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Logistics

• Written assignment 1 is up and is due Sept. 16 11:30 AM. 
• You can work in groups of 2. 
• Course schedule: https://www.cs.rochester.edu/courses/572/fall2022/

schedule.html. You will find reading assignments and slides. 
• Start thinking and talking to me about your final project idea.
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https://www.cs.rochester.edu/courses/572/fall2022/schedule.html
https://www.cs.rochester.edu/courses/572/fall2022/schedule.html


Digital Camera Imaging

Color in Nature, Arts, & Tech 
(a.k.a., the birth, life, and death of light)

The Roadmap

�3

Theoretical Preliminaries

Human Visual Systems

Modeling and Rendering

Applications

Geometric Transformations
Fourier Series & Transforms

Sampling & Reconstruction
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Building Intuitions 
(1D)



Ren NgCS184/284A

Sines and Cosines

cos 2⇡x

sin 2⇡x

Sinusoidal Function

�5Slide credit: Ren Ng

Repeating at an interval of 1, 
i.e., period (T) = 1 
“Even” function

Repeating at an interval of 1, 
i.e., period (T) = 1 
“Odd” function
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Frequencies 

cos 2⇡x

cos 2⇡fx

cos 4⇡x

f = 1

f = 2

f =
1

T

Sinusoidal Function Frequency

�6Slide credit: Ren Ng

sin kx, cos kx

T =
2π
k

fordinary =
k

2π
fangular = k



Fourier Series: What It Says
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Any periodic function can be 
represented as an infinite weighted 

sum of sines and cosines with 
increasing frequencies.

Joseph Fourier (1768 – 1830)



Two Examples to Build Intuition
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1

-𝛑 𝛑

-𝛑/2 𝛑/2

… …

A hat function 
Period T = 2𝛑 

Frequency is 1/2𝛑 
Amplitude is 1

A

-a a

A square function 
Period T = 4a 

Frequency is 1/4a 
Amplitude is A

……

3a



First Example
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Ren NgCS184/284A

Fourier Transform

Represent a function as a weighted 
sum of sines and cosines

Joseph Fourier 1768 - 1830

f(x) =
A

2
+

2A cos(t⇥)
�

� 2A cos(3t⇥)
3�

+
2A cos(5t⇥)

5�
� 2A cos(7t⇥)

7�
+ · · ·f(x) =

A

2
+

2A cos(t⇥)
�

� 2A cos(3t⇥)
3�

+
2A cos(5t⇥)

5�
� 2A cos(7t⇥)

7�
+ · · ·f(x) =

A

2
+

2A cos(t⇥)
�

� 2A cos(3t⇥)
3�

+
2A cos(5t⇥)

5�
� 2A cos(7t⇥)

7�
+ · · ·f(x) =

A

2
+

2A cos(t⇥)
�

� 2A cos(3t⇥)
3�

+
2A cos(5t⇥)

5�
� 2A cos(7t⇥)

7�
+ · · ·

The periodic square 
function to be represented

Add first 2 waves

Add first 3 waves

Add first 4 waves

Add first 5 waves

f(x) =
A
2

+
2A
π

cos(
1

4a
x) +

−2A
3π

cos(
3

4a
x) +

2A
5π

cos(
5

4a
x) +

−2A
7π

cos(
7

4a
x) + . . .

A square function 
Period T = 4a 

Frequency is 1/4a 
Amplitude is A

A

-a a

……

3a



Second Example

�10DDSE Ch 2.

2.1. FOURIER SERIES AND FOURIER TRANSFORMS 59

f

f̂

1

Time
�⇡ 0 ⇡

�.05

0

.05

�.5

0

.5

0

Figure 2.3: (top) Hat function and Fourier cosine series approximation for
n = 7. (middle) Fourier cosines used to approximate the hat function, and (bot-
tom) zoom in of modes with small amplitude and high frequency.

Example: Fourier series for a continuous hat function

As a simple example, we demonstrate the use of Fourier series to approximate
a continuous hat function, defined from �⇡ to ⇡:

f(x) =

8
>><

>>:

0 for x 2 [�⇡, ⇡/2)
1 + 2x/⇡ for x 2 [�⇡/2, 0)
1 � 2x/⇡ for x 2 [0, ⇡/2)

0 for x 2 [⇡/2, ⇡).

(2.13)

Because this function is even, it may be approximated with cosines alone. The
Fourier series for f(x) is shown in Fig. 2.3 for an increasing number of cosines.

Figure 2.4 shows the coefficients ak of the even cosine functions, along with
the approximation error, for an increasing number of modes. The error de-
creases monotonically, as expected. The coefficients bk corresponding to the
odd sine functions are not shown, as they are identically zero since the hat
function is even.

Copyright © 2017 Brunton & Kutz. All Rights Reserved.

The first seven terms

Zoom in so you see the 
high-frequency part

f(x) =
1
2

+
4
π2

cos(x) +
4

(3π)2
cos(3x) +

4
(5π)2

cos(5x) +
4

(7π)2
cos(7x) + . . .

The periodic hat function and the 
sum of the first seven terms

https://math.stackexchange.com/questions/3111475/fourier-series-of-triangular-waveform
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Building Intuitions 
(2D)



2D Sinusoidal Functions
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cos(u-v) cos(u-v) is constant where u-v 
is constant



2D Sinusoidal Functions
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cos(u-2v) cos(u-2v) has the same value 
with u-2v is constant
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u

cos(2u+2v)cos(-2u+2v)

cos(2u-2v)

v

cos(-2u-2v)

cos(-2u+0v)

cos(0u-2v)



2D Frequency Intuitions
• 2D frequencies characterize the image spatial changes in horizontal and 

vertical directions 
• Smooth changes —> low frequencies 

• Sharp changes —> high frequencies
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cos(0u-v)cos(2u+0v) cos(2u-2v)



Image = 2D Signal
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Image = 2D Signal

• An image is nothing more than a 
(complicated) 2D function f(x, y) 

• f(x, y) maps a pixel coordinates [x, y] to 
its pixel value 

• Can a 2D signal be expressed as a 
weighted sum of a set of 2D sinusoidal 
functions?
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Decomposing 2D Signals
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=
+W(0,1) ×

