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Digital Camera Imaging

Color in Nature, Arts, & Tech 
(a.k.a., the birth, life, and death of light)

The Roadmap
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Graphics

3http://www.cgarena.com/freestuff/tutorials/max/thomas_highway/sergeant.htmlhttps://docs.blender.org/manual/en/dev/render/introduction.html

Lighting, Camera, 
and Material

Modeling Rendering



Rendering Algorithm

Two fundamental problems: visibility and shading 

Visibility: what part of the scene is visible by the camera? 
• For each image pixel, which point in the scene corresponds to it? 

• How many scene points for a pixel? 

Shading: how does the visible part look like? 
• What’s the color of each image pixel? 

Theoretically shading is independent of visibility, but certain class of visibility 
algorithms make realistic shading easier/natural to implement.
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Visibility Problem

Two fundamental classes of visibility algorithms 
• Object-centric (Rasterization) 

• Image-centric (Ray tracing)
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Given a point P [x, y, z], what’s the corresponding 
pixel coordinates [u, v] on the camera sensor?

Given a pixel [u, v] on the sensor, what’s 
the associated point in the scene?



Visibility Algorithm

Rasterization is generally (much) faster than ray tracing. 

Modern GPUs are well-optimized for rasterization, but hardware that 
supports real-time ray tracing is there (e.g., Nvidia’s Turing GPUs). 

Ray tracing allows for a natural implementation of realistic shading. 

RenderMan (REYES) from Pixar is based on rasterization. 
• Considered to be one of the best rasterization algorithm ever to be built 

• Today’s rasterization pipeline has many similarities with REYES 

Pixar now uses RIS, which is purely based on ray tracing.
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Shading

Heavily researched; always a speed-vs-realism trade-off. 

Empirical modeling vs. physics simulation 
• Simple solutions, e.g., assigning color to each scene point/triangle + interpolation 

• Slightly better: empirical modeling (e.g., Phong model) 

• Ultimately, we must simulate physics (e.g., light matter interaction, spectral information) 

Local vs. global illumination 
• Do we consider only direct lighting or also account for indirect illumination (e.g. 

reflection from other objects), a.k.a., global illumination?
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Shading Complexity: Global Illumination
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They do not directly receive lights 
but aren’t black. Need to consider 

both direct and indirect illumination.



Shading Complexity: Modeling Light-Matter Interaction
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Different materials have drastically 
different appearances. Need to model 

materials and how they interact with light.



Local vs. Global Illumination

10https://colinbarrebrisebois.com/2015/11/06/finding-next-gen-part-i-the-need-for-robust-and-fast-global-illumination-in-games/

https://colinbarrebrisebois.com/2015/11/06/finding-next-gen-part-i-the-need-for-robust-and-fast-global-illumination-in-games/


11https://www.tomlooman.com/lighting-with-unreal-engine-jerome/
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Rasterization Pipeline



Rasterization-based Rendering
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Camera Projection

Rasterization

Scene Transformations

Shading

Visibility/Blending



Rasterization-based Rendering
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Camera Projection

Rasterization

Scene Transformations

Shading

Visibility/Blending

248 Chapter 5 Viewing

Model-view Projection Perspective
division

FIGURE 5.33 Projection pipeline.

5.6 PERSPECTIVE PROJECTIONS WITH WEBGL

The projections that we developed in Section 5.5 did not take into account the prop-
erties of the camera: the focal length of its lens or the size of the film plane. Figure 5.34
shows the angle of view for a simple pinhole camera, like the one that we discussed
in Chapter 1. Only those objects that fit within the angle (or field) of view of the
camera appear in the image. If the back of the camera is rectangular, only objects
within an infinite pyramid—the view volume—whose apex is at the COP can appear
in the image. Objects not within the view volume are said to be clipped out of the
scene. Hence, our description of simple projections has been incomplete; we did not
include the effects of clipping.

With most graphics APIs, the application program specifies clipping parameters
through the specification of a projection. The infinite pyramid in Figure 5.34 becomes
a finite clipping volume by adding front and back clipping planes, in addition to the
angle of view, as shown in Figure 5.35. The resulting view volume is a frustum—a
truncated pyramid. We have fixed only one parameter by specifying that the COP is
at the origin in the camera frame. In principle, we should be able to specify each of
the six sides of the frustum to have almost any orientation. If we did so, however,
we would make it difficult to specify a view in the application and complicate the
implementation. In practice, we rarely need this flexibility, and usually we can get by
with only two perspective viewing functions. Other APIs differ in their function calls
but incorporate similar restrictions.

Angle of view

FIGURE 5.34 Specification of a view volume.

Converting scene objects to camera screen space



Rasterization-based Rendering
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Camera Projection

Scene Transformations

Shading

Visibility/Blending

Which pixels are covered by each triangle?

Rasterization



Rasterization-based Rendering
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Camera Projection

Scene Transformations

Visibility/Blending

What’s the color of each pixel?

Rasterization

Shading



Rasterization-based Rendering
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Camera Projection

Scene Transformations
How to deal with multiple scene points mapped to the same pixel?

Rasterization

Visibility/Blending

Shading

426 Chapter 8 From Geometry to Pixels

CB

A

COP

FIGURE 8.42 Image-space hidden-surface removal.

FIGURE 8.43 Polygon with
spans.

However, because image-space approaches work at the fragment or pixel level, their
accuracy is limited by the resolution of the framebuffer.

8.11.2 Sorting and Hidden-Surface Removal
The O(k2) upper bound for object-oriented hidden-surface removal might remind
you of the poorer sorting algorithms, such as bubble sort. Any method that involves
brute-force comparison of objects by pairs has O(k2) complexity. But there is a more
direct connection, which we exploited in the object-oriented sorting algorithms in
Section 8.11.1. If we could organize objects by their distances from the camera, we
should be able to come up with a direct method of rendering them.

