Lecture 2: Geometric Transformation

Yuhao Zhu

http://yuhaozhu.com <u>yzhu@rochester.edu</u>

CSC 292/572, Fall 2022 **Mobile Visual Computing**

Logistics

Written assignment 0 is up and is due Sept. 9 (Friday) 11:30 AM.

Course schedule: <u>https://www.cs.rochester.edu/courses/572/fall2022/</u> <u>schedule.html</u>. You will find reading assignments and slides.

A0 will be submitted through Blackboard.

Start thinking and talking to me about your final project idea.

The Roadmap

Theoretical Preliminaries

Human Visual Systems

Color in Nature, Arts, & Tech (a.k.a., the birth, life, and death of light)

Digital Camera Imaging

Modeling and Rendering

Applications

The Roadmap

Theoretical Preliminaries

Human Visual Systems

Color in Nature, Arts, & Tech (a.k.a., the birth, life, and death of light)

Digital Camera Imaging

Modeling and Rendering

Applications

Geometric Transformations Fourier Series & Transforms Sampling & Reconstruction

The Roadmap

Theoretical Preliminaries

Human Visual Systems

Color in Nature, Arts, & Tech (a.k.a., the birth, life, and death of light)

Digital Camera Imaging

Modeling and Rendering

Applications

Geometric Transformations

Fourier Series & Transforms Sampling & Reconstruction

Assumes basic understanding of linear algebra. A nice review of linear algebra could be found in Chapter 5 of <u>Fundamentals of</u> <u>Computer Graphics</u>.

Some Examples of Geometric Transformations (2D)

Shearing

Translation

Office building model

Model Pole barn garage

Model Male statues

Bus stop model

Human skull model

Coffee package model

Office building model

Model Pole barn garage

Model Male statues

Bus stop model

3D to 2D Transformations (e.g., Camera)

Perspective Projection

Perspective Projection

https://www.adorama.com/alc/outdoor-architecture-photography-ti

Orthographic Projection

Construction of your Chapel.

Building the Intuition

As if a force is applied to all the points in the input model Key: all the point in the input are transformed in the same way A point P [x, y, z]. Think of it as a 1x3 matrix Transformation: change P [x, y, z] to P' [x', y', z']

Geometric Transformation: What Is It?

• Rather: many important transformations we care about can be expressed as matrix multiplication

Different transformations require different matrices.

We focus on transformations that can be expressed as matrix multiplication

transformation — regardless of where P [x, y, z] is.

- What should T be like if we want to keep x the same before and after the
 - $X' = XT_{00} + YT_{10} + ZT_{20} = X$, for $\forall x, y, z$

 $\begin{bmatrix} x, y, z \end{bmatrix} x \begin{bmatrix} T_{00}, T_{01}, T_{02} \\ T_{10}, T_{11}, T_{12} \\ T_{20}, T_{21}, T_{22} \end{bmatrix} = \begin{bmatrix} x', y', z' \end{bmatrix}$

What should T be like if we want to keep x the same before and after the transformation — regardless of where P [x, y, z] is.

X' = XT₀₀ + **yT**₁₀ + **ZT**₂₀ = **X**, for $\forall x, y, z$ **†** $\begin{bmatrix} x, y, z \end{bmatrix} x \begin{bmatrix} 1 & T_{01}, T_{02} \\ 0 & T_{11}, T_{12} \\ 0 & T_{21}, T_{22} \end{bmatrix} = \begin{bmatrix} x', y', z' \end{bmatrix}$

What should T be like if we want to keep y the same before and after the transformation — regardless of where P [x, y, z] is.

y' = xT₀₁ + **yT**₁₁ + **zT**₂₁ = **y**, for $\forall x, y, z$ ↑ ↑ ↑ $\begin{bmatrix} x, y, z \end{bmatrix} x \begin{bmatrix} T_{00}, 0 \\ T_{10}, 1 \\ T_{20}, 0 \end{bmatrix} \begin{bmatrix} T_{02} \\ T_{12} \\ T_{22} \end{bmatrix} = \begin{bmatrix} x', y', z' \end{bmatrix}$

What should T be like if we want to keep z the same before and after the transformation — regardless of where P [x, y, z] is.

