies. The effect,
which is indicated by colour fringing, is counteracted by the
use of the OLPF described earlier in this chapter.

The complementary mosaic pattern, used in some digital
still cameras, consists of equal numbers of cyan, magenta,
yellow and green filtered photosites. Because complemen-
tary filters absorb less light than primary filters, these CFAs

(a) (b)

Figure 14.3 (a) Three-sensor camera. (b) Sequential colour camera.
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Use three sensors



Multi-Chip Sensing in Astrophysics

�106https://www.sdss.org/dr16/imaging/imaging_basics/https://www.sdss.org/dr16/imaging/imaging_basics/https://www.asahi-spectra.com/opticalfilters/sdss.asp



Vertical Stacking

�107https://en.wikipedia.org/wiki/Foveon_X3_sensor

Longer-wavelength light 
penetrates deeper into silicon.

https://www.dpreview.com/articles/1431165397/sigma-dp3-merrill-foveon-75mm-equivalent

https://en.wikipedia.org/wiki/Foveon_X3_sensor
https://www.dpreview.com/articles/1431165397/sigma-dp3-merrill-foveon-75mm-equivalent


Color Filtering Array
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Bryce Bayer (1929 — 2012) UR Alum

https://en.wikipedia.org/wiki/Bayer_filter

Bayer Pattern

https://en.wikipedia.org/wiki/Bryce_Bayer


�109https://pixelcraft.photo.blog/2019/12/18/the-bayer-filter/



Color Filtering Array

Each filter has a unique spectral transmittance function, which characterizes 
the percentage of photons that can get through at each wavelength.

�110https://www.mdpi.com/1424-8220/19/8/1750



Filters Dim Lights
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YR(x, y) = ∫λ
Φ(λ) R(λ) IR(λ) M(λ) CFAR(λ)dλ

Spectral transmittance 
of IR filter

𝚽(𝛌)
R(𝛌)

Spectral transmittance of 
the micro-lenses

Spectral transmittance of the 
red filter in the CFA

https://www.mdpi.com/1424-8220/19/8/1750



Reading Sensor Specification: ONSemi NOII4SM6600A
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NOII4SM6600A

www.onsemi.com
2

SPECIFICATIONS

GENERAL SPECIFICATIONS

Parameter Specification Remarks

Pixel Architecture 3T-Pixel

Pixel Size 3.5 !m x 3.5 !m The resolution and pixel size results in a 7.74 mm x 10.51 mm
optical active area.

Resolution 2210 x 3002

Pixel Rate 40 MHz Using a 40 MHz system clock and 1 or 2 parallel outputs

Shutter Type Electronic Rolling Shutter

Full Frame Rate 5 frames/second Increases with ROI read out and/or subsampling

ELECTRO OPTICAL SPECIFICATIONS

Parameter Specification Remarks

FPN (local) <0.20%, 2 LSB10 %RMS of saturation signal

PRNU (local) <1.5% RMS of signal level

Conversion Gain 43 !V/e- At output (measured)

Output Signal Amplitude 0.6 V At nominal conditions

Saturation Charge 21500 e-

Sensitivity (peak) 411 V.m2/W.s
4.83 V/lux.s

At 650 nm
(85 lux = 1 W/m2)

Sensitivity (visible) 328 V.m2/W.s
2.01 V/lux.s

400-700 nm
(163 lux = 1 W/m2)

Peak QE * FF
Peak Spectral Response

25%
0.13 A/W

Average QE*FF = 22% (visible range)
Average SR*FF = 0.1 A/W (visible range)
See the section Spectral Response Curve on page 4.