But if we follow the analogy, we know that the complexity of good sorting al-
gorithms is O(k log k). We should expect the same to be true for object-oriented
hidden-surface removal, and, in fact, such is the case. As with sorting, there are
multiple algorithms that meet these bounds. In addition, there are related problems
involving comparison of objects, such as collision detection, that start off looking as
if they are O(k2) when, in fact, they can be reduced to O(k log k).

8.11.3 Scan Line Algorithms
The attraction of a scan line algorithm is that such a method has the potential to
generate pixels as they are displayed. Consider the polygon in Figure 8.43, with one
scan line shown. If we use our odd–even rule for defining the inside of the polygon,
we can see three groups of pixels, or spans, on this scan line that are inside the
polygon. Note that each span can be processed independently for lighting or depth
calculations, a strategy that has been employed in some hardware that has parallel
span processors. For our simple example of constant fill, after we have identified the
spans, we can color the interior pixels of each span with the fill color.

The spans are determined by the set of intersections of polygons with scan lines.
The vertices contain all the information that we need to determine these intersec-
tions, but the method that we use to represent the polygon determines the order in
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Scene 
TransformationRasterization

Shading
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Scene Transformation

For convenience and for reusing the same 
objects across scenes. 

The two killeroos are exactly the same 
object, but are placed differently in the 
same scene. 

Define the mesh of the killeroo once with 
respect to its local coordinate system, and 
transform it properly when place it in the 
world coordinate system.
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Example
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Object description in its local 
coordinate system (not shown here)

Different transformations (translations) 
when placed in the scene

A scene description file from pbrt, 
a pedagogical rendering engine.



What Local Coordination Systems Do We Need?

Objects 
Light sources 

• Point light (shapeless) 

• Area light 

• Distant light 

• Arbitrary shapes 

Camera 
• A special local frame, 

where everything else 
eventually has to be 
translated to.
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Local frame 3Camera frame Local frame 2 
(light)Local frame 1

Scene



Scene Transformations
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World frame

Local to world 
transformations 

(3D to 3D)

Camera



Scene Transformations
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Local to world 
transformations 

(3D to 3D)

World to camera 
transformation 

(3D to 3D)

Camera frame



Scene Transformations
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Local to world 
transformations 

(3D to 3D)

World to camera 
transformation 

(3D to 3D)

Camera Projection 
(3D to 2D)

Camera frame
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Camera Projection
Camera Projection

Rasterization

Shading

Visibility/Blending

Scene Transformations



Camera Projections: Where 3D Becomes 2D

26http://www.pbr-book.org/3ed-2018/Camera_Models/Environment_Camera.html

Perspective Projection

Orthographic Projection
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Environmental Camera Projection
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Environmental camera

http://www.pbr-book.org/3ed-2018/Camera_Models/Environment_Camera.html



Camera Projection: Where 3D Becomes 2D

Fundamental question: given a point P [x, y, z], what’s the corresponding 
pixel coordinates [u, v], if any, on the camera sensor? 

• A point might not been seen by the sensor because of occlusion and/or FOV. 

There are many ways to project a 3D point to a 2D pixel. The most common 
one is “perspective projection”. 

• It simulates a pinhole camera model, which is roughly how human eyes work; many 
cameras are built to mimic human eyes. 

• But there are other projections that you can implement (after all, graphics is just 
simulation), and many cameras that are built not to mimic human eyes (e.g., fish-eye 
cameras).
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Convention: Placing Image Plane Before Camera

We assume the sensor is in front of the 
pinhole — not possible physically, but 
simplifies drawing. 

• Of course the image is not upside down 
anymore. 

• Scene points could be either before or after 
the image plane, i.e, does not artificially 
restrict where a scene point can be.
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248 Chapter 5 Viewing

Model-view Projection Perspective
division

FIGURE 5.33 Projection pipeline.

5.6 PERSPECTIVE PROJECTIONS WITH WEBGL

The projections that we developed in Section 5.5 did not take into account the prop-
erties of the camera: the focal length of its lens or the size of the film plane. Figure 5.34
shows the angle of view for a simple pinhole camera, like the one that we discussed
in Chapter 1. Only those objects that fit within the angle (or field) of view of the
camera appear in the image. If the back of the camera is rectangular, only objects
within an infinite pyramid—the view volume—whose apex is at the COP can appear
in the image. Objects not within the view volume are said to be clipped out of the
scene. Hence, our description of simple projections has been incomplete; we did not
include the effects of clipping.

With most graphics APIs, the application program specifies clipping parameters
through the specification of a projection. The infinite pyramid in Figure 5.34 becomes
a finite clipping volume by adding front and back clipping planes, in addition to the
angle of view, as shown in Figure 5.35. The resulting view volume is a frustum—a
truncated pyramid. We have fixed only one parameter by specifying that the COP is
at the origin in the camera frame. In principle, we should be able to specify each of
the six sides of the frustum to have almost any orientation. If we did so, however,
we would make it difficult to specify a view in the application and complicate the
implementation. In practice, we rarely need this flexibility, and usually we can get by
with only two perspective viewing functions. Other APIs differ in their function calls
but incorporate similar restrictions.

Angle of view

FIGURE 5.34 Specification of a view volume.

Interactive Computer Graphics with WebGL 7ed, Angel & Shreiner



Perspective Projection

Goal: convert P [x, y, z] to pixel 
coordinates [u, v] on the sensor (with 
H x W pixels and a focal length d) 
using a transformation matrix. 

We will do that in two general steps 
(many caveats will be discussed later): 

• Perspectively project P[x, y, z] to P’[x’, y’, 
d] in the image plane (still in the camera 
space). 

• Convert P’ to the pixel coordinates [u, v].
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z

y
P [x, y, z]

Image plane/
sensor

Camera 
center

Focal length d

[u, v]

Px

Pyx

Convention: camera looks down z and looks 
up to y. Positive z is the viewing direction.

