
Yuhao Zhu
http://yuhaozhu.com
yzhu@rochester.edu

Lecture 2: Geometric Transformation

CSC 292/572, Fall 2022
Mobile Visual Computing

http://yuhaozhu.com
mailto:yzhu@rochester.edu

Logistics

Written assignment 0 is up and is due Sept. 9 (Friday) 11:30 AM.

Course schedule: https://www.cs.rochester.edu/courses/572/fall2022/
schedule.html. You will find reading assignments and slides.

A0 will be submitted through Blackboard.

Start thinking and talking to me about your final project idea.

�2

https://www.cs.rochester.edu/courses/572/fall2022/schedule.html
https://www.cs.rochester.edu/courses/572/fall2022/schedule.html

Digital Camera Imaging

Color in Nature, Arts, & Tech
(a.k.a., the birth, life, and death of light)

The Roadmap

�3

Theoretical Preliminaries

Human Visual Systems

Modeling and Rendering

Applications

The Roadmap

�4

Theoretical Preliminaries Geometric Transformations
Fourier Series & Transforms

Sampling & Reconstruction

Digital Camera Imaging

Color in Nature, Arts, & Tech
(a.k.a., the birth, life, and death of light)

Human Visual Systems

Modeling and Rendering

Applications

The Roadmap

�5

Theoretical Preliminaries Geometric Transformations
Fourier Series & Transforms

Sampling & Reconstruction

Assumes basic understanding of
linear algebra. A nice review of
linear algebra could be found in
Chapter 5 of Fundamentals of
Computer Graphics.

Digital Camera Imaging

Color in Nature, Arts, & Tech
(a.k.a., the birth, life, and death of light)

Human Visual Systems

Modeling and Rendering

Applications

https://learning-oreilly-com.ezp.lib.rochester.edu/library/view/fundamentals-of-computer/9781482229417/cover.xhtml
https://learning-oreilly-com.ezp.lib.rochester.edu/library/view/fundamentals-of-computer/9781482229417/cover.xhtml
https://learning-oreilly-com.ezp.lib.rochester.edu/library/view/fundamentals-of-computer/9781482229417/cover.xhtml

Some Examples of Geometric Transformations (2D)

�6

Scaling

Shearing

Rotation

Translation

https://www.ck12.org/geometry/translations/lesson/Geometric-Translations-BSC-GEOM/ FCG 4e

https://www.ck12.org/geometry/translations/lesson/Geometric-Translations-BSC-GEOM/

�7

�8https://fixthephoto.com/free-3d-models.html

�8https://fixthephoto.com/free-3d-models.html

3D to 2D Transformations (e.g., Camera)

�9http://www.pbr-book.org/3ed-2018/Camera_Models/Environment_Camera.html

Perspective Projection

Orthographic Projection

http://www.pbr-book.org/3ed-2018/Camera_Models/Environment_Camera.html

�10

Perspective Projection

https://www.adorama.com/alc/outdoor-architecture-photography-tips-for-beginners/

�11

Orthographic Projection

https://gamedev.stackexchange.com/questions/43281/how-to-add-isometric-rts-alike-perspective-and-scolling-in-unity

Building the Intuition

As if a force is applied to all the points in the input model
Key: all the point in the input are transformed in the same way
A point P [x, y, z]. Think of it as a 1x3 matrix
Transformation: change P [x, y, z] to P’ [x’, y’, z’]

�12

Geometric Transformation: What Is It?

We focus on transformations that can be expressed as matrix multiplication
• Rather: many important transformations we care about can be expressed as

matrix multiplication

Different transformations require different matrices.

�13

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]

Point Transformation using Matrix Multiplication

What should T be like if we want to keep x the same before and after the
transformation — regardless of where P [x, y, z] is.

�14

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]

x’ = xT00 + yT10 + zT20 = x, for ∀ x, y, z

Point Transformation using Matrix Multiplication

What should T be like if we want to keep x the same before and after the
transformation — regardless of where P [x, y, z] is.

�14

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]

x’ = xT00 + yT10 + zT20 = x, for ∀ x, y, z

0 01
1
0
0

Point Transformation using Matrix Multiplication

What should T be like if we want to keep y the same before and after the
transformation — regardless of where P [x, y, z] is.

�15

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]

y’ = xT01 + yT11 + zT21 = y, for ∀ x, y, z

1 00
0
1
0

Point Transformation using Matrix Multiplication

What should T be like if we want to keep z the same before and after the
transformation — regardless of where P [x, y, z] is.

�16

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]
0
0
1

z’ = xT02 + yT12 + zT22 = z, for ∀ x, y, z

0 10

Identity Matrix

What should T be like if we want to keep a point unchanged before and after
the transformation — regardless of where P [x, y, z] is?
That matrix is called the identity matrix

�17

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]
0
0
1

1
0
0

0
1
0

T00, T01, T02
T10, T11, T12
T20, T21, T22

Scaling

Changing from P [x, y, z] to P’ [S0·x, S1·y, S2·z]
The “scaling factor”: [S0, S1, S2]
How should the transformation matrix look like?