W(−1,1) ×

+W(1,1) ×

+W(−1,0) ×

+W(0,0) ×

+W(1,0) ×

+W(−1, − 1) ×

+W(0, − 1) ×

+W(1, − 1) ×

https://www.theverge.com/2016/8/2/12351210/ferrari-488-spider-supercar-test-drive

…

…

……

+W(1, − 2) × +W(1,2) ×

+W(0, − 2) × +W(0,2) ×

+W(−1, − 2) × +W(−1,2) ×

+W(−2,1) ×+W(−2,0) ×+W(−2, − 1) ×+W(−2, − 2) × +W(−2,2) ×

+W(2,1) ×+W(2,0) ×+W(2, − 1) ×+W(2, − 2) × +W(2,2) ×



Plotting the 2D Weights*
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Mostly low 
frequency 

components.

uW[0, 0]

v

https://www.theverge.com/2016/8/2/12351210/ferrari-488-spider-supercar-test-drive
* the weights are actually complex values, so we plot their magnitudes here.

W[x, y]



Manipulating the Weights
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Ren NgCS184/284A

Image Frequency: Visual Example

Spatial Domain Frequency Domain

Slide credit: Ren Ng



Manipulating the Weights

�21Slide credit: Ren Ng
Ren NgCS184/284A

Image Frequency: Visual Example

Spatial Domain Frequency Domain

Max signal freq ≈1/2 
(Why 1/2 ?)    



Ren NgCS184/284A

Image Frequency: Visual Example

Spatial Domain Frequency Domain

Max signal freq ≈1/4

Manipulating the Weights

�22Slide credit: Ren Ng
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Image Frequency: Visual Example

Spatial Domain Frequency Domain

Max signal freq ≈1/8

Manipulating the Weights

�23Slide credit: Ren Ng
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Image Frequency: Visual Example

Spatial Domain Frequency Domain

Max signal freq ≈1/16

Manipulating the Weights

�24Slide credit: Ren Ng
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Image Frequency: Visual Example

Spatial Domain Frequency Domain

Max signal freq ≈1/32

Manipulating the Weights

�25Slide credit: Ren Ng
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Image Frequency: Visual Example

Spatial Domain Frequency Domain

Max signal freq ≈1/64

Manipulating the Weights

�26Slide credit: Ren Ng
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Why Does It Work?



Vector Norm
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∥x∥ = x ⋅ xVector norm

Unit vector x̂ =
x

∥x∥

x



Inner/Dot Product
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x ⋅ y = ∥x∥∥y∥cosθGeometric 
definition

Algebraic 
definition

x ⋅ y = x1y1 + x2y2

x = [x1, x2]
y = [y1, y2]

Length (norm) of x



Inner/Dot Product

�29

x ⋅ y = ∥x∥∥y∥cosθGeometric 
definition

Algebraic 
definition

x ⋅ y = x1y1 + x2y2

x = [x1, x2]
y = [y1, y2]

Length (norm) of x

These two definitions are 
equivalent. Prove it in WA2.



Inner/Dot Product

�29

x ⋅ y = ∥x∥∥y∥cosθGeometric 
definition

Algebraic 
definition

x ⋅ y = x1y1 + x2y2

x = [x1, x2]
y = [y1, y2]

Length (norm) of x

These two definitions are 
equivalent. Prove it in WA2.

• Inner product of two vectors tells us how “similar" two vectors are.



Inner/Dot Product

�29

x ⋅ y = ∥x∥∥y∥cosθGeometric 
definition

Algebraic 
definition

x ⋅ y = x1y1 + x2y2

x = [x1, x2]
y = [y1, y2]

Length (norm) of x

These two definitions are 
equivalent. Prove it in WA2.

• Inner product of two vectors tells us how “similar" two vectors are.
• 0 if they are orthogonal;



Inner/Dot Product

�29

x ⋅ y = ∥x∥∥y∥cosθGeometric 
definition

Algebraic 
definition

x ⋅ y = x1y1 + x2y2

x = [x1, x2]
y = [y1, y2]

Length (norm) of x

These two definitions are 
equivalent. Prove it in WA2.

• Inner product of two vectors tells us how “similar" two vectors are.
• 0 if they are orthogonal;

• Maximal if they have the same direction.



Vector Projection

�30

A ⋅ B = ∥A∥∥B∥cosθ



Vector Projection

�30

A ⋅ B = ∥A∥∥B∥cosθ

Magnitude of 
projection of vector A 
in the direction of B

AB = ∥A∥cosθ =
A ⋅ B
∥B∥



Vector Projection

�30

A ⋅ B = ∥A∥∥B∥cosθ

Magnitude of 
projection of vector A 
in the direction of B

AB = ∥A∥cosθ =
A ⋅ B
∥B∥

The projected vector ABB̂ =
A ⋅ B
∥B∥

B
∥B∥

=
A ⋅ B
∥B∥2

B



Projecting a Vector to Two Orthogonal Vectors
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Tx =
T ⋅ x
∥x∥

, Ty =
T ⋅ y
∥y∥

, T = [Tx, Ty]

x

y

T

Tx

Ty



Projecting a Vector to Two Orthogonal Vectors

�31

Tx =
T ⋅ x
∥x∥

, Ty =
T ⋅ y
∥y∥

, T = [Tx, Ty]

x

y

T
T = Txx̂ + Tyŷ =

T ⋅ x
∥x∥2

x +
T ⋅ y
∥y∥2

y

Tx

Ty



Projecting a Vector to Two Orthogonal Vectors

�31

Tx =
T ⋅ x
∥x∥

, Ty =
T ⋅ y
∥y∥

, T = [Tx, Ty]

x

y

T
T = Txx̂ + Tyŷ =

T ⋅ x
∥x∥2

x +
T ⋅ y
∥y∥2

y

Tx

Ty

• What’s happened here? We can express an 
arbitrary vector T using two orthogonal 
“basis” vectors by projecting the vector to 
the two basis vectors.