P’ [x’, y’]



Perspective Projection
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d z

y z
x

y
P [x, y, z]

P’ [x’, y’]

Focal length d

P [x, y, z]

P’ [x’, y’, z’]

Image plane/
sensor

Camera 
center

y′ =
y
z

dx′ =
x
z

d z′ = d



Perspective Projection Matrix
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y′ =
y
z

dx′ =
x
z

dT00, T01, T02, T03 
T10, T11, T12, T13 
T20, T21, T22, T23 
T30, T31, T32, T33
[ [[x, y, z, 1]  x

z′ = d

= [x’, y’, z’, 1]

x’ = xT00 + yT10 + zT20 + T30 = xf/z

d/z 0 0 0



Perspective Projection Matrix
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y′ =
y
z

dx′ =
x
z

dT00, T01, T02, T03 
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Perspective Projection Matrix
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Perspective Projection Matrix

34
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Perspective Projection Matrix
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Perspective Projection Matrix
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Perspective Projection Matrix
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Perspective Projection Matrix
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Perspective Projection Matrix
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Perspective Projection Matrix
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Perspective Projection Matrix
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Perspective Projection Matrix
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Mind the Z-Axis

Our matrix so far will always 
translate z-coordinate of any P to 
the same z’ = d. Good? 

P1 and P2 are projected to the 
same point P’, but P1 is visible and 
P2 is not: critical for a rendering 
engine to know. 

Somehow we need to make sure 
z1’ < z2’ after projection.
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z
x

y
P’ [x’, y’]

Focal length d

d z

y

P1 [x1, y1, z1]

P’ [x’, y’]

P2 [x2, y2, z2]

P1 [x1, y1, z1]

P2 [x2, y2, z2]



T00, T01, T02, T03 
T10, T11, T12, T13 
T20, T21, T22, T23 
T30, T31, T32, T33

Maintaining Z-Order: Try 1

Try 1: keep z the same before and after transformation 

Problem: No one single matrix that universally works for all possible z values

36

f z

y

P1 [x1, y1, z1]
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0 
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0
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f 
0 
0

z’k = zk = z2 = xT00 + yT10 + zT20 + T30

[x, y, z, 1]  x = [x’k, y’k, z’k, k]



Maintaining Z-Order: Idea

Idea: project the smallest z to 0 and largest z to 1 (or other fixed ranges). 
• There is an artificial “near clipping plane” n and an artificial “far clipping” plane f. 
• Only points between these two planes are visible to the camera. 

• Image plane can be anywhere; technically not related to Near and Far clipping planes.
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Maintaining Z-Order: Solution

38

z’k = z’z = xT02 + yT12 + zT22 + T320
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1
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[x′ k y′ k z′ k k]
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Maintaining Z-Order: Solution
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fT22 + T32 = f

0 0

T22 = (f+n)/(f-n)
T32 = -2fn/(f-n)

[x y z 1] ×

d 0 0 0
0 d 0 0
0 0 f + n

f − n 1

0 0 −2fn
f − n 0

=

xd
yd

z( f + n) − 2fn
f − n
z

⟹

xd
z

yd
z

z( f + n) − 2fn
z( f − n)

1

n f

[x′ k y′ k z′ k k]



Maintaining Z-Order: Solution
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z’k = z’z = xT02 + yT12 + zT22 + T320

-1 1

z

z’

nT22 + T32 = -n
fT22 + T32 = f

0 0

T22 = (f+n)/(f-n)
T32 = -2fn/(f-n)

[x y z 1] ×

d 0 0 0
0 d 0 0
0 0 f + n

f − n 1

0 0 −2fn
f − n 0

=

xd
yd

z( f + n) − 2fn
f − n
z

⟹

xd
z

yd
z

z( f + n) − 2fn
z( f − n)

1

n f



What About This Matrix?
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[x y z 1] ×

d 0 0 0
0 d 0 0
0 0 0 1
0 0 1 0

= [xd yd 1 z] ⟺ [
xd
z

yd
z

1
z

]

The new z after transformation is inversely proportionally to depth. We don’t 
need the near and far clipping planes any more. 

• The visible region is no longer bounded. 

This in theory is OK, but not used in practice: 
• Numerical precision issue trickles in: 1/z could be too small or too large, exceeding 

digital number representation precision. No need to render objects too far anyways.

See CGPP, Chapter 13.3



d 0 0 0
0 d 0 0
0 0 f + n

f − n 1

0 0 −2fn
f − n 0

Perspective Transformation Matrix (So Far)

Perspective projection: 
• is not an affine transformation, which preserves line parallelisms. 

• is a special case of projective transformation (a.k.a., homography), where all 16 
coefficients can take arbitrary values (but only 15 free parameters/degrees of freedom 
because uniformly scaling all coefficients doesn’t change the transformation) 

• is not needed in/used by ray tracing. 

• models only pinhole cameras (not enough to simulate depth of field, etc.)
40

Perspective Projection Affine Transformation

T00 T01 T02 0
T10 T11 T12 0
T20 T21 T22 0
T30 T31 T32 1
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FIGURE 5.36 Specification of a frustum.

5.6.1 Perspective Functions
We will develop two functions for specifying perspective views and one for specifying
parallel views. Alternatively, we can form the projection matrix directly, either by
loading it or by applying rotations, translations, and scalings to an initial identity
matrix. We can specify a perspective camera view by the function

frustum = function(left, right, bottom, top, near, far)

whose parameters are similar to those in ortho. These parameters are shown in Fig-
ure 5.36 in the camera frame. The near and far distances are measured from the COP
(the origin in eye coordinates) to the front and back clipping planes, both of which
are parallel to the plane z = 0. Because the camera is pointing in the negative z direc-
tion, the front (near) clipping plane is the plane z = −near and the back (far) clipping
plane is the plane z = −far. The left, right, top, and bottom values are measured in the
near (front clipping) plane. The plane x = left is to the left of the camera as viewed
from the COP in the direction the camera is pointing. Similar statements hold for
right, bottom, and top. Although in virtually all applications far > near > 0, as

Viewing Frustum
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(right, top, far)

(left, bottom, near)

Viewing frustum

Near plane

Far plane

So far the visible part of the scene is 
clipped by the near and far planes. 