 $Z' = XT_{02} + YT_{12} + ZT_{22} = Z, for \forall x, y, z$ $\begin{bmatrix} x, y, z \end{bmatrix} x \begin{bmatrix} T_{00}, T_{01}, 0 \\ T_{10}, T_{11}, 0 \\ T_{20}, T_{21}, 1 \end{bmatrix} = \begin{bmatrix} x', y', z' \end{bmatrix}$

Identity Matrix

the transformation — regardless of where P [x, y, z] is? That matrix is called the identity matrix

- What should T be like if we want to keep a point unchanged before and after

17

Changing from P [x, y, z] to P' [$S_0 \cdot x$, $S_1 \cdot y$, $S_2 \cdot z$] The "scaling factor": [S₀, S₁, S₂] How should the transformation matrix look like?

Changing from P [x, y, z] to P' [$S_0 \cdot x$, $S_1 \cdot y$, $S_2 \cdot z$] The "scaling factor": [S₀, S₁, S₂] How should the transformation matrix look like? $X' = XT_{00} + YT_{10} + ZT_{20} = S_0X$

 $\begin{bmatrix} x, y, z \end{bmatrix} x \begin{bmatrix} T_{00}, T_{01}, T_{02} \\ T_{10}, T_{11}, T_{12} \\ T_{20}, T_{21}, T_{22} \end{bmatrix} = \begin{bmatrix} x', y', z' \end{bmatrix}$

Changing from P [x, y, z] to P' [$S_0 \cdot x$, $S_1 \cdot y$, $S_2 \cdot z$] The "scaling factor": [S₀, S₁, S₂] How should the transformation matrix look like? $X' = XT_{00} + YT_{10} + ZT_{20} = S_0X$

 $\begin{bmatrix} x, y, z \end{bmatrix} x \begin{bmatrix} S_0 & T_{01}, T_{02} \\ 0 & T_{11}, T_{12} \\ 0 & T_{21}, T_{22} \end{bmatrix} = \begin{bmatrix} x', y', z' \end{bmatrix}$

Changing from P [x, y, z] to P' [$S_0 \cdot x$, $S_1 \cdot y$, $S_2 \cdot z$] The "scaling factor": [S₀, S₁, S₂] How should the transformation matrix look like? $X' = XT_{00} + YT_{10} + ZT_{20} = S_0X$

 $\begin{bmatrix} x, y, z \end{bmatrix} x \begin{bmatrix} S_0 & 0 & T_{02} \\ 0 & S_1 & T_{12} \\ 0 & 0 & T_{22} \end{bmatrix} = \begin{bmatrix} x', y', z' \end{bmatrix}$

Changing from P [x, y, z] to P' [$S_0 \cdot x$, $S_1 \cdot y$, $S_2 \cdot z$] The "scaling factor": [S₀, S₁, S₂] How should the transformation matrix look like? $X' = XT_{00} + YT_{10} + ZT_{20} = S_0X$

$\begin{bmatrix} x, y, z \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} \begin{bmatrix}$ $\begin{array}{ccc} \mathbf{S}_1 & \mathbf{U} \\ \mathbf{O} & \mathbf{S}_2 \end{array}$

Changing from P [x, y, z] to P' [$S_0 \cdot x$, $S_1 \cdot y$, $S_2 \cdot z$] The "scaling factor": [S₀, S₁, S₂] How should the transformation matrix look like? $X' = XT_{00} + YT_{10} + ZT_{20} = S_0X$

Scaling matrix is a diagonal matrix $\begin{bmatrix} x, y, z \end{bmatrix} x \begin{bmatrix} S_0 & 0 & 0 \\ 0 & S_1 & 0 \end{bmatrix} = \begin{bmatrix} x', y', z' \end{bmatrix}$ 0 S₂

$[x, y] \times \begin{bmatrix} 0.5, 0 \\ 0, 0.5 \end{bmatrix} = [x', y'] \qquad \begin{array}{c} x' = 0.5x \\ y' = 0.5y \end{array}$

$[x, y] \times \begin{bmatrix} 0.5, 0 \\ 0, 1.5 \end{bmatrix} = [x', y'] \qquad \begin{array}{c} x' = 0.5x \\ y' = 1.5y \end{array}$

What should the transformation mat regardless what P is?