Change of Coordinates

�32

x

y

T

u

v

𝛉

Tx =
T ⋅ x
∥x∥

, Ty =
T ⋅ y
∥y∥

, T = [Tx, Ty]

Tx

Ty

Tu

Tv



Change of Coordinates

�32

x

y

T

u

v
Tu =

T ⋅ u
∥u∥

, Tv =
T ⋅ v
∥v∥

, T = [Tu, Tv]

𝛉

Tx =
T ⋅ x
∥x∥

, Ty =
T ⋅ y
∥y∥

, T = [Tx, Ty]

Tx

Ty

Tu

Tv



Change of Coordinates

�32

x

y

T

u

v
Tu =

T ⋅ u
∥u∥

, Tv =
T ⋅ v
∥v∥

, T = [Tu, Tv]

𝛉
T =

T ⋅ u
∥u∥2

u +
T ⋅ v
∥v∥2

v

Tx =
T ⋅ x
∥x∥

, Ty =
T ⋅ y
∥y∥

, T = [Tx, Ty]

Tx

Ty

Tu

Tv



Change of Coordinates

�32

x

y

T

u

v
Tu =

T ⋅ u
∥u∥

, Tv =
T ⋅ v
∥v∥

, T = [Tu, Tv]

𝛉
T =

T ⋅ u
∥u∥2

u +
T ⋅ v
∥v∥2

v

Tx =
T ⋅ x
∥x∥

, Ty =
T ⋅ y
∥y∥

, T = [Tx, Ty]

Tx

Ty

Tu

Tv

[Tx, Ty] and [Tu, Tv] are related by a 
geometric transformation. WA1 asks you to 

come up with the transformation.



Functions are Vectors

• Assume functions f and g are 
defined as N discrete points

�33

f1
f2

f3 fn

x1 x2 x3 xn

g1

g2 g3
gn



Functions are Vectors

• Assume functions f and g are 
defined as N discrete points

• f and g are nothing more than 
two N-dimensional vectors.

�33

f1
f2

f3 fn

x1 x2 x3 xn

g1

g2 g3
gn

f = [ f1, f2, . . . , fn]
g = [g1, g2, . . . , gn]



Functions are Vectors

• Assume functions f and g are 
defined as N discrete points

• f and g are nothing more than 
two N-dimensional vectors.

�33

f ⋅ g =
n

∑
1

figi
Inner product of two N-

dimensional vectors

f1
f2

f3 fn

x1 x2 x3 xn

g1

g2 g3
gn

f = [ f1, f2, . . . , fn]
g = [g1, g2, . . . , gn]



Continuous Function = Infinite-Dimensional Vector

• When f and g are continuous 
functions, they can be seen as 
two infinite-dimensional vectors.

�34

x

f(x)

g(x)

x1 xn



Continuous Function = Infinite-Dimensional Vector

• When f and g are continuous 
functions, they can be seen as 
two infinite-dimensional vectors.

• The inner product of two 
continuous functions is the 
integration of the product.

�34

x

f(x)

g(x)

x1 xn



Continuous Function = Infinite-Dimensional Vector

• When f and g are continuous 
functions, they can be seen as 
two infinite-dimensional vectors.

• The inner product of two 
continuous functions is the 
integration of the product.

�34

f ⋅ g = ∫
x2

x1

f(x)g(x)dxInner product of two 
continuous functions

x

f(x)

g(x)

x1 xn



Continuous Function = Infinite-Dimensional Vector

• When f and g are continuous 
functions, they can be seen as 
two infinite-dimensional vectors.

• The inner product of two 
continuous functions is the 
integration of the product.

• Use complex conjugate of g if they are 
complex-valued.

�34

f ⋅ g = ∫
x2

x1

f(x)g(x)dxInner product of two 
continuous functions

x

f(x)

g(x)

x1 xn



Function Inner Product
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f ⋅ g = ∫
x2

x1

f(x)g(x)dxInner product of two continuous functions

Function f and g are orthogonal if: f ⋅ g = ∫
x2

x1

f(x)g(x)dx = 0

∥g∥ = (∫
x2

x1

g(x)2dx)
1/2

Norm of a function g is:

• An infinite-dimensional space that also defines vector operations (e.g., dot 
project) is called a Hilbert space.



Vector vs. Function Projection
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fg =
f ⋅ g
∥g∥2

gABB̂ =
A ⋅ B
∥B∥2

B

Vector A projected to 
vector B

Function f projected to 
function g



Recall: Expressing a Vector Using Basis Vectors

• We can express a 2D vector as a sum of two orthogonal basis vectors. 
• By projecting T to the two basis vectors

�37

T =
T ⋅ x
∥x∥2

x +
T ⋅ y
∥y∥2

y

x

y

T

Tx

Ty



Expressing a Function as Basis Functions

• Similarly, we can express a function using “basis functions”. 
• How many basis functions do we need? 

• Expressing a continuous function requires infinitely many basis functions. 
• Basis functions must be orthogonal.

�38

f =
∞

∑
i=1

f ⋅ vi

∥vi∥2
viT =

T ⋅ x
∥x∥2

x +
T ⋅ y
∥y∥2

y

v1, v2, … are orthogonal functions



Problem Setup

• Now assuming we have a continuous function f defined over [t, t+L) 
• How do we represent f as a sum of a set of basis functions? 

• The basis functions need to be defined over [t, t+L) too.
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f =
∞

∑
i=1

f ⋅ vi

∥vi∥2
viT =

T ⋅ x
∥x∥2

x +
T ⋅ y
∥y∥2

y

v1, v2, … are orthogonal functions



A Special Set of Orthogonal Basis Functions

�40

{cos( 2πkx
L )}

∞

k=0
, {sin( 2πkx

L )}
∞

k=1
, k ∈ ℤ mutually orthogonal functions 

on any [t, t+L) interval

https://tutorial.math.lamar.edu/classes/de/PeriodicOrthogonal.aspx



A Special Set of Orthogonal Basis Functions

�40

{cos( 2πkx
L )}

∞

k=0
, {sin( 2πkx

L )}
∞

k=1
, k ∈ ℤ mutually orthogonal functions 

on any [t, t+L) interval

cos( 0πx
L ), cos( 2πx

L ), cos( 4πx
L ), cos( 6πx

L ), . . . , sin( 2πx
L ), sin( 4πx

L ), sin( 6πx
L ), . . .

https://tutorial.math.lamar.edu/classes/de/PeriodicOrthogonal.aspx



A Special Set of Orthogonal Basis Functions

�40

{cos( 2πkx
L )}

∞

k=0
, {sin( 2πkx

L )}
∞

k=1
, k ∈ ℤ mutually orthogonal functions 

on any [t, t+L) interval

cos( 0πx
L ), cos( 2πx

L ), cos( 4πx
L ), cos( 6πx

L ), . . . , sin( 2πx
L ), sin( 4πx

L ), sin( 6πx
L ), . . .