But the visible region should also be 
bounded by the FOV (both 
horizontal and vertical) of the sensor.

d
z

y FN

Image 
plane

FOVy

tan
FOVy

2
=

top
near

tan
FOVx

2
=

right
near



Viewing Frustum

The visible part of the scene is 
actually a frustum. 

In rendering, we generally first map 
the frustum to a normalized cube 
that is independent of the actual 
sensor resolution. 

• Then map the cube to the actual 
sensor resolution; in this way, any 
processing before that is decoupled 
from the sensor, which could change.
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5.6.1 Perspective Functions
We will develop two functions for specifying perspective views and one for specifying
parallel views. Alternatively, we can form the projection matrix directly, either by
loading it or by applying rotations, translations, and scalings to an initial identity
matrix. We can specify a perspective camera view by the function

frustum = function(left, right, bottom, top, near, far)

whose parameters are similar to those in ortho. These parameters are shown in Fig-
ure 5.36 in the camera frame. The near and far distances are measured from the COP
(the origin in eye coordinates) to the front and back clipping planes, both of which
are parallel to the plane z = 0. Because the camera is pointing in the negative z direc-
tion, the front (near) clipping plane is the plane z = −near and the back (far) clipping
plane is the plane z = −far. The left, right, top, and bottom values are measured in the
near (front clipping) plane. The plane x = left is to the left of the camera as viewed
from the COP in the direction the camera is pointing. Similar statements hold for
right, bottom, and top. Although in virtually all applications far > near > 0, as

(right, top, far)

(left, bottom, near)

Viewing frustum

Near plane

Far plane



Viewing Frustum
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5.6.1 Perspective Functions
We will develop two functions for specifying perspective views and one for specifying
parallel views. Alternatively, we can form the projection matrix directly, either by
loading it or by applying rotations, translations, and scalings to an initial identity
matrix. We can specify a perspective camera view by the function

frustum = function(left, right, bottom, top, near, far)

whose parameters are similar to those in ortho. These parameters are shown in Fig-
ure 5.36 in the camera frame. The near and far distances are measured from the COP
(the origin in eye coordinates) to the front and back clipping planes, both of which
are parallel to the plane z = 0. Because the camera is pointing in the negative z direc-
tion, the front (near) clipping plane is the plane z = −near and the back (far) clipping
plane is the plane z = −far. The left, right, top, and bottom values are measured in the
near (front clipping) plane. The plane x = left is to the left of the camera as viewed
from the COP in the direction the camera is pointing. Similar statements hold for
right, bottom, and top. Although in virtually all applications far > near > 0, as
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(1, 1, -1)

Perspective projection

Canonical view volume (a.k.a., 
Normalized Device Coordinate space)

Viewing frustum

(left, bottom, near)

(-1, -1, -1)

(right, top, far)

Near plane

Far plane



Normalized Device Coordinate (NDC) Space
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Perspective projection

NDC Space

Viewing frustum

(right x f / near, top x f / near, 1)

(right, top, far)
(1, 1, -1)



NDC Space (in XY Plane)
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[0, 0]

[ld/n, td/n] [rd/n, td/n]

[ld/n, -td/n] [rd/n, bd/n]

[0, 0]

[-1, 1] [1, 1]

[-1, -1] [1, -1]

NDC SpaceImage Plane (still in 
Camera Space)

* The image plane need not be symmetric 
about the camera origin (pinhole).



NDC Space (in XY Plane)
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[0, 0]

[-1, 1] [1, 1]

[-1, -1] [1, -1]

2n
(r − l)d 0 0 0

0 2n
(t − b)d 0 0

0 0 1 0
− r + l

r − l − t + b
t − b 0 1

NDC Space
Keep the z-axis unchanged 

in this transformation.

[0, 0]

[ld/n, td/n] [rd/n, td/n]

[ld/n, -td/n] [rd/n, bd/n]

Image Plane (still in 
Camera Space)



Overall Perspective Transformation
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= [x y z 1] ×

2n
r − l 0 0 0

0 2n
t − b 0 0

− r + l
r − l − t + b

t − b
f + n
f − n 1

0 0 −2fn
f − n 0

[x y z 1] ×

d 0 0 0
0 d 0 0
0 0 f + n

f − n 1

0 0 −2fn
f − n 0

×

Perspective projection + 
bound the near and far 

clipping planes between 
[-1, 1] along z-axis

Bound the x and y axes within 
the FOV between [-1, 1]

2n
(r − l)d 0 0 0

0 2n
(t − b)d 0 0

0 0 1 0
− r + l

r − l − t + b
t − b 0 1



An Example
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5.6.1 Perspective Functions
We will develop two functions for specifying perspective views and one for specifying
parallel views. Alternatively, we can form the projection matrix directly, either by
loading it or by applying rotations, translations, and scalings to an initial identity
matrix. We can specify a perspective camera view by the function

frustum = function(left, right, bottom, top, near, far)

whose parameters are similar to those in ortho. These parameters are shown in Fig-
ure 5.36 in the camera frame. The near and far distances are measured from the COP
(the origin in eye coordinates) to the front and back clipping planes, both of which
are parallel to the plane z = 0. Because the camera is pointing in the negative z direc-
tion, the front (near) clipping plane is the plane z = −near and the back (far) clipping
plane is the plane z = −far. The left, right, top, and bottom values are measured in the
near (front clipping) plane. The plane x = left is to the left of the camera as viewed
from the COP in the direction the camera is pointing. Similar statements hold for
right, bottom, and top. Although in virtually all applications far > near > 0, as

(left, bottom, near)

(-1, -1, -1)

Perspective projection

NDC Space

Viewing frustum

[l b n 1] ×

2n
r − l 0 0 0

0 2n
t − b 0 0

− r + l
r − l − t + b

t − b
f + n
f − n 1

0 0 −2fn
f − n 0

=

−n
−n

n( f + n) − 2fn
f − n
n

=
−n
−n
−n
n

⟹

−1
−1
−1
1



The Matrix is Independent of Focal Length

The perspective matrix is completely independent of the focal length d. 
• It does depend on r, l, t, d, n, f, which uniquely define a frustum. 