What should the transformation matrix be to rotate P around the z-axis by θ ,

Rotation

sin a = y / rcos a = x / r

0	1
2	

$sin(a + \theta) = y' / r = sin a * cos \theta + cos a * sin \theta$ = y / r * cos θ + x / r * sin θ

0	1
2	

$sin(a + \theta) = y' / r = sin a * cos \theta + cos a * sin \theta$ $= y / r * \cos \theta + x / r * \sin \theta$ y'/r = y/r * cos θ + x/r * sin θ

0	1
2	

- $sin(a + \theta) = y' / r = sin a * cos \theta + cos a * sin \theta$ $= y / r * \cos \theta + x / r * \sin \theta$ y'/r = y/r * cos θ + x/r * sin θ $y' = y * \cos \theta + x * \sin \theta$

0	1
2	

- $sin(a + \theta) = y' / r = sin a * cos \theta + cos a * sin \theta$ $= y / r * \cos \theta + x / r * \sin \theta$ y'/r = y/r * cos θ + x/r * sin θ
- $y' = y * \cos \theta + x * \sin \theta$
- $\cos(a + \theta) = x' / r = \cos a * \cos \theta \sin a * \sin \theta$ $= x / r * \cos \theta - y / r * \sin \theta$

0	1
2	

- $sin(a + \theta) = y' / r = sin a * cos \theta + cos a * sin \theta$ $= y / r * \cos \theta + x / r * \sin \theta$ y'/r = y/r * cos θ + x/r * sin θ
- $y' = y * \cos \theta + x * \sin \theta$
- $\cos(a + \theta) = x' / r = \cos a * \cos \theta \sin a * \sin \theta$ $= x / r * \cos \theta - y / r * \sin \theta$ $x'/r = x/r * \cos \theta - y/r * \sin \theta$

0	1
2	

- $sin(a + \theta) = y' / r = sin a * cos \theta + cos a * sin \theta$ $= y / r * \cos \theta + x / r * \sin \theta$ y'/r = y/r * cos θ + x/r * sin θ
- $y' = y * \cos \theta + x * \sin \theta$
- $\cos(a + \theta) = x' / r = \cos a * \cos \theta \sin a * \sin \theta$ $= x / r * \cos \theta - y / r * \sin \theta$
- $x'/r = x/r * \cos \theta y/r * \sin \theta$
- $x' = x * \cos \theta y * \sin \theta$

0	1
2	

Rotation Matrix (Around Z-axis)

- $x' = x \cos \theta y \sin \theta$
- $y' = x \sin \theta + y \cos \theta$
- $\mathbf{Z}' = \mathbf{Z}$

 $\begin{bmatrix} x, y, z \end{bmatrix} x \begin{bmatrix} T_{00}, T_{01}, T_{02} \\ T_{10}, T_{11}, T_{12} \end{bmatrix} = \begin{bmatrix} x', y', z' \end{bmatrix}$

L T₂₀, T₂₁, T₂₂

Rotation Matrix (Around Z-axis)

- $\mathbf{x}' = \mathbf{x} \cos \theta \mathbf{y} \sin \theta$
- $y' = x \sin \theta + y \cos \theta$
- $\mathbf{Z}' = \mathbf{Z}$

 $= \mathbf{x}\mathbf{T}_{00} + \mathbf{y}\mathbf{T}_{10} + \mathbf{z}\mathbf{T}_{20}, \text{ for } \forall x, y, z$

 $= \mathbf{x}\mathbf{T}_{01} + \mathbf{y}\mathbf{T}_{11} + \mathbf{z}\mathbf{T}_{21}, for \forall x, y, z$

 $= \mathbf{x}\mathbf{T}_{02} + \mathbf{y}\mathbf{T}_{12} + \mathbf{z}\mathbf{T}_{22}, \text{ for } \forall x, y, z$

 $\begin{bmatrix} x, y, z \end{bmatrix} x \begin{bmatrix} T_{00}, T_{01}, T_{02} \\ T_{10}, T_{11}, T_{12} \end{bmatrix} = \begin{bmatrix} x', y', z' \end{bmatrix}$ L T₂₀, T₂₁, T₂₂

Rotation Matrix (Around Z-axis)

- $x' = x \cos \theta y \sin \theta$ $= \mathbf{x}\mathbf{T}_{00} + \mathbf{y}\mathbf{T}_{10} + \mathbf{z}\mathbf{T}_{20}, \text{ for } \forall x, y, z$
- $y' = x \sin \theta + y \cos \theta$ $= \mathbf{x}\mathbf{T}_{01} + \mathbf{y}\mathbf{T}_{11} + \mathbf{z}\mathbf{T}_{21}, for \forall x, y, z$
- $\mathbf{Z}' = \mathbf{Z}$ $= \mathbf{x}\mathbf{T}_{02} + \mathbf{y}\mathbf{T}_{12} + \mathbf{z}\mathbf{T}_{22}, \text{ for } \forall x, y, z$