∫
t+L

t
cos( 2πx

L )sin( 6πx
L )dx = 0For instance:

https://tutorial.math.lamar.edu/classes/de/PeriodicOrthogonal.aspx



A Special Set of Orthogonal Basis Functions

�40

{cos( 2πkx
L )}

∞

k=0
, {sin( 2πkx

L )}
∞

k=1
, k ∈ ℤ mutually orthogonal functions 

on any [t, t+L) interval

cos( 0πx
L ), cos( 2πx

L ), cos( 4πx
L ), cos( 6πx

L ), . . . , sin( 2πx
L ), sin( 4πx

L ), sin( 6πx
L ), . . .

∫
t+L

t
cos( 2πx

L )sin( 6πx
L )dx = 0For instance:

https://tutorial.math.lamar.edu/classes/de/PeriodicOrthogonal.aspx

∫
t+L

t
cos( 2πx

L )cos( 6πx
L )dx = 0



A Special Set of Orthogonal Basis Functions

�40

{cos( 2πkx
L )}

∞

k=0
, {sin( 2πkx

L )}
∞

k=1
, k ∈ ℤ mutually orthogonal functions 

on any [t, t+L) interval

cos( 0πx
L ), cos( 2πx

L ), cos( 4πx
L ), cos( 6πx

L ), . . . , sin( 2πx
L ), sin( 4πx

L ), sin( 6πx
L ), . . .

∫
t+L

t
cos( 2πx

L )sin( 6πx
L )dx = 0For instance: The sine series starts from k=1, since 

k=0 leads to a function that’s 0 
everywhere, i.e. a 0-norm vector, 

which isn’t great. Will see why soon.

https://tutorial.math.lamar.edu/classes/de/PeriodicOrthogonal.aspx

∫
t+L

t
cos( 2πx

L )cos( 6πx
L )dx = 0



Fourier Series

�41

f =
∞

∑
i=1

f ⋅ vi

∥vi∥2
vi vi ∈ {{cos( 2πkx

L )}
∞

k=0
, {sin( 2πkx

L )}
∞

k=1
, x ∈ [t, t + L)}

https://math.stackexchange.com/questions/1161147/why-does-a-fourier-series-have-a-1-2-in-front-of-the-a-0-coefficient



Fourier Series

�41

f =
∞

∑
i=1

f ⋅ vi

∥vi∥2
vi vi ∈ {{cos( 2πkx

L )}
∞

k=0
, {sin( 2πkx

L )}
∞

k=1
, x ∈ [t, t + L)}

f(x) =
∞

∑
k=0

(akcos( 2πkx
L )) +

∞

∑
k=1

(bksin( 2πkx
L )), x ∈ [t, t + L)

https://math.stackexchange.com/questions/1161147/why-does-a-fourier-series-have-a-1-2-in-front-of-the-a-0-coefficient



Fourier Series

�41

f =
∞

∑
i=1

f ⋅ vi

∥vi∥2
vi vi ∈ {{cos( 2πkx

L )}
∞

k=0
, {sin( 2πkx

L )}
∞

k=1
, x ∈ [t, t + L)}

f(x) =
∞

∑
k=0

(akcos( 2πkx
L )) +

∞

∑
k=1

(bksin( 2πkx
L )), x ∈ [t, t + L)

https://math.stackexchange.com/questions/1161147/why-does-a-fourier-series-have-a-1-2-in-front-of-the-a-0-coefficient



Fourier Series

�41

f =
∞

∑
i=1

f ⋅ vi

∥vi∥2
vi vi ∈ {{cos( 2πkx

L )}
∞

k=0
, {sin( 2πkx

L )}
∞

k=1
, x ∈ [t, t + L)}

f(x) =
∞

∑
k=0

(akcos( 2πkx
L )) +

∞

∑
k=1

(bksin( 2πkx
L )), x ∈ [t, t + L)

ak =
f(x) ⋅ (cos( 2πkx

L ))
∥cos( 2πkx

L )∥2
=

2
L ∫

t+L

t
f(x)cos( 2πkx

L )dx, if k ≠ 0

https://math.stackexchange.com/questions/1161147/why-does-a-fourier-series-have-a-1-2-in-front-of-the-a-0-coefficient



Fourier Series

�41

f =
∞

∑
i=1

f ⋅ vi

∥vi∥2
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Fourier Coefficients

• Rearrange terms to get a more compact equation. 
• ak and bk are called the Fourier coefficients of f(x).
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• Rearrange terms to get a more compact equation. 
• ak and bk are called the Fourier coefficients of f(x).

�43

f(x) =
a0

2
+

∞

∑
k=1

(akcos(ωkx) + bksin(ωkx))

ak =
2
L ∫

L

0
f(x)cos(ωkx)dx bk =

2
L ∫

L

0
f(x)sin(ωkx)dx

ωk =
2kπ
L



Frequency

• As k increases, the frequency of the basis functions increase.
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Frequency-Domain Representation of a Function

• We have converted a function f(x) into an infinite sequence of ak and bk. 
• The (infinite) coefficient sequence is called the frequency-domain 

representation, or the spectrum, of the function f.