Fill Factor 35% Light sensitive part of pixel (measured)

Dark Current 3.37 mV/s
78 e-/s

Typical value of average dark current of the whole pixel array
(at 21°C)

Dark Signal Non Uniformity 8.28 mV/s
191 e-/s

Dark current RMS value (at 21°C)

Temporal Noise 24 RMS e- Measured at digital output (in the dark)

Signal/Noise Ratio 895:1 (40 dB) Measured at digital output (in the dark)

Dynamic Range 59 dB

Spectral Sensitivity Range 400 - 1000 nm

Optical Cross Talk 15%
4%

To the first neighboring pixel
To the second neighboring pixel

Power Dissipation 225 mW Typical (including ADCs)

NOII4SM6600A

www.onsemi.com
3

Spectral Response Curve
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Figure 2. Spectral Response Curve

Figure 2 shows the characteristics of the spectral response.
The curve is measured directly on the pixels. It includes the
effects of nonsensitive areas in the pixel, for example,
interconnection lines. The sensor is light sensitive between

400 and 1000 nm. The peak QE x FF is 25% approximately
650 nm. In view of a fill factor of 35%, the QE is close to
70% between 500 and 700 nm.

Monochromatic sensor

https://www.onsemi.com/pub/Collateral/NOII4SM6600A-D.PDF


Reading Sensor Specification: ONSemi KAF-8300

�113

KAF−8300
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IMAGING PERFORMANCE

Table 5. OPERATING CONDITIONS
(The Performance Specifications are verified using the following conditions.)

Description Condition − Unless otherwise Noted Notes

Readout Time (tREADOUT) 526 ms Includes tVoverclock & tHoverclock

Integration Time (tINT) 33 ms

Horizontal Clock Frequency 20 MHz

Light Source (LED) Red, Green, Blue, Orange

Mode Integrate − Readout Cycle

Table 6. SPECIFICATIONS  

Description Symbol Min. Nom. Max. Unit Notes
Verification

Plan

ALL DEVICES

Minimum Column MinColumn 575 − − mV 1, 4 Die17

Linear Saturation Signal Ne-SAT 25.5 − − ke- 1, 3, 4 Design18

Charge to Voltage Conversion Q−V 22.5 23.0 − !V/e- Design18

Linearity Error LeLow10
LeLow33
LeHigh

−10
−10
−10

−
−
−

10
10
10

% 2, 5
2, 5

2, 4, 5

Die17

Dark Signal (Active Area Pixels) AA_DarkSig − − 200 e-/s 4, 7 Die17

Dark Signal (Dark Reference Pixels) DR_DarkSig − − 200 e-/s 4, 7 Die17

Readout Cycle Dark Signal Dark_Read − − 15 mV/s Die17

Flush Cycle Dark Signal Dark_Flush − 43 90 mV/s Die17

Dark Signal Non-Uniformity DSNU
DSNU_Step

DSNU_H

−
−
−

1.30
0.14
0.40

3.0
0.5
1.0

mV p-p 4, 8 Die17

Dark Signal Doubling Temperature "T − 5.8 − °C Design18

Dark Reference Difference, 
Active Area

DarkStep −3.5 0.15 3.5 mV 4 Die17

Total Noise Dfld_noi − − 1.08 mV 4, 9 Die17

Total Sensor Noise N − 16 − e- rms 18 Design18

Linear Dynamic Range DR − 64.4 − dB 10 Design18

Horizontal Charge Transfer
Efficiency

HCTE 0.999990 0.999995 − % 4, 12, 20 Die17

Vertical Charge Transfer Efficiency VCTE 0.999997 0.999999 − % 4, 20 Die17

Blooming Protection X_b 1,000 − − x ESAT 13 Design18

Vertical Bloom on Transfer VBloomF −20 − 20 mV 4 Die17

Horizontal Crosstalk H_Xtalk −20 − 20 mV 4 Die17

Horizontal Overclock Noise Hoclk_noi 0 − 1.08 mV 4 Die17

Output Amplifier Bandwidth f−3dB 88 − 159 MHz 4, 15 Die17

Output Impedance, Amplifier ROUT 100 − 180 # Die17

Hclk Feedthru VHFT − − 70 mV 4, 16 Die17

Reset Feedthru VRFT 500 710 1,000 mV Design18

https://www.onsemi.com/pub/Collateral/KAF-8300-D.PDF
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DEVICE DESCRIPTION