 \mathbf{O}

Rotation Matrix (Around Z-axis)

- $\mathbf{x}' = \mathbf{x} \cos \theta \mathbf{y} \sin \theta$ $= \mathbf{x}\mathbf{T}_{00} + \mathbf{y}\mathbf{T}_{10} + \mathbf{z}\mathbf{T}_{20}, \text{ for } \forall x, y, z$
- $y' = x \sin \theta + y \cos \theta$ $= \mathbf{x}\mathbf{T}_{01} + \mathbf{y}\mathbf{T}_{11} + \mathbf{z}\mathbf{T}_{21}, for \forall x, y, z$
- $\mathbf{Z}' = \mathbf{Z}$ $= \mathbf{x}\mathbf{T}_{02} + \mathbf{y}\mathbf{T}_{12} + \mathbf{z}\mathbf{T}_{22}, \text{ for } \forall x, y, z$

Rotation Matrix

1 0 0 Around X 0 cos θ sin θ 0 -sin θ cos θ

$\cos \theta$ $\sin \theta$ 0Around Z $-\sin \theta$ $\cos \theta$ 00

Around Y	cos θ	0	-sin (
	0	1	0
	sin θ	0	cos (

Derive the rest in your homework.

Rotation matrix is a unitary matrix.

- The length (norm) of each row is 1.
- The rows are orthogonal vectors to each other.

Length of $v1 = sqrt(v1 \cdot v1)$

Rotation matrix is a unitary matrix.

- The length (norm) of each row is 1.
- The rows are orthogonal vectors to each other.

Transpose is the same as inversion.

Length of $v1 = sqrt(v1 \cdot v1)$

Rotation matrix is a unitary matrix.

- The length (norm) of each row is 1.
- The rows are orthogonal vectors to each other.

Transpose is the same as inversion.

Orthogonal vectors:

- v1 $[x_1, y_1, z_1]$ and v2 $[x_2, y_2, z_2]$ are orthogonal if $v1 \cdot v2 = x_1x_2 + y_1y_2 + z_1z_2 = 0.$
- v1·v2 is called the dot (inner) product.
- Orthonormal vectors are orthogonal, unit vectors.

Rotation matrix is a unitary matrix.

$$Q^{\mathsf{T}} = Q^{-1} \quad Q \quad Q^{\mathsf{T}} = \mathsf{I}$$

$$= \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 \end{bmatrix} \xleftarrow{v_1} = v_2$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \xleftarrow{v_3}$$

Length of $v1 = sqrt(v1 \cdot v1)$ = $cos^2\theta + sin^2\theta + 0 = 1$

Rotation matrix is a unitary matrix.

Any unitary matrix can be used to represent a rotation

- Might be around an arbitrary axis though.
- Will show you the intuition later.

$$Q^{\mathsf{T}} = Q^{-1} \quad Q \quad Q^{\mathsf{T}} = \mathsf{I}$$

$$\cos \theta \quad \sin \theta \quad 0 \quad \mathsf{f} \quad v1$$

$$-\sin \theta \quad \cos \theta \quad 0 \quad \mathsf{f} \quad v2$$

$$0 \quad 0 \quad 1 \quad \mathsf{f} \quad v3$$

Length of $v1 = sqrt(v1 \cdot v1)$ $=\cos^2\theta + \sin^2\theta + 0 = 1$

For instance: rotate P around the z-axis, then around y-axis, and scale it.

1. First rotation: $P_{t1} = P \times T_z$

For instance: rotate P around the z-axis, then around y-axis, and scale it.

1. First rotation: $P_{t1} = P \ge T_z$ 2. Second rotation: $P_{t2} = P_{t1} \ge T_y$

For instance: rotate P around the z-axis, then around y-axis, and scale it.

1. First rotation: $P_{t1} = P \times T_z$

2. Second rotation: $P_{t2} = P_{t1} \times T_y$

3. Scaling: $P' = P_{t2} \times T_s$

- **1. First rotation:** $P_{t1} = P \times T_z$
- **2. Second rotation:** $P_{t2} = P_{t1} \times T_y$
- **3. Scaling:** $P' = P_{t2} \times T_s$
- 4. Overall: $P' = P \times T_z \times T_y \times T_s$

- **1. First rotation:** $P_{t1} = P \times T_z$
- **2. Second rotation:** $P_{t2} = P_{t1} \times T_{y}$
- 3. Scaling: $P' = P_{t_2} \times T_s$

4. Overall: P' = P x $T_z x T_y x T_s$

- **1. First rotation:** $P_{t1} = P \times T_z$
- **2. Second rotation:** $P_{t2} = P_{t1} \times T_{y}$
- **3. Scaling:** $P' = P_{t_2} \times T_s$
- 4. Overall: P' = P x $T_z x T_y x T_s$
- 5. P' = P x T

For instance: rotate P around the z-axis, then around y-axis, and scale it.

then applied once in the end.