�45

f(x) =
a0

2
+

∞

∑
k=1

(akcos(ωkx) + bksin(ωkx))

ak =
2
L ∫

L

0
f(x)cos(ωkx)dx bk =

2
L ∫

L

0
f(x)sin(ωkx)dx

ωk =
2kπ
L



Applies to Only Periodic Functions

• We assumed f and the basis functions are 
defined only over a fixed internal [t, t+L)
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Figure 2.6: (top) Fourier series is only valid for a function that is periodic on
the domain [�L, L). (bottom) The Fourier transform is valid for generic non-
periodic functions.

Fourier transform
The Fourier series is defined for periodic functions, so that outside the domain
of definition, the function repeats itself forever. The Fourier transform integral
is essentially the limit of a Fourier series as the length of the domain goes to
infinity, which allows us to define a function defined on (�1, 1) without re-
peating, as shown in Fig. 2.6. We will consider the Fourier series on a domain
x 2 [�L, L), and then let L ! 1. On this domain, the Fourier series is:

f(x) =
a0

2
+

1X

k=1


ak cos

✓
k⇡x

L

◆
+ bk sin

✓
k⇡x

L

◆�
=

1X

k=�1

cke
ik⇡x/L (2.15)

with the coefficients given by:

ck =
1

2L
hf(x), ki =

1

2L

Z L

�L

f(x)e�ik⇡x/L dx. (2.16)

Restating the previous results, f(x) is now represented by a sum of sines and
cosines with a discrete set of frequencies given by !k = k⇡/L. Taking the limit
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Figure 2.6: (top) Fourier series is only valid for a function that is periodic on
the domain [�L, L). (bottom) The Fourier transform is valid for generic non-
periodic functions.

Fourier transform
The Fourier series is defined for periodic functions, so that outside the domain
of definition, the function repeats itself forever. The Fourier transform integral
is essentially the limit of a Fourier series as the length of the domain goes to
infinity, which allows us to define a function defined on (�1, 1) without re-
peating, as shown in Fig. 2.6. We will consider the Fourier series on a domain
x 2 [�L, L), and then let L ! 1. On this domain, the Fourier series is:
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f(x)e�ik⇡x/L dx. (2.16)

Restating the previous results, f(x) is now represented by a sum of sines and
cosines with a discrete set of frequencies given by !k = k⇡/L. Taking the limit
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Applies to Only Periodic Functions

• We assumed f and the basis functions are 
defined only over a fixed internal [t, t+L)

• But sinusoidal functions have infinite span; 
they are not limited to a fixed interval
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Figure 2.6: (top) Fourier series is only valid for a function that is periodic on
the domain [�L, L). (bottom) The Fourier transform is valid for generic non-
periodic functions.

Fourier transform
The Fourier series is defined for periodic functions, so that outside the domain
of definition, the function repeats itself forever. The Fourier transform integral
is essentially the limit of a Fourier series as the length of the domain goes to
infinity, which allows us to define a function defined on (�1, 1) without re-
peating, as shown in Fig. 2.6. We will consider the Fourier series on a domain
x 2 [�L, L), and then let L ! 1. On this domain, the Fourier series is:
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Restating the previous results, f(x) is now represented by a sum of sines and
cosines with a discrete set of frequencies given by !k = k⇡/L. Taking the limit
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Applies to Only Periodic Functions

• We assumed f and the basis functions are 
defined only over a fixed internal [t, t+L)

• But sinusoidal functions have infinite span; 
they are not limited to a fixed interval

• What if we just add the Fourier series over 
the entire span?
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Figure 2.6: (top) Fourier series is only valid for a function that is periodic on
the domain [�L, L). (bottom) The Fourier transform is valid for generic non-
periodic functions.

Fourier transform
The Fourier series is defined for periodic functions, so that outside the domain
of definition, the function repeats itself forever. The Fourier transform integral
is essentially the limit of a Fourier series as the length of the domain goes to
infinity, which allows us to define a function defined on (�1, 1) without re-
peating, as shown in Fig. 2.6. We will consider the Fourier series on a domain
x 2 [�L, L), and then let L ! 1. On this domain, the Fourier series is:

f(x) =
a0

2
+

1X

k=1


ak cos

✓
k⇡x

L

◆
+ bk sin

✓
k⇡x

L

◆�
=

1X

k=�1

cke
ik⇡x/L (2.15)

with the coefficients given by:

ck =
1

2L
hf(x), ki =

1

2L

Z L

�L

f(x)e�ik⇡x/L dx. (2.16)

Restating the previous results, f(x) is now represented by a sum of sines and
cosines with a discrete set of frequencies given by !k = k⇡/L. Taking the limit
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Applies to Only Periodic Functions

• We assumed f and the basis functions are 
defined only over a fixed internal [t, t+L)

• But sinusoidal functions have infinite span; 
they are not limited to a fixed interval

• What if we just add the Fourier series over 
the entire span?

• We will generate a L-periodic function!
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Figure 2.6: (top) Fourier series is only valid for a function that is periodic on
the domain [�L, L). (bottom) The Fourier transform is valid for generic non-
periodic functions.

Fourier transform
The Fourier series is defined for periodic functions, so that outside the domain
of definition, the function repeats itself forever. The Fourier transform integral
is essentially the limit of a Fourier series as the length of the domain goes to
infinity, which allows us to define a function defined on (�1, 1) without re-
peating, as shown in Fig. 2.6. We will consider the Fourier series on a domain
x 2 [�L, L), and then let L ! 1. On this domain, the Fourier series is:
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Restating the previous results, f(x) is now represented by a sum of sines and
cosines with a discrete set of frequencies given by !k = k⇡/L. Taking the limit
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Applies to Only Periodic Functions

• We assumed f and the basis functions are 
defined only over a fixed internal [t, t+L)

• But sinusoidal functions have infinite span; 
they are not limited to a fixed interval

• What if we just add the Fourier series over 
the entire span?

• We will generate a L-periodic function!
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Figure 2.6: (top) Fourier series is only valid for a function that is periodic on
the domain [�L, L). (bottom) The Fourier transform is valid for generic non-
periodic functions.