• r, l, t, d, n, f are related by the FOV (x and y) of the sensor. 

Because the matrix transforms the visible region of the scene to a normalized 
cube, and given a FOV, what’s visible to the camera is fixed, i.e., the frustum. 

• In OpenGL/WebGL, the near clipping plane is placed at the focal length so that d never 
shows up during the derivation, but that’s unnecessary and a bit confusing.
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2n
r − l 0 0 0

0 2n
t − b 0 0

− r + l
r − l − t + b

t − b
f + n
f − n 1

0 0 −2fn
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Generating Pixel Coordinates in Screen Space
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[0, 0]

[-1, 1] [1, 1]

[-1, -1] [1, -1]

NDC Space

[0, 0]

[ld/n, td/n] [rd/n, td/n]

[ld/n, -td/n] [rd/n, bd/n]

Image Plane (still in 
Camera Space)

[0, 0]

[Px-1, Py-1]

-0.5 Px - 0.5

Py - 0.5

-0.5

Screen Space

Viewport 
Transformation



Notes on Screen Space

Convention: the origin of 
the screen space is the 
center of the top-left pixel. 

The screen space is still 
continuous. That is, pixel 
coordinates can be 
fractional! Later we will 
“rasterize” the screen space 
to generate actual pixels at 
integer coordinates.
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[0, 0]

[-1, 1] [1, 1]

[-1, -1] [1, -1]

NDC Space

[0, 0]

-0.5 Px - 0.5

Py - 0.5

-0.5

Screen Space

* Note that pixel coordinates 
can be fractional!

Viewport 
Transformation

[Px-1, Py-1]
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Rasterization
Shading

Visibility/Blending

Rasterization

Camera Projection

Scene Transformations



Which Pixels are Covered by Each Triangle?
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Key Question: Is a Point Inside a Triangle?
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Barycentric Coordinates
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[xA, yA]

[xB, yB]
[xC, yC]

[x, y]

(x, y) = α(xA, yA) + β(xB, yB) + γ(xC, yC)

α + β + γ = 1



Barycentric Coordinates
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[xA, yA]

[xB, yB]
[xC, yC]

[x, y]

(x, y) = α(xA, yA) + β(xB, yB) + γ(xC, yC)

α + β + γ = 1

α =
−(x − xB)(yC − yB) + (y − yB)(xC − xB)

−(xA − xB)(yC − yB) + (yA − yB)(xC − xB)

β =
−(x − xC)(yA − yC) + (y − yC)(xA − xC)

−(xB − xC)(yA − yC) + (yB − yC)(xA − xC)



Barycentric Coordinates Examples

57https://en.wikipedia.org/wiki/Barycentric_coordinate_system



Point in Triangle Test
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[xA, yA]

[xB, yB]
[xC, yC]

V [x, y]

(x, y) = α(xA, yA) + β(xB, yB) + γ(xC, yC)

α + β + γ = 1

For any V that’s inside the triangle: 
0 <= α, β, γ <= 1 

For any V that’s outside the triangle: 
Some of α, β, γ is outside the [0, 1] range.



Rasterization Algorithm (w/ Simple Shading)
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Foreach triangle in mesh 
  Perspective project triangle to canvas; 
  Foreach pixel in image 
    if (pixel is in the projected triangle) 
      pixel.color = triangle.color; // shading

Could first find the 
bounding box of the 
triangle to narrow the 

search space.
Visibility/Blending

Rasterization

Camera Projection

Scene Transformations

Shading
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Visibility and 
Blending

Camera Projection

Scene Transformations

Rasterization

Visibility/Blending

Shading



Visibility (Hidden Surface) Problem

When multiple points in the scene get projected to the same pixel, must 
determine which point “wins”, i.e., gets to assign its color to the pixel. 

Fortunately, perspective projection maintains the relative point depth. 
Determining the relative depth is done using a depth-buffer or a z-buffer.
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Foreach triangle in mesh 
  Perspective project triangle to canvas; 
  Foreach pixel in image 
    if (pixel is in the projected triangle) 
      D = computeDepth(pixel) 
      if (D < depthBuffer[pixel]) 
        shade(pixel) 
        depthBuffer[pixel] = D

426 Chapter 8 From Geometry to Pixels

CB

A

COP

FIGURE 8.42 Image-space hidden-surface removal.

FIGURE 8.43 Polygon with
spans.

However, because image-space approaches work at the fragment or pixel level, their
accuracy is limited by the resolution of the framebuffer.

8.11.2 Sorting and Hidden-Surface Removal
The O(k2) upper bound for object-oriented hidden-surface removal might remind
you of the poorer sorting algorithms, such as bubble sort. Any method that involves
brute-force comparison of objects by pairs has O(k2) complexity. But there is a more
direct connection, which we exploited in the object-oriented sorting algorithms in
Section 8.11.1. If we could organize objects by their distances from the camera, we
should be able to come up with a direct method of rendering them.

But if we follow the analogy, we know that the complexity of good sorting al-
gorithms is O(k log k). We should expect the same to be true for object-oriented
hidden-surface removal, and, in fact, such is the case. As with sorting, there are
multiple algorithms that meet these bounds. In addition, there are related problems
involving comparison of objects, such as collision detection, that start off looking as
if they are O(k2) when, in fact, they can be reduced to O(k log k).

8.11.3 Scan Line Algorithms
The attraction of a scan line algorithm is that such a method has the potential to
generate pixels as they are displayed. Consider the polygon in Figure 8.43, with one
scan line shown. If we use our odd–even rule for defining the inside of the polygon,
we can see three groups of pixels, or spans, on this scan line that are inside the
polygon. Note that each span can be processed independently for lighting or depth
calculations, a strategy that has been employed in some hardware that has parallel
span processors. For our simple example of constant fill, after we have identified the
spans, we can color the interior pixels of each span with the fill color.