�18

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’][[

T00, T01, T02
T10, T11, T12
T20, T21, T22

Scaling

Changing from P [x, y, z] to P’ [S0·x, S1·y, S2·z]
The “scaling factor”: [S0, S1, S2]
How should the transformation matrix look like?

�18

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]

x’ = xT00 + yT10 + zT20 = S0x

[[

T00, T01, T02
T10, T11, T12
T20, T21, T22

Scaling

Changing from P [x, y, z] to P’ [S0·x, S1·y, S2·z]
The “scaling factor”: [S0, S1, S2]
How should the transformation matrix look like?

�18

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]
S0
0
0

x’ = xT00 + yT10 + zT20 = S0x

[[

T00, T01, T02
T10, T11, T12
T20, T21, T22

Scaling

Changing from P [x, y, z] to P’ [S0·x, S1·y, S2·z]
The “scaling factor”: [S0, S1, S2]
How should the transformation matrix look like?

�18

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]
S0
0
0

0
S1
0

x’ = xT00 + yT10 + zT20 = S0x

[[

T00, T01, T02
T10, T11, T12
T20, T21, T22

Scaling

Changing from P [x, y, z] to P’ [S0·x, S1·y, S2·z]
The “scaling factor”: [S0, S1, S2]
How should the transformation matrix look like?

�18

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]
0
0
S2

S0
0
0

0
S1
0

x’ = xT00 + yT10 + zT20 = S0x

[[

T00, T01, T02
T10, T11, T12
T20, T21, T22

Scaling

Changing from P [x, y, z] to P’ [S0·x, S1·y, S2·z]
The “scaling factor”: [S0, S1, S2]
How should the transformation matrix look like?

�18

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]
0
0
S2

S0
0
0

0
S1
0

x’ = xT00 + yT10 + zT20 = S0x

[[Scaling matrix is a
diagonal matrix

Scaling

�19

[x, y] x 0.5, 0
0, 0.5[= [x’, y’][x’ = 0.5x

y’ = 0.5y

Even scaling

Uneven scaling

[x, y] x 0.5, 0
0, 1.5[= [x’, y’][x’ = 0.5x

y’ = 1.5y

FCG 4e

Rotation

What should the transformation matrix be to rotate P around the z-axis by 𝛉,
regardless what P is?

�20

y

x

z

P [x, y, z] P’ [x’, y’, z]
z

Rotation

Keep z the same, rotate
within the x-y plane

𝛉
x

y

[x, y]
[x’, y’]

𝛉

Rotation

�21

Rotation

𝛉
x

y

[x, y]

[x’, y’]

α
r

sin α = y / r
cos α = x / r

Rotation

�21

Rotation

𝛉
x

y

[x, y]

[x’, y’]

α
r

sin α = y / r
cos α = x / r

sin(α + 𝛉) = y’ / r = sin α * cos 𝛉 + cos α * sin 𝛉
 = y / r * cos 𝛉 + x / r * sin 𝛉

Rotation

�21

Rotation

𝛉
x

y

[x, y]

[x’, y’]

α
r

sin α = y / r
cos α = x / r

sin(α + 𝛉) = y’ / r = sin α * cos 𝛉 + cos α * sin 𝛉
 = y / r * cos 𝛉 + x / r * sin 𝛉
y’ / r = y / r * cos 𝛉 + x / r * sin 𝛉

Rotation

�21

Rotation

𝛉
x

y

[x, y]

[x’, y’]

α
r

sin α = y / r
cos α = x / r

sin(α + 𝛉) = y’ / r = sin α * cos 𝛉 + cos α * sin 𝛉
 = y / r * cos 𝛉 + x / r * sin 𝛉
y’ / r = y / r * cos 𝛉 + x / r * sin 𝛉
y’ = y * cos 𝛉 + x * sin 𝛉

Rotation

�21

Rotation

𝛉
x

y

[x, y]

[x’, y’]

α
r

sin α = y / r
cos α = x / r

sin(α + 𝛉) = y’ / r = sin α * cos 𝛉 + cos α * sin 𝛉
 = y / r * cos 𝛉 + x / r * sin 𝛉
y’ / r = y / r * cos 𝛉 + x / r * sin 𝛉
y’ = y * cos 𝛉 + x * sin 𝛉

cos(α + 𝛉) = x’ / r = cos α * cos 𝛉 - sin α * sin 𝛉
 = x / r * cos 𝛉 - y / r * sin 𝛉

Rotation

�21

Rotation

𝛉
x

y

[x, y]

[x’, y’]

α
r

sin α = y / r
cos α = x / r

sin(α + 𝛉) = y’ / r = sin α * cos 𝛉 + cos α * sin 𝛉
 = y / r * cos 𝛉 + x / r * sin 𝛉
y’ / r = y / r * cos 𝛉 + x / r * sin 𝛉
y’ = y * cos 𝛉 + x * sin 𝛉

cos(α + 𝛉) = x’ / r = cos α * cos 𝛉 - sin α * sin 𝛉
 = x / r * cos 𝛉 - y / r * sin 𝛉
x’ / r = x / r * cos 𝛉 - y / r * sin 𝛉

Rotation

�21

Rotation

𝛉
x

y

[x, y]