Fourier transform
The Fourier series is defined for periodic functions, so that outside the domain
of definition, the function repeats itself forever. The Fourier transform integral
is essentially the limit of a Fourier series as the length of the domain goes to
infinity, which allows us to define a function defined on (�1, 1) without re-
peating, as shown in Fig. 2.6. We will consider the Fourier series on a domain
x 2 [�L, L), and then let L ! 1. On this domain, the Fourier series is:
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Restating the previous results, f(x) is now represented by a sum of sines and
cosines with a discrete set of frequencies given by !k = k⇡/L. Taking the limit
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Fourier Series: What It Says
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Any periodic function can be 
represented as an infinite weighted 

sum of sines and cosines with 
increasing frequencies.

Joseph Fourier (1768 – 1830)

Fourier coefficients

Basis functions



Back To the First Example
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Back To the First Example
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Why No Sine Term?
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• The period of the sine functions are 4a/k, i.e., 4a, 2a, a, a/2, …
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Even Functions Need only Cosine Terms
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Function Approximation

�54DDSE Ch 2.

2.1. FOURIER SERIES AND FOURIER TRANSFORMS 59

f

f̂

1

Time
�⇡ 0 ⇡

�.05

0

.05

�.5

0

.5

0

Figure 2.3: (top) Hat function and Fourier cosine series approximation for
n = 7. (middle) Fourier cosines used to approximate the hat function, and (bot-
tom) zoom in of modes with small amplitude and high frequency.

Example: Fourier series for a continuous hat function

As a simple example, we demonstrate the use of Fourier series to approximate
a continuous hat function, defined from �⇡ to ⇡:

f(x) =

8
>><

>>:

0 for x 2 [�⇡, ⇡/2)
1 + 2x/⇡ for x 2 [�⇡/2, 0)
1 � 2x/⇡ for x 2 [0, ⇡/2)

0 for x 2 [⇡/2, ⇡).

(2.13)

Because this function is even, it may be approximated with cosines alone. The
Fourier series for f(x) is shown in Fig. 2.3 for an increasing number of cosines.

Figure 2.4 shows the coefficients ak of the even cosine functions, along with
the approximation error, for an increasing number of modes. The error de-
creases monotonically, as expected. The coefficients bk corresponding to the
odd sine functions are not shown, as they are identically zero since the hat
function is even.
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The first seven terms

Zoom in so you see the 
high-frequency part

f(x) =
1
2

+
4
π2

cos(x) +
4

(3π)2
cos(3x) +

4
(5π)2

cos(5x) +
4

(7π)2
cos(7x) + . . .

The periodic hat function and the 
sum of the first seven terms

https://math.stackexchange.com/questions/3111475/fourier-series-of-triangular-waveform



Gibbs Phenomena (Ringing)
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Gibbs Phenomena (Ringing)

�55

5 basis functions

25 basis functions

125 basis functions

https://en.wikipedia.org/wiki/Gibbs_phenomenon

Sudden change of value in a signal 
requires extremely high-frequency 

signals to represent.

We say the signal “contains high-
frequency components.”



�56

Complex Basis 
Functions



Complex Basis Functions
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Complex Basis Functions

�57

{e
ikπx

L }
k=∞

k=−∞
, x ∈ [−L, L), k ∈ ℤ

ϕk = e
ikπx

L ϕi ⋅ ϕj = {0, if i ≠ j,
2L, if i = j .

Mutually orthogonal vectors over [-
L, L) with a norm of sqrt(2L)

{ . . . , e
−2iπx

L , e
−iπx

L , e
i0πx

L , e
i1πx

L , . . . }



Complex Fourier Series
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∞
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ϕk = e
ikπx

L



Complex Fourier Series
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−L
f(x)ϕ̄kdx =
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L

−L
f(x)e−ikπx

L dx

ϕk = e
ikπx

L



Complex Fourier Series

• Can prove equivalence using Euler’s formula: eikx =cos(kx)+ i sin(kx)
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Complex Fourier Series

• Can prove equivalence using Euler’s formula: eikx =cos(kx)+ i sin(kx)

• More general and concise
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Basis Functions of Complex Fourier Series
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ωk =
kπ
L {e

ikπx
L }

k=∞

k=−∞
⇒ {eiωkx}

k=∞

k=−∞

ωk

ωk−1

ωk+1

ωk−2

…

…

Frequency



Basis Functions of Complex Fourier Series
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As k increases, ωk increase, i.e., the 
frequency of the basis functions 

increase, at a uniform interval of π/L.
ωk =

kπ
L {e

ikπx
L }

k=∞

k=−∞
⇒ {eiωkx}

k=∞

k=−∞

ωk

ωk−1

ωk+1

ωk−2

…

…

Frequency



Coefficients of Complex Fourier Series
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f(x) =
∞

∑
k=−∞

ck eiωkxωk =
kπ
L

ck =
1

2L ∫
L

−L
f(x)e−iωkxdx

ωk

ωk−1

ωk+1

ωk−2

ck

ω

π
L

2π
L

3π
L

…
−π
L

−
2π
L

…

…

…

Δω =
π
L

Coeff.

ck−2

…

ck−1

ck

ck+1
…

Ck is complex-
valued. Usually we 

draw its magnitude.
Frequency



Geometric Interpretation
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ck ϕk



Geometric Interpretation
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⋯ ϕk−1 ϕk ϕk+1 ⋯ ×
ck−1
ck

ck+1

= f

ϕk = e
ikπx

L

f(x) =
∞

∑
k=−∞

ck ϕk



Geometric Interpretation

• {ck} is a Hilbert-space vector transformed from f, another Hilbert-space 
vector.
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⋯ ϕk−1 ϕk ϕk+1 ⋯ ×
ck−1
ck

ck+1

= f

ϕk = e
ikπx

L

f(x) =
∞

∑
k=−∞

ck ϕk



Geometric Interpretation

• {ck} is a Hilbert-space vector transformed from f, another Hilbert-space 
vector.