The spans are determined by the set of intersections of polygons with scan lines.
The vertices contain all the information that we need to determine these intersec-
tions, but the method that we use to represent the polygon determines the order in
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Foreach triangle in mesh 
  Perspective project triangle to canvas; 
  Foreach pixel in image 
    if (pixel is in the projected triangle) 
      D = computeDepth(pixel) 
      if (D < depthBuffer[pixel]) 
        shade(pixel) 
        depthBuffer[pixel] = D

Calculating Depth

62

zA

zB
zC

We know the depths (z-axis) of triangle 
vertices (inverting the perspective matrix). 

How about other pixels? Can we interpolate 
based on barycentric coordinates?

z?



We know the depths (z-axis) of triangle 
vertices (inverting the perspective matrix). 

How about other pixels? Can we interpolate 
based on barycentric coordinates? 

Yes, but the barycentric coordinates need to 
be calculated in the camera space (3D), not 
in the screen space (2D)!

Calculating Depth

63

zA

zB
zC

z?



Visualizing Depth Map

64http://glampert.com/2014/01-26/visualizing-the-depth-buffer/https://forum.unity.com/threads/how-to-manually-write-to-depth-buffer-before-post-effects.528243/



Alpha Blending
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N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 7 51

Alpha Blending

� Alpha Blending is used to render translucent objects.
� 7KH�SL[HO·V�DOSKD�FRPSRQHQW�FRQWDLQV�LWV�opacity.
� Read-modify-write operation to the color framebuffer
� Result =  alpha * Src  +  (1-alpha) * Dst

25% 50% 75% 100%Opacity:
© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign

We can also simulate transparent 
materials by blending colors from 
different primitives when they map to 
the same pixel. 

• Use an alpha channel to represent opacity. 

This is purely a hack. Not physically 
based. Remember how to properly 
simulate transparency? 

• Will revisit this later.
Color = alpha x Foreground Color + (1 - alpha) * Background Color
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Aliasing and Anti-Aliasing 
in Shading



Simple Shading

Basic assumption: each triangle face is assigned a color. 
• …or each triangle vertex has a color, and color of any point inside the triangle is 

interpolated (per-vertex shading). 

• …or each point’s color is calculated by incident lights and viewing angle (per-fragment 
shading); can be empirical or physically-based. 

• We will talk about more realistic shading later, but the general idea here applies. 

Question: how to assign color to each pixel? 
• Simple? If a pixel is inside a triangle, it gets the triangle color. 

• Issue: a pixel is a continuous spatial region, not just a point on triangle.
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Simple Shading

68



Simple Shading
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Simple Shading
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Simple Shading
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Aliasing in Simple Shading

Remember: each image pixel will be sent to the display, which performs a 
spatial reconstruction using a box filter. That is, the entire spatial region of a 
pixel on the display will have the same color. 

Effectively, we have sampled a continuous signal (which most likely is not 
band-limited) at a low frequency (equivalent to image resolution), and then 
reconstruct the signal using a box filter (on display; not what we can control).
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What Do Cameras Do?
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Pixel Array



What Do Cameras Do?

74

Original

What’s 
Displayed



Super-Sampling

75

What cameras do is to average energy across the spatial region of a pixel. 
• This is equivalent to applying a box filter and then sample once per pixel. 

• The filter size is the same as the physical pixel size, but could also be larger if 
considering per-pixel micro-lens and anti-aliasing filters. 

But in rendering we can’t really take the average, since we don’t know what 
the continuous function is. 

What we do is to approximate this by super-sampling, i.e., sample many 
times for each pixel, and then average the samples within each pixel.
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Ren NgCS184/284A

Point Sampling: One Sample Per Pixel

Camera Projection

Scene Transformations

Shading

Visibility/Blending

Rasterization
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Supersampling: Step 1

2x2 supersampling

Take NxN samples in each pixel.
Supersampling is done in the 

rasterization stage. Each sample 
corresponds to a fragment. 
Each fragment is separately 
shaded in the shading stage.

Camera Projection

Scene Transformations

Shading

Visibility/Blending

Rasterization
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Supersampling: Step 2

Averaging down

Average the NxN samples “inside” each pixel.

The averaging takes place 
in the blending step.

Camera Projection

Scene Transformations

Shading

Rasterization

Visibility/Blending
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Supersampling: Step 2
Average the NxN samples “inside” each pixel.

Camera Projection

Scene Transformations

Shading

Rasterization

Visibility/Blending
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Supersampling: Result
This is the corresponding signal emitted by the display

75%

100% 100% 50%

50%50%50%25%

Camera Projection

Scene Transformations

Shading

Rasterization

Visibility/Blending



Signal Sampling/Reconstruction Perspective
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2D continuous signal 
indecent on the sensor plane

Rendered image, i.e., 2D 
discrete signal, one sample 

per pixel in the render image

2D continuous signal, i.e., 
reconstruction by the display 
(most likely using box filter)

Goal: minimize the 
difference between 

the two (up to a 
scale difference).

“Optical image” in camera imaging 
parlance. Never known analytically. 

Cameras don’t need to know it 
analytically; pixels simply integrate.

This process is what rendering (or 
shading specifically) is really about.

We don’t have control over this, but the 
rendering should ideally take into 

account this filter. Cameras can’t; they 
always use box filter, but we should! 



Ideal Strategy

Since the continuous signal most 
definitely will not be band-limited, 
any sampling will lead to aliasing. 

The idea is to pre-filter the 
continuous signal to band-limit the 
signal, since blur is less 
objectionable than aliasing.
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2D continuous signal 
indecent on the sensor plane

Rendered image, i.e., 2D 
discrete signal, one sample 

per pixel in the render image

2D continuous signal, i.e., 
reconstruction by the display 
(most likely using box filter)

Goal: minimize the 
difference between 

the two (up to a 
scale difference).



Two Issues with the Ideal Strategy

1. Ideal pre-filtering needs a box 
function in frequency domain, i.e., 
a sinc function in spatial domain 

• but sinc has infinite support; can’t 
realistically implement it. 