Architecture

Figure 2. Block Diagram (Color)
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A RGB sensor

https://www.onsemi.com/pub/Collateral/KAF-8300-D.PDF
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IMAGING PERFORMANCE
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Horizontal Charge Transfer
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DEVICE DESCRIPTION

Architecture

Figure 2. Block Diagram (Color)
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Dark current halves as the 
temperature drops by 5.8℃.

https://www.onsemi.com/pub/Collateral/KAF-8300-D.PDF
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TYPICAL PERFORMANCE CURVES

Figure 7. Typical Quantum Efficiency (Color Version)
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TYPICAL PERFORMANCE CURVES
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The two green filters have slightly different 
spectral sensitivities!

Having microlenses improves spectral 
sensitivities because the FF improves!

https://www.onsemi.com/pub/Collateral/KAF-8300-D.PDF

https://www.onsemi.com/pub/Collateral/KAF-8300-D.PDF
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Specifications Camera Performance

Sensor GPixel GSense 144 BSI CMOS Gen IV, Grade 1 in imaging area

Active Array Size 1200 x 1200 pixels (1.44 Megapixel)

Pixel Area 11µm x 11µm (121µm2)

Sensor Area
13.2mm x 13.2mm

18.7mm diagonal

Peak QE% >95%

Read Noise
1.6e- (Median)

1.8e- (RMS)

Full-Well Capacity
80,000e- (Combined Gain)

10,000e- (High Gain)

Dynamic Range 50,000:1 (Combined Gain)

Bit Depth
16-bit (Combined Gain)

12-bit (High Gain)

Readout Mode
Rolling Shutter

Effective Global Shutter

Binning 2x2 (on FPGA)

Linearity >99.5%

Cooling Performance Sensor Temperature Dark Current

Air Cooled -20ºC @ 25ºC Ambient 0.55e-/pixel/second

Liquid Cooled -25ºC @ 25ºC Ambient 0.3e-/pixel/second

Specification Camera Interface

Digital Interface PCle, USB 3.0

Lens Interface C-Mount

Mounting Points 2x 1/4 “-20 mounting points per side to prevent rotation

Liquid Cooling Quick Disconnect Ports

Triggering Mode Function

Input Trigger Modes

Trigger First: Sequence triggered on first rising edge

Edge: Each frame triggered on rising edge

SMART Streaming: Fast iteration through multiple exposure times

Output Trigger Modes

First Row: Expose signal is high while first row is acquiring data

Any Row: Expose signal is high while any row is acquiring data

All Rows: Effective Global Shutter – Expose signal is high when all rows are acquiring data

                Signal is high for set Exposure time

Rolling Shutter: Effective Global Shutter – Expose signal is high when all rows are acquiring data

                           Signal is High for set Exposure time – Readout Time

Output Trigger Signals Expose Out (up to four signals), Read Out, Trigger Ready
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Distance from C-mount to sensor

Teledyne Photometrics is a registered trademark. Prime 95B is a trademark of Teledyne Photometrics. 
All other brand and product names are the trademarks of their respective owners.

Specifications in this datasheet are subject to change. Refer to the Teledyne Photometrics website for most current specifications.

Prime 95B™ Scientific CMOS Camera Datasheet95% Quantum Efficiency

Accessories (Included)

PCle Card/Cable

USB 3.0 Cable

Trigger Cables

Power Supply

Manuals and QuickStart Guide

Performance and Gain Calibration Test Data

Accessories (Additional)

Liquid Circulator 

Liquid Cooling Tubes

Frame Rate (PCIe interface)

Array Size 16-bit 12-bit

1200 x 1200 40 80

1200 x 512 94 188

1200 x 256 188 374

1200 x 128 374 737
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Being a scientific image sensor, the 
noise performance is much better