• What kind of transform is this? Homework!
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⋯ ϕk−1 ϕk ϕk+1 ⋯ ×
ck−1
ck

ck+1

= f

ϕk = e
ikπx

L

f(x) =
∞

∑
k=−∞

ck ϕk
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Discrete Fourier 
Transform (DFT)



Recall: Fourier Series
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Recall: Fourier Series

�64

t t + L

• Fourier series applies to:
• Finite interval (say L) + Continuous function

• Or equivalently: an L-periodic function with an infinite span

• We need infinitely many basis functions, since a continuous function is an 
infinitely-dimensional vector
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• In engineering/real-world applications, the signals we obtain are discrete 
samples over a finite interval
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Real-World Scenarios Impose Restrictions
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f1
f2

fn−1
f0

x0 x1 x2 xn−1

• In engineering/real-world applications, the signals we obtain are discrete 
samples over a finite interval

• For instance, audio files are usually 44.1 kHz, i.e., 44,100 samples per second

• We need a discrete form of Fourier series
• Given a sequence of n points, express it as a sum of other sequences

• This time, we need n other sequences



Discrete Complex Basis Functions
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{e
i2πjk

n }, j ∈ [0, 1, . . . , n − 1] are n mutually orthogonal n-dimensional vectors

{ . . . , e
i0k
n , e

i2πk
n , e

i4πk
n , e

i6πk
n , . . . } k ∈ [0, 1, . . . , n − 1]

n−1

∑
k=0

e
i2πk

n e
i4πk

n = 0For instance:
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Intuition
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x0 x1 x2 xn−1
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x0 x1 x2 xn−1

Intuition
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f0
f1

f2

x0 x1 x2 xn−1

fn−1

=

+
+
+
…



Discrete Fourier Transform (Series)

• This is called Discrete Fourier Transform 
• But it’s a misnomer; should really be called Discrete Fourier Series 

• Fast Fourier Transform (FFT) is a fast way to calculate DFT 
• Project to the basis vectors and calculate the DFT coefficients 
• Note that these basis functions are not a subset of the those used in the 

continuous case!
�68

fk =
1
n

n−1

∑
j=0

̂fk e
i2πjk

n ̂fk =
n−1

∑
j=0

fj e
−i2πjk

n k ∈ [0, 1, . . . , n − 1]



DFT Matrix
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1 1 1 ⋯ 1
1 ωn ω2

n ⋯ ωn−1
n

1 ω2
n ω4

n ⋯ ω2(n−1)
n

⋮ ⋮ ⋮ ⋱ ⋮
1 ωn−1

n ω2(n−1)
n ⋯ ω(n−1)2

n

×

f0
f1

fn−2

fn−1

=

̂f0
̂f1

̂fn−2

̂fn−1

fk =
1
n

n−1

∑
j=0

̂fk ω−jk
n

̂fk =
n−1

∑
j=0

fj ω jk
n ωn = e

−i2π
n

DFT

IDFT

The DFT Matrix



DFT Interpretation

• f now is a N-dimensional vector; it can be represented by projecting to N 
mutually orthogonal vectors. 

• DFT transforms a N-dimensional vector to another N-D vector.
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1 1 1 ⋯ 1
1 ωn ω2

n ⋯ ωn−1
n

1 ω2
n ω4

n ⋯ ω2(n−1)
n

⋮ ⋮ ⋮ ⋱ ⋮
1 ωn−1

n ω2(n−1)
n ⋯ ω(n−1)2

n

×

f0
f1

fn−2

fn−1

=

̂f0
̂f1

̂fn−2

̂fn−1



Discrete Fourier Transform
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fk ̂fk
DFT

Inverse DFT

https://www.math.ucdavis.edu/~strohmer/research/sampling/irsampl.html

fk =
1
n

n−1

∑
j=0

̂fk e
i2πjk

n

̂fk =
n−1

∑
j=0

fj e
−i2πjk

n



Discrete Fourier Transform

�71

fk ̂fk
DFT

Inverse DFT

https://www.math.ucdavis.edu/~strohmer/research/sampling/irsampl.html

Time/Spatial 
Domain

Frequency 
Domain/
Spectrum

fk =
1
n

n−1

∑
j=0

̂fk e
i2πjk

n

̂fk =
n−1

∑
j=0

fj e
−i2πjk

n



Signal Denoising
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2.2. DISCRETE FOURIER TRANSFORM (DFT) AND FAST FOURIER
TRANSFORM (FFT) 69

F32 ! · · · . If n 6= 2p, the vector can be padded with zeros until it is a power of 2.
The FFT then involves an efficient interleaving of even and odd indices of sub-
vectors of f , and the computation of several smaller 2 ⇥ 2 DFT computations.

FFT example: Noise filtering
To gain familiarity with how to use and interpret the FFT, we will begin with
a simple example that uses the FFT to denoise a signal. We will consider a
function of time f(t):

f(t) = sin(2⇡f1t) + sin(2⇡f2t) (2.32)

with frequencies f1 = 50 and f2 = 120. We then add a large amount of Gaussian
white noise to this signal, as shown in the top panel of Fig. 2.9.
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Figure 2.9: De-noising with FFT. (top) Noise is added to a simple signal given
by a sum of two sine waves. (middle) In the Fourier domain, dominant peaks
may be selected and the noise filtered. (bottom) The de-noised signal is ob-
tained by inverse Fourier transforming the two dominant peaks.

Copyright © 2017 Brunton & Kutz. All Rights Reserved.
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̂f(ω) = DFT( f(t))



Signal Denoising
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2D DFT



2D Basis Functions

�74

{sin(ux + vy), cos(ux + vy)}, (u, v) ∈ ℤ

ei(ux+vy), (u, v) ∈ ℤ

Real Bases

Complex Bases



To get some sense of what 
basis elements look like, we 
plot a basis element --- or 
rather, its real part ---
as a function of x,y for some 
fixed u, v. We get a function 
that is constant when (ux+vy) 
is constant. The magnitude of 
the vector (u, v) gives a 
frequency, and its direction 
gives an orientation. The 
function is a sinusoid with this 
frequency along the direction, 
and constant perpendicular to 
the direction. 
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2D Basis Functions
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{sin(ux + vy), cos(ux + vy)}, (u, v) ∈ ℤ

ei(ux+vy), (u, v) ∈ ℤ

Real Bases

Complex Bases

Function value is constant 
where x+2y is constant



2D Discrete Fourier Transform
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fk =
1
n