2. Usually we don’t know the 
analytical form of the continuous 
function — cameras do. 

• And they use a box filter at the pixels 
(with potentially other anti-aliasing 
filters) for pre-filtering.
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2D continuous signal 
indecent on the sensor plane

Rendered image, i.e., 2D 
discrete signal, one sample 

per pixel in the render image

2D continuous signal, i.e., 
reconstruction by the display 
(most likely using box filter)

Goal: minimize the 
difference between 

the two (up to a 
scale difference).



Camera’s Strategy
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2D continuous signal 
indecent on the sensor plane

Rendered image, i.e., 2D 
discrete signal, one sample 

per pixel in the render image

2D continuous signal, i.e., 
reconstruction by the display 
(most likely using box filter)

Goal: minimize the 
difference between 

the two (up to a 
scale difference).

Box filter: to blur/low-pass filter 
the 2D continuous signal.

Pixel sampling: sample the pre-
filtered signal at the pixel 

location to generate image.



Rendering Strategy

We don’t know the continuous 
function, so we will sample it and 
then reconstruct it. 

Before the actual pixel sampling, 
we will take the opportunity to 
pre-filter the reconstructed 
continuous signal to band-limit 
the signal.
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2D continuous signal 
indecent on the sensor plane

Rendered image, i.e., 2D 
discrete signal, one sample 

per pixel in the render image

2D continuous signal, i.e., 
reconstruction by the display 
(most likely using box filter)

Goal: minimize the 
difference between 

the two (up to a 
scale difference).



Rendering Strategy
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2D continuous signal 
indecent on the sensor plane

Rendered image, i.e., 2D 
discrete signal, one sample 

per pixel in the render image

2D continuous signal, i.e., 
reconstruction by the display 
(most likely using box filter)

Goal: minimize the 
difference between 

the two (up to a 
scale difference).

Supersample: sample the 2D 
continuous function at a rate 

higher than the pixel resolution.

Pixel sampling: sample the pre-
filtered signal at the pixel 

location to generate image.

Pre-filter: low-pass filter to 
band-limit the reconstructed 

signal above.

Reconstruction filter: 
reconstruct a continuous signal 

from the supersamples.
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2D continuous signal 
indecent on the sensor plane

Rendered image, i.e., 2D 
discrete signal, one sample 

per pixel in the render image

2D continuous signal, i.e., 
reconstruction by the display 
(most likely using box filter)

Goal: minimize the 
difference between 

the two (up to a 
scale difference).

Supersample: sample the 2D 
continuous function at a rate 

higher than the pixel resolution.

Pixel sampling: sample the pre-
filtered signal at the pixel 

location to generate image.

Pre-filter: low-pass filter to 
band-limit the reconstructed 

signal above.

Reconstruction filter: 
reconstruct a continuous signal 

from the supersamples.
Combine the two filters 
(convolution) using one 
single filter: convolution 

is associative.
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The combined filter can be a box filter, or any other filter. There are many 
filters that people have experimented; ultimately, there is virtually no hope 
for perfect reconstruction on the display, so it’s all about the empirical 
rendering quality. 

• See: https://pbr-book.org/3ed-2018/Sampling_and_Reconstruction/
Image_Reconstruction 

Can also use non-uniform sampling, or filter beyond a pixel’s spatial region. 

This discussion is general to any shading, not just in rasterization pipeline.

https://pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Image_Reconstruction
https://pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Image_Reconstruction
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Scene Transformations

Rasterization

Shading

Visibility/Blending

Command/Data Streams

To display

Both manipulate triangle vertices and so are lumped together 
as “vertex processing”, which is made programmable in 

rasterization pipeline to allow custom transformations.Camera Projection

248 Chapter 5 Viewing

Model-view Projection Perspective
division

FIGURE 5.33 Projection pipeline.

5.6 PERSPECTIVE PROJECTIONS WITH WEBGL

The projections that we developed in Section 5.5 did not take into account the prop-
erties of the camera: the focal length of its lens or the size of the film plane. Figure 5.34
shows the angle of view for a simple pinhole camera, like the one that we discussed
in Chapter 1. Only those objects that fit within the angle (or field) of view of the
camera appear in the image. If the back of the camera is rectangular, only objects
within an infinite pyramid—the view volume—whose apex is at the COP can appear
in the image. Objects not within the view volume are said to be clipped out of the
scene. Hence, our description of simple projections has been incomplete; we did not
include the effects of clipping.

With most graphics APIs, the application program specifies clipping parameters
through the specification of a projection. The infinite pyramid in Figure 5.34 becomes
a finite clipping volume by adding front and back clipping planes, in addition to the
angle of view, as shown in Figure 5.35. The resulting view volume is a frustum—a
truncated pyramid. We have fixed only one parameter by specifying that the COP is
at the origin in the camera frame. In principle, we should be able to specify each of
the six sides of the frustum to have almost any orientation. If we did so, however,
we would make it difficult to specify a view in the application and complicate the
implementation. In practice, we rarely need this flexibility, and usually we can get by
with only two perspective viewing functions. Other APIs differ in their function calls
but incorporate similar restrictions.

Angle of view

FIGURE 5.34 Specification of a view volume.
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Rasterization

Shading

Visibility/Blending

Command/Data Streams

Vertex Processing

Vertex Stream

To display

A vertex shader that describes how to transform a 
vertex; the shader is applied to all vertices.

uniform float t; 
attribute vec4 vel; 

const vec4 g = vec4(0.0, -9.8, 0.0); 

void main() { 
  vec4 position = gl_Vertex; 
  position += t*vel + t*t*g; 

  gl_Position = gl_ModelViewProjectionMatrix * position 
}
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Command/Data Streams

Vertex Processing

Vertex Stream

Fragment Stream

Rasterization

To display

Visibility/Blending

Shading

Potentially super-sampling
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Rasterization

Command/Data Streams

Vertex Processing

Vertex Stream

Fragment Stream

To display

Visibility/Blending

Shading

Calculating colors for each fragment. This is abstracted 
as “fragment processing”, which, like vertex 

processing, is programmable in rasterization pipeline.
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Rasterization

Command/Data Streams

Vertex Processing

Vertex Stream

Fragment Stream

Fragment Processing

Shaded Fragments

To display

Visibility/Blending

A fragment shader code that calculates fragment 
color; the shader is applied to all fragments. 