[x’, y’]

α
r

sin α = y / r
cos α = x / r

sin(α + 𝛉) = y’ / r = sin α * cos 𝛉 + cos α * sin 𝛉
 = y / r * cos 𝛉 + x / r * sin 𝛉
y’ / r = y / r * cos 𝛉 + x / r * sin 𝛉
y’ = y * cos 𝛉 + x * sin 𝛉

cos(α + 𝛉) = x’ / r = cos α * cos 𝛉 - sin α * sin 𝛉
 = x / r * cos 𝛉 - y / r * sin 𝛉
x’ / r = x / r * cos 𝛉 - y / r * sin 𝛉

x’ = x * cos 𝛉 - y * sin 𝛉

Rotation Matrix (Around Z-axis)

�22

x’ = x cos 𝛉 - y sin 𝛉

y’ = x sin 𝛉 + y cos 𝛉

z’ = z

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]

Rotation Matrix (Around Z-axis)

�22

x’ = x cos 𝛉 - y sin 𝛉

y’ = x sin 𝛉 + y cos 𝛉

z’ = z

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]

= xT00 + yT10 + zT20, for ∀ x, y, z

= xT01 + yT11 + zT21, for ∀ x, y, z

= xT02 + yT12 + zT22, for ∀ x, y, z

Rotation Matrix (Around Z-axis)

�22

x’ = x cos 𝛉 - y sin 𝛉

y’ = x sin 𝛉 + y cos 𝛉

z’ = z

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]

= xT00 + yT10 + zT20, for ∀ x, y, z

= xT01 + yT11 + zT21, for ∀ x, y, z

= xT02 + yT12 + zT22, for ∀ x, y, z

cos 𝛉

-sin 𝛉

0

sin 𝛉

cos 𝛉

0

0

0

1

Rotation Matrix (Around Z-axis)

�22

x’ = x cos 𝛉 - y sin 𝛉

y’ = x sin 𝛉 + y cos 𝛉

z’ = z

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]

= xT00 + yT10 + zT20, for ∀ x, y, z

= xT01 + yT11 + zT21, for ∀ x, y, z

= xT02 + yT12 + zT22, for ∀ x, y, z

cos 𝛉

-sin 𝛉

0

sin 𝛉

cos 𝛉

0

0

0

1
z indeed doesn’t change!

cos 𝛉

sin 𝛉

0

1

0

-sin 𝛉

0

cos 𝛉

0

cos 𝛉

-sin 𝛉

0

sin 𝛉

cos 𝛉

0

0

0

1

1

0

0

cos 𝛉

-sin 𝛉

0

sin 𝛉

cos 𝛉

0

Rotation Matrix

�23

Around Z[[
Around X[[

Around Y[[
Derive the rest in
your homework.

1

0

0

0

1

0

0

0

1

Unitary Matrix

Rotation matrix is a unitary matrix.
• The length (norm) of each row is 1.

• The rows are orthogonal vectors to each other.

�24

[[
QT = Q-1 Q QT = I

Length of v1 = sqrt(v1·v1)

v1

v2

v3

1

0

0

0

1

0

0

0

1

Unitary Matrix

Rotation matrix is a unitary matrix.
• The length (norm) of each row is 1.

• The rows are orthogonal vectors to each other.

Transpose is the same as inversion.

�24

[[
QT = Q-1 Q QT = I

Length of v1 = sqrt(v1·v1)

v1

v2

v3

1

0

0

0

1

0

0

0

1

Unitary Matrix

Rotation matrix is a unitary matrix.
• The length (norm) of each row is 1.

• The rows are orthogonal vectors to each other.

Transpose is the same as inversion.

Orthogonal vectors:
• v1 [x1, y1, z1] and v2 [x2, y2, z2] are orthogonal if

v1·v2 = x1x2 + y1y2 + z1z2 = 0.

• v1·v2 is called the dot (inner) product.
• Orthonormal vectors are orthogonal, unit vectors.

�24

[[
QT = Q-1 Q QT = I

Length of v1 = sqrt(v1·v1)

v1

v2

v3

cos 𝛉

-sin 𝛉

0

sin 𝛉

cos 𝛉

0

0

0

1

Unitary Matrix

Rotation matrix is a unitary matrix.

�25

[
Length of v1 = sqrt(v1·v1)
= cos2𝛉 + sin2𝛉 + 0 = 1

[v1

v2

v3

QT = Q-1 Q QT = I

cos 𝛉

-sin 𝛉

0

sin 𝛉

cos 𝛉

0

0

0

1

Unitary Matrix

Rotation matrix is a unitary matrix.

Any unitary matrix can be used to
represent a rotation

• Might be around an arbitrary axis though.

• Will show you the intuition later.

�25

[
Length of v1 = sqrt(v1·v1)
= cos2𝛉 + sin2𝛉 + 0 = 1

[v1

v2

v3

QT = Q-1 Q QT = I

Combining Transformations

For instance: rotate P around the z-axis, then around y-axis, and scale it.

�26

Combining Transformations

For instance: rotate P around the z-axis, then around y-axis, and scale it.