- **1. First rotation:** $P_{t1} = P \times T_z$
- **2. Second rotation:** $P_{t2} = P_{t1} \times T_{y}$
- 3. Scaling: $P' = P_{t_2} \times T_s$
- 4. Overall: P' = P x $T_z x T_y x T_s$
- 5. P' = P x T

- Generally, combining transformations can be done by multiplying individual transformation matrices together first to derive a composite matrix, which is

- For instance: rotate P around the z-axis, then around y-axis, and scale it.
- Generally, combining transformations can be done by multiplying individual transformation matrices together first to derive a composite matrix, which is then applied once in the end.
- A sequence of arbitrary rotations is still a rotation, because the product of a set of unitary matrices is still a unitary matrix. Can you prove it?

Can we reorder the individual transformations?

Can we reorder the individual transformations?

Is rotating P around the z-axis, then around y-axis, and scaling P the same as rotating around y, then z, then scaling P?

Can we reorder the individual transformations?

Is rotating P around the z-axis, then around y-axis, and scaling P the same as rotating around y, then z, then scaling P?

• $T_z \times T_y \times T_s = T_y \times T_z \times T_s$?

Can we reorder the individual transformations?

Is rotating P around the z-axis, then around y-axis, and scaling P the same as rotating around y, then z, then scaling P?

•
$$T_z \times T_y \times T_s = T_y \times T_z \times T_s$$
?

No. Matrix multiplication is not commutative.

Can we reorder the individual transformations?

Is rotating P around the z-axis, then around y-axis, and scaling P the same as rotating around y, then z, then scaling P?

•
$$T_z \times T_y \times T_s = T_y \times T_z \times T_s$$
?

No. Matrix multiplication is not commutative.

Rotate Scale Scale Rotate х х

Can we decompose any arbitrary transformation into a sequence of basic transformations?

Can we decompose any arbitrary transformation into a sequence of basic transformations?

Yes. There are multiple ways. One common way is through singular value decomposition (SVD).

Can we decompose any arbitrary transformation into a sequence of basic transformations?

Yes. There are multiple ways. One common way is through singular value decomposition (SVD).

Both U and V^T are orthogonal matrices

Can we decompose any arbitrary transformation into a sequence of basic transformations?

Yes. There are multiple ways. One common way is through singular value decomposition (SVD).

Any arbitrary transformation can be composed as a rotation, a scaling, and another rotation.

Both U and V^T are orthogonal matrices

- Can we decompose any arbitrary transformation into a sequence of basic transformations?
- Yes. There are multiple ways. One common way is through singular value decomposition (SVD).
- Any arbitrary transformation can be composed as a rotation, a scaling, and another rotation.
- There are other ways to decompose a matrix and thus other ways to decompose a transformation.

Both U and V^T are orthogonal matrices

 $A = USV^{T}$

S is a diagonal

matrix

Arbitrary

matrix

Move P [x, y, z] along the x-axis by Δx Move P [x, y, z] along the y-axis by Δy Move P [x, y, z] along the z-axis by Δz P [x, y, z] becomes P' [x + Δx , y + Δy , z + Δz]

What should the transformation matrix be if we want to move P [x, y, z] to P' [x + Δx , y + Δy , z + Δz] regardless of where P is?

P' [x + Δx , y + Δy , z + Δz] regardless of where P is?

Can we treat it as scaling? What would the scaling factor be?

•
$$S_0 = (x + \Delta x) / x = 1 + \Delta x / x$$

•
$$S_1 = (y + \Delta y) / y = 1 + \Delta y / y$$

•
$$S_2 = (z + \Delta z) / z = 1 + \Delta z / z$$

- The scaling factor depends on [x, y, z].
- So there is no single scaling factor that applies to all points P.
- Reducing translation to scaling isn't a general approach.

- What should the transformation matrix be if we want to move P [x, y, z] to

P' [x + Δx , y + Δy , z + Δz] regardless of where P is?