n−1

∑
j=0

̂fk e
i2πjk

n

̂fk =
n−1

∑
j=0

fj e
−i2πjk

n F[u, v] =
n−1

∑
x=0

n−1

∑
y=0

f[x, y] e
−2iπ(ux + vy)

n

f[x, y] =
1
n2

n−1

∑
u=0

n−1

∑
v=0

F[u, v] e
2iπ(ux + vy)

n

1D DFT 2D DFT



F0,0 ⋯ F0,n−1

F1,0 ⋯ F1,n−1

⋮ ⋱ ⋮
Fn−2,0 ⋯ Fn−2,n−1

Fn−1,0 ⋯ Fn−1,n−1

f0,0 ⋯ f0,n−1

f1,0 ⋯ f1,n−1

⋮ ⋱ ⋮
fn−2,0 ⋯ fn−2,n−1

fn−1,0 ⋯ fn−1,n−1

2D DFT

�76

f(x, y) F(u, v)

2D DFT

Inverse 2D DFT

https://www.math.ucdavis.edu/~strohmer/research/sampling/irsampl.html

F[u, v] =
n−1

∑
x=0

n−1

∑
y=0

f[x, y] e
−2iπ(ux + vy)

n

f[x, y] =
1
n2

n−1

∑
u=0

n−1

∑
v=0

F[u, v] e
2iπ(ux + vy)

n



A Typical Photo
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Mostly low 
frequency 

components.

u
[0, 0]

v

https://www.theverge.com/2016/8/2/12351210/ferrari-488-spider-supercar-test-drive



A Photo With Many High-Frequency Components
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v

https://waldo.fandom.com/wiki/The_Gobbling_Gluttons



Original Photo
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High-Pass Filter (Removing Low-Freq Components)
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High-Pass Filter (Removing Low-Freq Components)
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Low-Pass Filter (Removing High-Freq Components)
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Image Compression with 2D DFT

• A precise DFT would turn an MxN 
image into another MxN image (each 
pixel represents a Fourier coefficient). 

• Zero-out small Fourier coefficients to 
compress image. 

• Uncompress through inverse DFT 

• JPEG uses something very similar.

�82DDSE Ch 3.

3.1. SPARSITY AND COMPRESSION 99

Why signals are compressible: The vastness of image space
It is important to note that the compressibility of images is related to the over-
whelming dimensionality of image space. For even a simple 20⇥20 pixel black
and white image, there are 2400 distinct possible images, which is larger than the
number of nucleons in the known universe. The number of images is consider-
ably more staggering for higher resolution images with greater color depth.

Full Image Fourier Coefficients

5 % Coefficients

Compressed Image

F

Truncate
(keep 5 %)

F�1

Figure 3.1: Illustration of compression with the fast Fourier transform (FFT) F .

Copyright © 2017 Brunton & Kutz. All Rights Reserved.



Image Compression with 2D DFT

• A precise DFT would turn an MxN 
image into another MxN image (each 
pixel represents a Fourier coefficient). 

• Zero-out small Fourier coefficients to 
compress image. 

• Uncompress through inverse DFT 

• JPEG uses something very similar.
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90 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

Full image 5.0% of FFT

1.0% of FFT 0.2% of FFT

Figure 2.26: Compressed image using various thresholds to keep 5%, 1%, and
0.2% of the largest Fourier coefficients.

Code 2.16: Image compression via the FFT.
Bt=fft2(B); % B is grayscale image from above
Btsort = sort(abs(Bt(:))); % Sort by magnitude

% Zero out all small coefficients and inverse transform
for keep=[.1 .05 .01 .002];

thresh = Btsort(floor((1-keep)*length(Btsort)));
ind = abs(Bt)>thresh; % Find small indices
Atlow = Bt.*ind; % Threshold small indices
Alow=uint8(ifft2(Atlow)); % Compressed image
figure, imshow(Alow) % Plot Reconstruction

end

Copyright © 2017 Brunton & Kutz. All Rights Reserved.

DDSE Ch 2.
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Fourier Transform



What About Non-Periodic Functions?

• Fourier series is concerned with L-periodic functions. 
• What about a general, potentially non-periodic function? Does the Fourier 

theory still apply to it? 
• Idea: let L approach infinity and see how the Fourier series change!
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As L Approaches Infinity
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As L Approaches Infinity
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As L Approaches Infinity

• As L approaches ∞, the infinite 
sequence of Fourier coefficients 
becomes a continuous function F(ω).
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As L Approaches Infinity
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As L Approaches Infinity

�88

f(x) =
∞

∑
k=−∞

ck eiωkxωk =
kπ
L

ck =
1

2L ∫
L

−L
f(x)e−iωkxdx

F(ω) = ∫
+∞

−∞
f(x)e−iωxdx

lim
L→∞

f(x) =
1

2π ∫
+∞

−∞
F(ω)eiωxdω

lim
L→∞



Fourier Transform
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F(ω) = ∫
+∞

−∞
f(x)e−iωxdx

f(x) =
1

2π ∫
+∞

−∞
F(ω)eiωxdω

f(x) F(ω)
Fourier Transform

Inverse Transform

https://www.math.ucdavis.edu/~strohmer/research/sampling/irsampl.html

Time/Spatial 
Domain

Frequency 
Domain/
Spectrum



Key Things to Take Away

• Signals 
• Audio waves are discrete 1D signals (in the time domain) 

• Images are discrete 2D signals (in the spatial domain) 

• Any time/spatial domain signals can be converted to frequency domain 
• Frequency domain representation of signal is called spectrum 

• Fourier series applies to continuous L-period signals 
• Discrete Fourier transform applies to discrete L-period signals 
• Fourier transform applies to non-periodic continuous signals
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Key Things to Take Away

• How to tell frequency from images? 
• “Busy” areas or sudden changes (e.g., edge) correspond to high frequency components 

• Smooth areas are generally of lower frequency 

• Removing low/high frequency components from the spectrum 
corresponds to sharpening/blurring images in spatial domain
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Centering: Looking at DFTs

DFT

http://fy.chalmers.se/~romeo/RRY025/notes/E1.pdf