�26

1. First rotation: Pt1 = P x Tz

Combining Transformations

For instance: rotate P around the z-axis, then around y-axis, and scale it.

�26

1. First rotation: Pt1 = P x Tz

2. Second rotation: Pt2 = Pt1 x Ty

Combining Transformations

For instance: rotate P around the z-axis, then around y-axis, and scale it.

�26

1. First rotation: Pt1 = P x Tz

2. Second rotation: Pt2 = Pt1 x Ty

3. Scaling: P’ = Pt2 x Ts

Combining Transformations

For instance: rotate P around the z-axis, then around y-axis, and scale it.

�26

1. First rotation: Pt1 = P x Tz

2. Second rotation: Pt2 = Pt1 x Ty

3. Scaling: P’ = Pt2 x Ts

4. Overall: P’ = P x Tz x Ty x Ts

Combining Transformations

For instance: rotate P around the z-axis, then around y-axis, and scale it.

�26

1. First rotation: Pt1 = P x Tz

2. Second rotation: Pt2 = Pt1 x Ty

3. Scaling: P’ = Pt2 x Ts

4. Overall: P’ = P x Tz x Ty x Ts

Since matrix multiplication is
associative, let T = Tz x Ty x Ts,
which represents the combination
effect of the three transformations

Combining Transformations

For instance: rotate P around the z-axis, then around y-axis, and scale it.

�26

1. First rotation: Pt1 = P x Tz

2. Second rotation: Pt2 = Pt1 x Ty

3. Scaling: P’ = Pt2 x Ts

4. Overall: P’ = P x Tz x Ty x Ts

5. P’ = P x T

Since matrix multiplication is
associative, let T = Tz x Ty x Ts,
which represents the combination
effect of the three transformations

Combining Transformations

For instance: rotate P around the z-axis, then around y-axis, and scale it.
Generally, combining transformations can be done by multiplying individual
transformation matrices together first to derive a composite matrix, which is
then applied once in the end.

�26

1. First rotation: Pt1 = P x Tz

2. Second rotation: Pt2 = Pt1 x Ty

3. Scaling: P’ = Pt2 x Ts

4. Overall: P’ = P x Tz x Ty x Ts

5. P’ = P x T

Since matrix multiplication is
associative, let T = Tz x Ty x Ts,
which represents the combination
effect of the three transformations

Combining Transformations

For instance: rotate P around the z-axis, then around y-axis, and scale it.
Generally, combining transformations can be done by multiplying individual
transformation matrices together first to derive a composite matrix, which is
then applied once in the end.
A sequence of arbitrary rotations is still a rotation, because the product of a
set of unitary matrices is still a unitary matrix. Can you prove it?

�27

Combining Transformations

Can we reorder the individual
transformations?

�28FCG 4e

Combining Transformations

Can we reorder the individual
transformations?

Is rotating P around the z-axis, then
around y-axis, and scaling P the same as
rotating around y, then z, then scaling P?

�28FCG 4e

Combining Transformations

Can we reorder the individual
transformations?

Is rotating P around the z-axis, then
around y-axis, and scaling P the same as
rotating around y, then z, then scaling P?

• Tz x Ty x Ts = Ty x Tz x Ts?

�28FCG 4e

Combining Transformations

Can we reorder the individual
transformations?

Is rotating P around the z-axis, then
around y-axis, and scaling P the same as
rotating around y, then z, then scaling P?

• Tz x Ty x Ts = Ty x Tz x Ts?

No. Matrix multiplication is not
commutative.

�28FCG 4e

Combining Transformations

Can we reorder the individual
transformations?

Is rotating P around the z-axis, then
around y-axis, and scaling P the same as
rotating around y, then z, then scaling P?

• Tz x Ty x Ts = Ty x Tz x Ts?

No. Matrix multiplication is not
commutative.

�28FCG 4e

Decomposing Transformations

Can we decompose any arbitrary transformation
into a sequence of basic transformations?

�29

Decomposing Transformations

Can we decompose any arbitrary transformation
into a sequence of basic transformations?
Yes. There are multiple ways. One common way
is through singular value decomposition (SVD).

�29

Decomposing Transformations

Can we decompose any arbitrary transformation
into a sequence of basic transformations?
Yes. There are multiple ways. One common way
is through singular value decomposition (SVD).

�29

A = USVT

Arbitrary
matrix

Both U and VT are
orthogonal matrices

S is a diagonal
matrix

Decomposing Transformations

Can we decompose any arbitrary transformation
into a sequence of basic transformations?
Yes. There are multiple ways. One common way
is through singular value decomposition (SVD).
Any arbitrary transformation can be composed
as a rotation, a scaling, and another rotation.

�29

A = USVT

Arbitrary
matrix

Both U and VT are
orthogonal matrices

S is a diagonal
matrix

Decomposing Transformations

Can we decompose any arbitrary transformation
into a sequence of basic transformations?
Yes. There are multiple ways. One common way
is through singular value decomposition (SVD).
Any arbitrary transformation can be composed
as a rotation, a scaling, and another rotation.
There are other ways to decompose a matrix
and thus other ways to decompose a
transformation.