•
$$S_0 = (x + \Delta x) / x = 1 + \Delta x / x$$

•
$$S_1 = (y + \Delta y) / y = 1 + \Delta y / y$$

•
$$S_2 = (z + \Delta z) / z = 1 + \Delta z / z$$

- Can we treat it as scaling? What would the scaling factor be? $\begin{bmatrix} 1 + \Delta x/x & 0 & 0 \\ 0 & 1 + \Delta y/y & 0 \\ 0 & 0 & 1 + \Delta z/z \end{bmatrix}$ • The scaling factor depends on [x, y, z].
 - So there is no single scaling factor that applies to all points P.
 - Reducing translation to scaling isn't a general approach.

What should the transformation matrix be if we want to move P [x, y, z] to

What should the transformation matrix be?

$X' = XT_{00} + YT_{10} + ZT_{20} = X + \Delta X$

What should the transformation matrix be?

$X' = XT_{00} + YT_{10} + ZT_{20} = X + \Delta X$

A 3x3 matrix can't express the Δx term!

We could make it work by adding one new term: T₃₀

$X' = XT_{00} + YT_{10} + ZT_{20} + T_{30} = X + \Delta X$

We could make it work by adding one new term: T₃₀

$\begin{array}{c} \mathbf{x}' = \mathbf{x} \mathbf{T}_{00} + \mathbf{y} \mathbf{T}_{10} + \mathbf{z} \mathbf{T}_{20} + \mathbf{T}_{30} = \mathbf{x} + \Delta \mathbf{x} \\ \uparrow & \uparrow & \uparrow & \uparrow \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \Delta \mathbf{x} \end{array}$

Effectively, the matrix becomes 4x3, and P needs to be 1x4.

$\begin{array}{c} x' = xT_{00} + yT_{10} + zT_{20} + T_{30} = x + \Delta x \\ \uparrow & \uparrow & \uparrow & \uparrow \\ 1 & 0 & 0 & \Delta x \end{array}$ $[x, y, z, 1] x \begin{bmatrix} 1 & T_{01}, T_{02} \\ 0 & T_{11}, T_{12} \\ 0 & T_{01}, T_{02} \end{bmatrix} = [x', y', z']$ $\begin{array}{c|c} U & I & 21, & I & 22 \\ \Delta X & T_{31}, & T_{32} \end{array}$

= [x', y', z']

But, P' is still 1x3, which prevents further translations on P'!

So P' needs to be 1x4 as well, which means T needs to be 4x4.

What should the additional column be?

What should the additional column be?

$XT_{03} + YT_{13} + ZT_{23} + T_{33} = 1, for \forall x, y, z$

What should the additional column be?

What should the additional column be?

$[x, y, z, 1] \times \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

Homogeneous Coordinates

[x, y, z] is the cartesian coordinates of P.

[x, y, z, 1] is the homogeneous coordinates of P.

Homogeneous coordinates are introduced so that translation could be expressed as matrix multiplication.

Homogeneous Coordinates

For translation to work:

- The last element in the homogeneous coordinates has to be 1.
- The last column of the matrix has to be [0, 0, 0, 1]^T (We will see what would happen if this is not the case later in the semester when we talk about perspective transformations.)

But do they generally apply to other transformations?

- $[\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{1}] \mathbf{x} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = [\mathbf{x}', \mathbf{y}', \mathbf{z}', \mathbf{1}]$ $\int \Delta x = \Delta y = \Delta z = 0$

The Identity Matrix in Homogeneous Coordinates

The top-left 3x3 sub-matrix is the same identity matrix as before.

 $[x, y, z, 1] \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = [x', y', z', 1]$

Scaling in Homogeneous Coordinates

Scaling P [x, y, z, 1] to P' [S₀.x, S₁.y, S₂.z, 1].

The top-left 3x3 sub-matrix is the same as before.

$[\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{1}] \mathbf{x} \begin{bmatrix} \mathbf{S}_0 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{S}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{S}_2 \end{bmatrix} \begin{bmatrix} \mathbf{x}', \mathbf{y}', \mathbf{z}', \mathbf{1} \end{bmatrix}$ $\begin{bmatrix} 0 & S_2 \\ 0 & 0 \\ \end{bmatrix}$

Rotation in Homogeneous Coordinates

Rotate P around the z-axis by θ ?

The top-left 3x3 sub-matrix is the same as before.

Composite Transformation in Homogeneous Coordinates

Rotate P around the z-axis by θ and translate by [Δx , Δy , Δz].