Texture mapping is fragment processing too (later).

uniform sampler2D myTexture; 
uniform vec3 lightDir; 
varying vec2 uv; 
varying vec3 norm; 

void diffuseShader() { 
  vec3 kd; 
  kd = texture2d(myTexture, uv); 
  kd *= clamp(dot(-lightDir, norm), 0.0, 1.0); 

  gl_FragColor = vec4(kd, 1.0); 
}
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Rasterization

Framebuffer Operation

To display

Command/Data Streams

Vertex Processing

Vertex Stream

Fragment Stream

Fragment Processing

Shaded Fragments
(a.k.a., Raster 

Operation/ROP)

Blending

Z-buffer 
visibility test

Anti-aliasing

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 7 51

Alpha Blending

� Alpha Blending is used to render translucent objects.
� 7KH�SL[HO·V�DOSKD�FRPSRQHQW�FRQWDLQV�LWV�opacity.
� Read-modify-write operation to the color framebuffer
� Result =  alpha * Src  +  (1-alpha) * Dst

25% 50% 75% 100%Opacity:
© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign

Ren NgCS184/284A

Supersampling: Result
This is the corresponding signal emitted by the display

75%

100% 100% 50%

50%50%50%25%



Massively Parallel Processing
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• 100’s of thousands to millions of triangles in a scene 
• Complex vertex and fragment shader computations 
• High resolution (3-5+ megapixel + supersampling) 
• 30-60 frames per second (even higher for VR)

Slide credit: Ren Ng
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Rasterization GPU Hardware
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12:KDW·V�LQ�D�*38"

12

Shader
Core

Shader
Core

Shader
Core

Shader
Core

Shader
Core

Shader
Core

Shader
Core

Shader
Core

Tex

Tex

Tex

Tex

Input Assembly

Rasterizer

Output Blend

Video Decode

Work
Distributor

Heterogeneous chip multi-processor (highly tuned for graphics)

Kayvon Fatahalian, 2008Kayvon Fatahalian



GPU Hardware (Maxwell)

97https://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3

Fixed-function units 
(no programmability)

• Each Stream Multiprocessor (SM) 
contains massively parallel 
computing units for processing 
vertices and fragments. 

• There are many SMs. Each can 
execute a different program.



Inside an SM

98https://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3

Running shaders 
(vertex and fragment)

Cache for texture maps 
(exploits data access 
patterns to the texture map)

Texture sampling units
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15Execute shader

15

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul  r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul  o0, r0, r3

mul  o1, r1, r3

mul  o2, r2, r3

mov  o3, l(1.0)

Kayvon Fatahalian, 2008Kayvon Fatahalian
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23Two cores   (two fragments in parallel)

23

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 1

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 2

Kayvon Fatahalian, 2008Kayvon Fatahalian
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24Four cores   (four fragments in parallel)

24

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

Kayvon Fatahalian, 2008Kayvon Fatahalian
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25Sixteen cores   (sixteen fragments in parallel)

25

ALU ALU

ALUALU

ALU ALU

ALUALU

ALU ALU

ALUALU

ALU ALU

ALUALU

16 cores = 16 simultaneous instruction streams

Kayvon Fatahalian, 2008Kayvon Fatahalian
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26Instruction stream coherence

26

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

%XW«�PDQ\�IUDJPHQWV�should
be able to share an instruction
stream! 

Kayvon Fatahalian, 2008Kayvon Fatahalian
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28Add ALUs

28

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processingCtx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data 

Kayvon Fatahalian, 2008Kayvon Fatahalian 104N
EE382N: Principles of Computer Architecture

27Recall: simple processing core

27

Fetch/
Decode

ALU
(Execute)

Execution
Context

Kayvon Fatahalian, 2008Kayvon Fatahalian



Single Shader Program Multiple Fragments/Vertices
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31Modifying the shader

31

Fetch/
Decode

<VEC8_diffuseShader>:

VEC8_sample vec_r0, vec_v4, t0, vec_s0

VEC8_mul  vec_r3, vec_v0, cb0[0]

VEC8_madd vec_r3, vec_v1, cb0[1], vec_r3

VEC8_madd vec_r3, vec_v2, cb0[2], vec_r3

VEC8_clmp vec_r3, vec_r3, l(0.0), l(1.0)

VEC8_mul  vec_o0, vec_r0, vec_r3

VEC8_mul  vec_o1, vec_r1, vec_r3

VEC8_mul  vec_o2, vec_r2, vec_r3

VEC8_mov  vec_o3, l(1.0)

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data 

2 31 4

6 75 8

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

Kayvon Fatahalian, 2008Kayvon Fatahalian
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32128 fragments in parallel 

32
= 16 simultaneous instruction streams

16 cores = 128 ALUs

Kayvon Fatahalian, 2008Kayvon Fatahalian

16 SMs, each with 8 ALUs. Each SM runs the same program (fragment shader)
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33128 [                       ] in parallel 

33

vertices / fragments
primitives

CUDA threads
OpenCL work items

compute shader threads

primitives

vertices

fragments

Kayvon Fatahalian, 2008Kayvon Fatahalian

16 SMs, each with 8 ALUs. Each SM runs a different program (shader)
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59Vertex and Fragment Processing Share 
Unified Processing Elements
� Load balancing HW is a problem

Heavy Geometry
Workload Perf = 4

Vertex Shader

Pixel Shader

Idle hardware

Heavy Pixel
Workload Perf = 8

Vertex Shader

Pixel Shader

Idle hardware

© NVIDIA Corp., 2007
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60Vertex and Fragment Processing Share 
Unified Processing Elements
� Load balancing SW is easier

Heavy Geometry
Workload Perf = 11

Unified Shader

Pixel

Vertex Workload

Heavy Pixel
Workload Perf = 11

Unified Shader

Vertex

Pixel Workload

© NVIDIA Corp., 2007