�29

A = USVT

Arbitrary
matrix

Both U and VT are
orthogonal matrices

S is a diagonal
matrix

Translation

Move P [x, y, z] along the x-axis by Δx

Move P [x, y, z] along the y-axis by Δy

Move P [x, y, z] along the z-axis by Δz

P [x, y, z] becomes P’ [x + Δx, y + Δy, z + Δz]

�30

y

x

z

P [x, y, z]

P’ [x’, y’, z’]

[Δx, Δy, Δz]

Translation

What should the transformation matrix be if we want to move P [x, y, z] to
P’ [x + Δx, y + Δy, z + Δz] regardless of where P is?

�31

Translation

What should the transformation matrix be if we want to move P [x, y, z] to
P’ [x + Δx, y + Δy, z + Δz] regardless of where P is?

Can we treat it as scaling? What would the scaling factor be?
• S0 = (x + Δx) / x = 1 + Δx / x

• S1 = (y + Δy) / y = 1 + Δy / y

• S2 = (z + Δz) / z = 1 + Δz / z

• The scaling factor depends on [x, y, z].

• So there is no single scaling factor that applies to all points P.

• Reducing translation to scaling isn’t a general approach.

�31

Translation

What should the transformation matrix be if we want to move P [x, y, z] to
P’ [x + Δx, y + Δy, z + Δz] regardless of where P is?

Can we treat it as scaling? What would the scaling factor be?
• S0 = (x + Δx) / x = 1 + Δx / x

• S1 = (y + Δy) / y = 1 + Δy / y

• S2 = (z + Δz) / z = 1 + Δz / z

• The scaling factor depends on [x, y, z].

• So there is no single scaling factor that applies to all points P.

• Reducing translation to scaling isn’t a general approach.

�31

1+Δx/x

0

0 0

0

0[[1+Δy/y

0

1+Δz/z

Translation

What should the transformation matrix be?

�32

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]

x’ = xT00 + yT10 + zT20 = x + Δx

Translation

What should the transformation matrix be?

�32

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]

A 3x3 matrix can’t express the Δx term!

x’ = xT00 + yT10 + zT20 = x + Δx

Translation

We could make it work by adding one new term: T30

�33

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]

x’ = xT00 + yT10 + zT20 + T30 = x + Δx

Translation

We could make it work by adding one new term: T30

�33

[x, y, z] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
[[

= [x’, y’, z’]

0 01 Δx

x’ = xT00 + yT10 + zT20 + T30 = x + Δx

Translation

Effectively, the matrix becomes 4x3, and P needs to be 1x4.

�34

[x, y, z, 1] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
T30, T31, T32

[[

= [x’, y’, z’]

x’ = xT00 + yT10 + zT20 + T30 = x + Δx

0 01 Δx
1
0
0
Δx

Translation

�35

[x, y, z, 1] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
T30, T31, T32

[[

= [x’, y’, z’]
1
0
0
Δx

0
1
0
Δy

0
0
1
Δz

Translation

But, P’ is still 1x3, which prevents further translations on P’!

So P’ needs to be 1x4 as well, which means T needs to be 4x4.

�35

[x, y, z, 1] x
T00, T01, T02
T10, T11, T12
T20, T21, T22
T30, T31, T32

[[

= [x’, y’, z’]
1
0
0
Δx

0
1
0
Δy

0
0
1
Δz

Translation

What should the additional column be?

�36

[x, y, z, 1] x[[

= [x’, y’, z’, 1]
1
0
0
Δx

0
1
0
Δy

0
0
1
Δz

T03
T13
T23
T33

Translation

What should the additional column be?

�36

[x, y, z, 1] x[[

= [x’, y’, z’, 1]
1
0
0
Δx

0
1
0
Δy

0
0
1
Δz

T03
T13
T23
T33

xT03 + yT13 + zT23 + T33 = 1, for ∀ x, y, z

Translation

What should the additional column be?

�36

[x, y, z, 1] x[[

= [x’, y’, z’, 1]
1
0
0
Δx

0
1
0
Δy

0
0
1
Δz

T03
T13
T23
T33

xT03 + yT13 + zT23 + T33 = 1, for ∀ x, y, z

0 00 1

Translation

What should the additional column be?

�36

[x, y, z, 1] x[[

= [x’, y’, z’, 1]
1
0
0
Δx

0
1
0
Δy

0
0
1
Δz

T03
T13
T23
T33

xT03 + yT13 + zT23 + T33 = 1, for ∀ x, y, z

0 00 1
0

0

0

1

Homogeneous Coordinates

[x, y, z] is the cartesian coordinates of P.

[x, y, z, 1] is the homogeneous coordinates of P.

Homogeneous coordinates are introduced so that translation could be
expressed as matrix multiplication.

�37

[x, y, z, 1] x[[

= [x’, y’, z’, 1]
1
0
0
Δx

0
1
0
Δy

0
0
1
Δz

0

0

0

1

Homogeneous Coordinates

For translation to work:
• The last element in the homogeneous coordinates has to be 1.

• The last column of the matrix has to be [0, 0, 0, 1]T (We will see what would happen if this
is not the case later in the semester when we talk about perspective transformations.)