Responsible for rotation

Composite Transformation in Homogeneous Coordinates

Transforming with the composite matrix is equivalent to first rotating using the rotation sub-matrix and then translating using the translation sub-matrix.

 $\begin{bmatrix} x, y, z, 1 \end{bmatrix} x \begin{bmatrix} 100 & T01 & T02 \\ T00 & T01 & T02 \\ T10 & T11 & T12 \\ T20 & T21 & T22 \\ T30 & T31 & T32 \end{bmatrix} \begin{bmatrix} x', y', z', 1 \end{bmatrix}$

Affine Transformation

transformation matrix.

Intuitively, affine transformation preserves straight lines and line parallelism. • Translation, scale, rotation all do not bend straight lines and preserve parallelism.

- Are camera projections affine?

Matrix that has this form (last column vector is [0, 0, 0, 1]) is called an affine

https://www.adorama.com/alc/10-must-have-gadgets-for-archite

https://www.lifewire.com/what-is-a-fisheye-lens-4774336

[x, y, z] <==> [x, y, z, 1]

[x, y, z] <==> [x, y, z, 1]

In fact, $[x, y, z] \le [kx, ky, kz, k]$

- [x, y, z] <==> [x, y, z, 1]
- In fact, $[x, y, z] \le [kx, ky, kz, k]$
- linear (matrix multiplication).

If [x, y, z, 1] after transformation T becomes [x', y', z', 1], then [kx, ky, kz, k] after the same transformation T will become [kx', ky', kz', k], because T is

- [x, y, z] <==> [x, y, z, 1]
- In fact, $[x, y, z] \le [kx, ky, kz, k]$
- linear (matrix multiplication).
 - In this case, we get the Cartesian coordinates by [kx'/k, ky'/k, kz'/k, k/k].

If [x, y, z, 1] after transformation T becomes [x', y', z', 1], then [kx, ky, kz, k] after the same transformation T will become [kx', ky', kz', k], because T is

[x, y, z] <==> [x, y, z, 1]

In fact, $[x, y, z] \le [kx, ky, kz, k]$

linear (matrix multiplication).

- In this case, we get the Cartesian coordinates by [kx'/k, ky'/k, kz'/k, k/k].
- Usually k is 1, but k could be set to other values later (e.g., in perspective transformation).

If [x, y, z, 1] after transformation T becomes [x', y', z', 1], then [kx, ky, kz, k] after the same transformation T will become [kx', ky', kz', k], because T is

[x, y, z] <==> [x, y, z, 1]

In fact, $[x, y, z] \le [kx, ky, kz, k]$

linear (matrix multiplication).

- In this case, we get the Cartesian coordinates by [kx'/k, ky'/k, kz'/k, k/k].
- Usually k is 1, but k could be set to other values later (e.g., in perspective transformation).
- back to [x, y, z], it then corresponds to a point in the physical world.

If [x, y, z, 1] after transformation T becomes [x', y', z', 1], then [kx, ky, kz, k] after the same transformation T will become [kx', ky', kz', k], because T is

• The kx, ky, kz, and k in [kx, ky, kz, k] don't have physical meanings. When you convert it

Vector

- A vector has the same representation of a point: [x, y, z]. A vector represents a direction between [0, 0, 0] and [x, y, z] with a length. A unit vector or normalized vector is one whose length $sqrt(x^2+y^2+z^2)$ is 1.

A vector is "positionless", so translating vectors is meaningless. Rotation and scaling are meaningful vector transformations.

Vector Transformation in Homogeneous Coordinates

- Vector and point transformations are almost the same, but:
- V [x, y, z] in Cartesian coordinates is [x, y, z, 0] in homogeneous coordinates. 0 ensures that translation doesn't change the vector.
- The homogeneous transformation matrix is the same.

Vector Transformation in Homogeneous Coordinates

- Rotate V [x, y, z] around z-axis by θ .
- element in the homogeneous coordinate is 0 now.

Same transformation matrix as before. The only difference is that the last

- Two equivalent ways to interpret rotating P to P'.
- First: rotating P in the current coordinate system (a.k.a., frame) F_0 by a matrix **R**.
- Second, rotating the current frame F_0 to a new frame F_1 using **R** while keeping the relative position of P unchanged.
 - That is, the coordinates of P in F_1 are the same as those in F_0 .

- Two equivalent ways to interpret rotating P to P'.
- First: rotating P in the current coordinate system (a.k.a., frame) F_0 by a matrix **R**.
- Second, rotating the current frame F_0 to a new frame F_1 using **R** while keeping the relative position of P unchanged.
 - That is, the coordinates of P in F_1 are the same as those in F_0 .