But do they generally apply to other transformations?

�38

[x, y, z, 1] x[[

= [x’, y’, z’, 1]
1
0
0
Δx

0
1
0
Δy

0
0
1
Δz

0

0

0

1

The Identity Matrix in Homogeneous Coordinates

The top-left 3x3 sub-matrix is the same identity matrix as before.

�39

[x, y, z, 1] x[[

= [x’, y’, z’, 1]
1
0
0
0

0
1
0
0

0
0
1
0

0

0

0

1

Scaling in Homogeneous Coordinates

Scaling P [x, y, z, 1] to P’ [S0·x, S1·y, S2·z, 1].

The top-left 3x3 sub-matrix is the same as before.

�40

[x, y, z, 1] x[[

= [x’, y’, z’, 1]
S0
0
0
0

0
S1
0
0

0
0
S2
0

0

0

0

1

Rotation in Homogeneous Coordinates

Rotate P around the z-axis by 𝛉?

The top-left 3x3 sub-matrix is the same as before.

�41

[x, y, z, 1] x[[

= [x’, y’, z’, 1]

0 0 0

0

0

0

1

cos 𝛉

-sin 𝛉

0

sin 𝛉

cos 𝛉

0

0

0

1

Composite Transformation in Homogeneous Coordinates

Rotate P around the z-axis by 𝛉 and translate by [Δx, Δy, Δz].

�42

[cos 𝛉
-sin 𝛉

0
0

sin 𝛉
-cos 𝛉

0
0

0
0
1
0

0
0
0
1
[[1

0
0
Δx

0
0
0
1
[x

0
1
0
Δy

0
0
1
Δz

[cos 𝛉
-sin 𝛉

0
Δx

sin 𝛉
-cos 𝛉

0
Δy

0
0
1
Δz

0
0
0
1
[=

Responsible for rotation

Responsible for translation

Composite Transformation in Homogeneous Coordinates

Transforming with the composite matrix is equivalent to first rotating using
the rotation sub-matrix and then translating using the translation sub-matrix.

�43

[x, y, z, 1] x[[
= [x’, y’, z’, 1]

T00
T10
T20
T30

T01
T11
T21
T31

T02
T12
T22
T32

0

0

0

1
Responsible for translation

R3x3Responsible for rotation
T1x3

03x1

11x1[[

Affine Transformation

Matrix that has this form (last column vector is [0, 0, 0, 1]) is called an affine
transformation matrix.
Intuitively, affine transformation preserves straight lines and line parallelism.

• Translation, scale, rotation all do not bend straight lines and preserve parallelism.

• Are camera projections affine?

�44

[[T00
T10
T20
T30

T01
T11
T21
T31

T02
T12
T22
T32

0

0

0

1

�45https://www.adorama.com/alc/10-must-have-gadgets-for-architecture-photography/

�46https://www.lifewire.com/what-is-a-fisheye-lens-4774336

Cartesian-Homogeneous Coordinates Conversion

[x, y, z] <==> [x, y, z, 1]

�47

Cartesian-Homogeneous Coordinates Conversion

[x, y, z] <==> [x, y, z, 1]
In fact, [x, y, z] <==> [kx, ky, kz, k]

�47

Cartesian-Homogeneous Coordinates Conversion

[x, y, z] <==> [x, y, z, 1]
In fact, [x, y, z] <==> [kx, ky, kz, k]
If [x, y, z, 1] after transformation T becomes [x’, y’, z’, 1], then [kx, ky, kz, k]
after the same transformation T will become [kx’, ky’, kz’, k], because T is
linear (matrix multiplication).

�47

Cartesian-Homogeneous Coordinates Conversion

[x, y, z] <==> [x, y, z, 1]
In fact, [x, y, z] <==> [kx, ky, kz, k]
If [x, y, z, 1] after transformation T becomes [x’, y’, z’, 1], then [kx, ky, kz, k]
after the same transformation T will become [kx’, ky’, kz’, k], because T is
linear (matrix multiplication).

• In this case, we get the Cartesian coordinates by [kx’/k, ky’/k, kz’/k, k/k].

�47

Cartesian-Homogeneous Coordinates Conversion

[x, y, z] <==> [x, y, z, 1]
In fact, [x, y, z] <==> [kx, ky, kz, k]
If [x, y, z, 1] after transformation T becomes [x’, y’, z’, 1], then [kx, ky, kz, k]
after the same transformation T will become [kx’, ky’, kz’, k], because T is
linear (matrix multiplication).

• In this case, we get the Cartesian coordinates by [kx’/k, ky’/k, kz’/k, k/k].

• Usually k is 1, but k could be set to other values later (e.g., in perspective
transformation).

�47

Cartesian-Homogeneous Coordinates Conversion

[x, y, z] <==> [x, y, z, 1]
In fact, [x, y, z] <==> [kx, ky, kz, k]
If [x, y, z, 1] after transformation T becomes [x’, y’, z’, 1], then [kx, ky, kz, k]
after the same transformation T will become [kx’, ky’, kz’, k], because T is
linear (matrix multiplication).

• In this case, we get the Cartesian coordinates by [kx’/k, ky’/k, kz’/k, k/k].