 $[P_x, P_y, P_z, 0] \times T = [P_x', P_y', P_z', 0]$

Two ways to obtain P'

- Transform $[P_x, P_y, P_z, 0]$ to $[P_x', P_y', P_z', 0]$ in the current frame F₀ using matrix T.
- Transform the current frame F_0 to a new frame F_1 using matrix T and keep the coordinates $[P_x, P_y, P_z, 0]$.

What does it mean to transform a coordinate system?

 $[P_x, P_y, P_z, 0] \times T = [P_x', P_y', P_z', 0]$

Two ways to obtain P'

- Transform $[P_x, P_y, P_z, 0]$ to $[P_x', P_y', P_z', 0]$ in the current frame F₀ using matrix T.
- Transform the current frame F_0 to a new frame F_1 using matrix T and keep the coordinates $[P_x, P_y, P_z, 0]$.

What does it mean to transform a coordinate system?

A Cartesian coordinate system/frame is define by its origin [0, 0, 0] and three basis vectors: the x axis [1, 0, 0], y axis [0, 1, 0] and z axis [0, 0, 1].

basis vectors: the x axis [1, 0, 0], y axis [0, 1, 0] and z axis [0, 0, 1].

- A Cartesian coordinate system/frame is define by its origin [0, 0, 0] and three
- When we create a new frame, we can think of it transforming three original basis vectors and the origin to three new basis vectors and a new origin.

- A Cartesian coordinate system/frame is define by its origin [0, 0, 0] and three basis vectors: the x axis [1, 0, 0], y axis [0, 1, 0] and z axis [0, 0, 1].
- When we create a new frame, we can think of it transforming three original basis vectors and the origin to three new basis vectors and a new origin.
- 4 transformations (3 vector transformations + 1 point transformation).

One single transformation matrix can express all 4 transformations. How?

0

How to Transform a Frame/Coordinate System?

How to Transform a Frame/Coordinate System?

- The transformation matrix directly encodes the new basis vectors and the new origin!
- The last column needs to be $[0, 0, 0, 1]^T$
- The identity matrix basically encodes the original frame.

Identity matrix
encodes the canonical
frame's information!1, 0, 0, 0
0, 1, 0, 0

0, 0, 0, 1

Back to Rotation Matrix Being Unitary Matrix

This provides an intuitive explanation why a rotation matrix must be unitary.

• The top-left 3x3 matrix simultaneously serves two roles:1) it encodes the new basis vectors in the new coordinate system, and 2) it encodes the rotation matrix. For the first role, it must be a unitary matrix; so the rotation matrix must be a unitary matrix.

Identity matrix encodes the canonical frame's information!

 1, 0, 0, 0

 0, 1, 0, 0

 0, 0, 1, 0

0, 0, 0, 1

How to Transform a Frame/Coordinate System?

Does any transformation matrix work?

orthogonal and their lengths must be 1.

Intuition: an orthogonal matrix rotates the three basis vector together, so mutual orthogonality and unit length requirements are naturally met.

• Yes, but for the transformed frame to be used as a Cartesian coordinate system, the top 3x3 matrix must be an orthogonal matrix: the three basic vectors must be mutually

> A legal transformation of the frame, but the new frame can't be used as a Cartesian coordinate system.

61

First, create a Cartesian coordinate system **UVW**. There are infinite many (since only **W** is given); any one will work in principle.

First, create a Cartesian coordinate system **UVW**. There are infinite many (since only **W** is given); any one will work in principle.

Second, rotate **UVW** to be **XYZ**; let the rotation matrix be R_1 . P becomes P1.

First, create a Cartesian coordinate system UVW. There are infinite many (since only W is given); any one will work in principle.

Second, rotate UVW to be XYZ; let the rotation matrix be R_1 . P becomes P1.

Third, rotate P1 around Z. Let the rotation matrix be R_2 . P1 becomes P2.

- First, create a Cartesian coordinate system UVW. There are infinite many (since only W is given); any one will work in principle.
- Second, rotate UVW to be XYZ; let the rotation matrix be R_1 . P becomes P1.
- Third, rotate P1 around Z. Let the rotation matrix be R₂. P1 becomes P2.
- Finally, rotate P2 from XYZ to UVW to get P'. The rotation matrix is necessarily R_1^{-1} which is R_1^T since R_1 is necessarily orthogonal.