• Usually k is 1, but k could be set to other values later (e.g., in perspective
transformation).

• The kx, ky, kz, and k in [kx, ky, kz, k] don’t have physical meanings. When you convert it
back to [x, y, z], it then corresponds to a point in the physical world.

�47

Vector

A vector has the same representation of a point: [x, y, z].
A vector represents a direction between [0, 0, 0] and [x, y, z] with a length.
A unit vector or normalized vector is one whose length sqrt(x2+y2+z2) is 1.

�48

y

x

z

V [x, y, z]

z

Vector

A vector is “positionless”, so translating vectors is meaningless.
Rotation and scaling are meaningful vector transformations.

�49

y

x

z

Two same vectors

Scaling

Rotation

Vector Transformation in Homogeneous Coordinates

Vector and point transformations are almost the same, but:
V [x, y, z] in Cartesian coordinates is [x, y, z, 0] in homogeneous coordinates.
0 ensures that translation doesn’t change the vector.
The homogeneous transformation matrix is the same.

�50

[x, y, z, 0] x[[

= [x’, y’, z’, 0]
1
0
0
Δx

0
1
0
Δy

0
0
1
Δz

0

0

0

1

Vector Transformation in Homogeneous Coordinates

Rotate V [x, y, z] around z-axis by 𝛉.

Same transformation matrix as before. The only difference is that the last
element in the homogeneous coordinate is 0 now.

�51

[x, y, z, 0] x[[

= [x’, y’, z’, 0]

0 0 0

0

0

0

1

cos 𝛉

-sin 𝛉

0

sin 𝛉

cos 𝛉

0

0

0

1

Another Way to Think About Point Transformation

Two equivalent ways to interpret rotating P to P’.

First: rotating P in the current coordinate system
(a.k.a., frame) F0 by a matrix R.

Second, rotating the current frame F0 to a new frame
F1 using R while keeping the relative position of P
unchanged.

• That is, the coordinates of P in F1 are the same as those in F0.

�52

P
P’

Another Way to Think About Point Transformation

Two equivalent ways to interpret rotating P to P’.

First: rotating P in the current coordinate system
(a.k.a., frame) F0 by a matrix R.

Second, rotating the current frame F0 to a new frame
F1 using R while keeping the relative position of P
unchanged.

• That is, the coordinates of P in F1 are the same as those in F0.

�52

P
P’

Another Way to Think About Point Transformation

�53

P
P’

[Px, Py, Pz, 0] x T = [Px’, Py’, Pz’, 0]

Two ways to obtain P’
• Transform [Px, Py, Pz, 0] to [Px’, Py’, Pz’, 0] in the current frame

F0 using matrix T.

• Transform the current frame F0 to a new frame F1 using matrix
T and keep the coordinates [Px, Py, Pz, 0].

What does it mean to transform a coordinate system?

Another Way to Think About Point Transformation

�53

P
P’

[Px, Py, Pz, 0] x T = [Px’, Py’, Pz’, 0]

Two ways to obtain P’
• Transform [Px, Py, Pz, 0] to [Px’, Py’, Pz’, 0] in the current frame

F0 using matrix T.

• Transform the current frame F0 to a new frame F1 using matrix
T and keep the coordinates [Px, Py, Pz, 0].

What does it mean to transform a coordinate system?

How to Transform a Frame/Coordinate System?

A Cartesian coordinate system/frame is define by its origin [0, 0, 0] and three
basis vectors: the x axis [1, 0, 0], y axis [0, 1, 0] and z axis [0, 0, 1].

�54

y

x

z

y

z

x
o

o

How to Transform a Frame/Coordinate System?

A Cartesian coordinate system/frame is define by its origin [0, 0, 0] and three
basis vectors: the x axis [1, 0, 0], y axis [0, 1, 0] and z axis [0, 0, 1].

When we create a new frame, we can think of it transforming three original
basis vectors and the origin to three new basis vectors and a new origin.

�54

y

x

z

y

z

x
o

o

How to Transform a Frame/Coordinate System?

A Cartesian coordinate system/frame is define by its origin [0, 0, 0] and three
basis vectors: the x axis [1, 0, 0], y axis [0, 1, 0] and z axis [0, 0, 1].

When we create a new frame, we can think of it transforming three original
basis vectors and the origin to three new basis vectors and a new origin.

4 transformations (3 vector transformations + 1 point transformation).

�54

y

x

z

y

z

x
o

o

How to Transform a Frame/Coordinate System?

One single transformation matrix can express all 4 transformations. How?

�55

T00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[[1, 0, 0, 0] x = [T00, T01, T02, T03]

This is the new x-axis.
Only the first row is used

to transform x-axis.

y

x

z

y

z

x
o

o

Original x-axis

How to Transform a Frame/Coordinate System?

�56

T00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[[0, 1, 0, 0] x = [T10, T11, T12, T13]

This is the new y-axis.
Only the second row is used

to transform y-axis.

y

x

z

y

z

x
o

o

Original y-axis

How to Transform a Frame/Coordinate System?

�57

T00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[[0, 0, 1, 0] x = [T20, T21, T22, T23]

This is the new z-axis.
Only the third row is used

to transform z-axis.

y

x

z

y

z

x
o

o

Original z-axis

How to Transform a Frame/Coordinate System?

�58

T00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[[0, 0, 0, 1] x = [T30, T31, T32, T33]

Original origin

This is the new origin.
Only the fourth row is used

to transform origin.

y

x

z

y

z

x
o

o

How to Transform a Frame/Coordinate System?

The transformation matrix directly encodes the new basis vectors and the
new origin!
The last column needs to be [0, 0, 0, 1]T
The identity matrix basically encodes the original frame.

�59

T00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[New x-axis basis vector

New y-axis basis vector

New z-axis basis vector

New origin

1, 0, 0, 0
0, 1, 0, 0
0, 0, 1, 0

0, 0, 0, 1
[[Identity matrix

encodes the canonical
frame’s information!

All in homogeneous
coordinates

The new basis vectors

The new origin

Back to Rotation Matrix Being Unitary Matrix

This provides an intuitive explanation why a rotation matrix must be unitary.
• The top-left 3x3 matrix simultaneously serves two roles:1) it encodes the new basis

vectors in the new coordinate system, and 2) it encodes the rotation matrix. For the first
role, it must be a unitary matrix; so the rotation matrix must be a unitary matrix.

�60

T00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[New x-axis basis vector

New y-axis basis vector

New z-axis basis vector

New origin

1, 0, 0, 0
0, 1, 0, 0
0, 0, 1, 0

0, 0, 0, 1
[[Identity matrix

encodes the canonical
frame’s information!

All in homogeneous
coordinates

The new basis vectors

The new origin

How to Transform a Frame/Coordinate System?

Does any transformation matrix work?
• Yes, but for the transformed frame to be used as a Cartesian coordinate system, the top

3x3 matrix must be an orthogonal matrix: the three basic vectors must be mutually
orthogonal and their lengths must be 1.

Intuition: an orthogonal matrix rotates the three basis vector together, so
mutual orthogonality and unit length requirements are naturally met.

�61

y

x

z

y

z

x

A legal transformation of the
frame, but the new frame can’t
be used as a Cartesian
coordinate system.

2, 4, 0, 0
1, 5, -1, 0
-1, 0, 1, 0

1, 4, 0, 1
[[

Rotation Around an Arbitrary Axis (w here)

First, create a Cartesian coordinate system UVW.
There are infinite many (since only W is given);
any one will work in principle.

�62https://www.researchgate.net/figure/Notation-used-for-the-analysis-of-the-rotation-around-an-arbitrary-axis-r_fig5_230934580

P

P’

W

U

V

P’ = P x R1 x R2 x R1-1

Z

Y

X

https://www.researchgate.net/figure/Notation-used-for-the-analysis-of-the-rotation-around-an-arbitrary-axis-r_fig5_230934580

Rotation Around an Arbitrary Axis (w here)

First, create a Cartesian coordinate system UVW.
There are infinite many (since only W is given);
any one will work in principle.

Second, rotate UVW to be XYZ; let the rotation
matrix be R1. P becomes P1.

�62https://www.researchgate.net/figure/Notation-used-for-the-analysis-of-the-rotation-around-an-arbitrary-axis-r_fig5_230934580

P

P’

W

U

V

P’ = P x R1 x R2 x R1-1

Z

Y

X

https://www.researchgate.net/figure/Notation-used-for-the-analysis-of-the-rotation-around-an-arbitrary-axis-r_fig5_230934580

Rotation Around an Arbitrary Axis (w here)

First, create a Cartesian coordinate system UVW.
There are infinite many (since only W is given);
any one will work in principle.

Second, rotate UVW to be XYZ; let the rotation
matrix be R1. P becomes P1.

Third, rotate P1 around Z. Let the rotation matrix
be R2. P1 becomes P2.

�62https://www.researchgate.net/figure/Notation-used-for-the-analysis-of-the-rotation-around-an-arbitrary-axis-r_fig5_230934580

P

P’

W

U

V

P’ = P x R1 x R2 x R1-1

Z

Y

X

https://www.researchgate.net/figure/Notation-used-for-the-analysis-of-the-rotation-around-an-arbitrary-axis-r_fig5_230934580

Rotation Around an Arbitrary Axis (w here)

First, create a Cartesian coordinate system UVW.
There are infinite many (since only W is given);
any one will work in principle.

Second, rotate UVW to be XYZ; let the rotation
matrix be R1. P becomes P1.

Third, rotate P1 around Z. Let the rotation matrix
be R2. P1 becomes P2.

Finally, rotate P2 from XYZ to UVW to get P’. The
rotation matrix is necessarily R1-1 which is R1T
since R1 is necessarily orthogonal.

�62https://www.researchgate.net/figure/Notation-used-for-the-analysis-of-the-rotation-around-an-arbitrary-axis-r_fig5_230934580

P

P’

W

U

V

P’ = P x R1 x R2 x R1-1

Z

Y

X

https://www.researchgate.net/figure/Notation-used-for-the-analysis-of-the-rotation-around-an-arbitrary-axis-r_fig5_230934580

