Lecture 3: Fourier Analysis

Yuhao Zhu

http://yuhaozhu.com <u>yzhu@rochester.edu</u>

CSC 292/572, Fall 2022 **Mobile Visual Computing**

Logistics

- Written assignment 1 is up and is due Sept. 16 11:30 AM.
- You can work in groups of 2.
- schedule.html. You will find reading assignments and slides.
- Start thinking and talking to me about your final project idea.

Course schedule: <u>https://www.cs.rochester.edu/courses/572/fall2022/</u>

The Roadmap

Theoretical Preliminaries

Human Visual Systems

Color in Nature, Arts, & Tech (a.k.a., the birth, life, and death of light)

Digital Camera Imaging

Modeling and Rendering

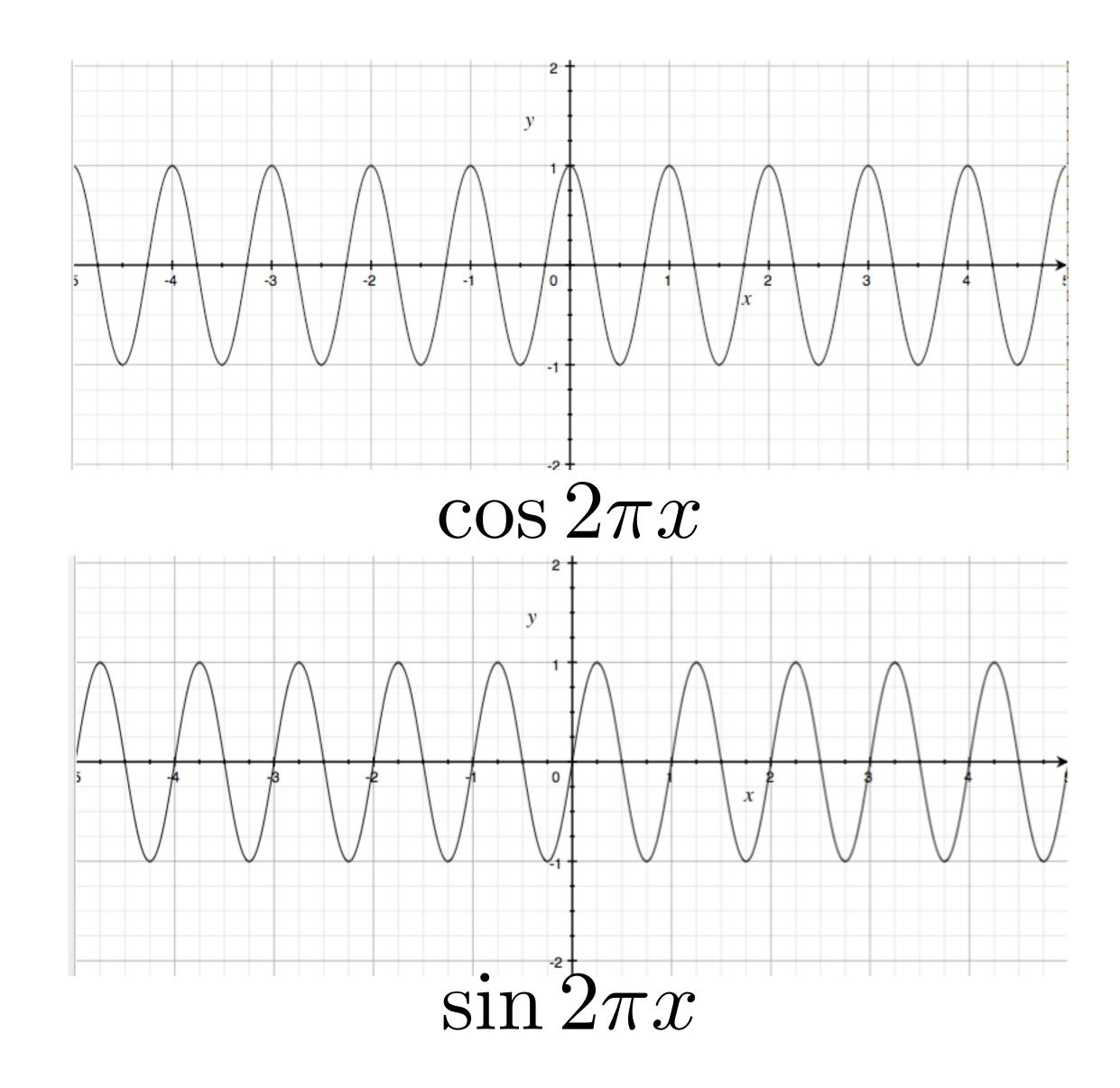
Applications

Geometric Transformations Fourier Series & Transforms Sampling & Reconstruction

Building Intuitions

(1D)

Sinusoidal Function

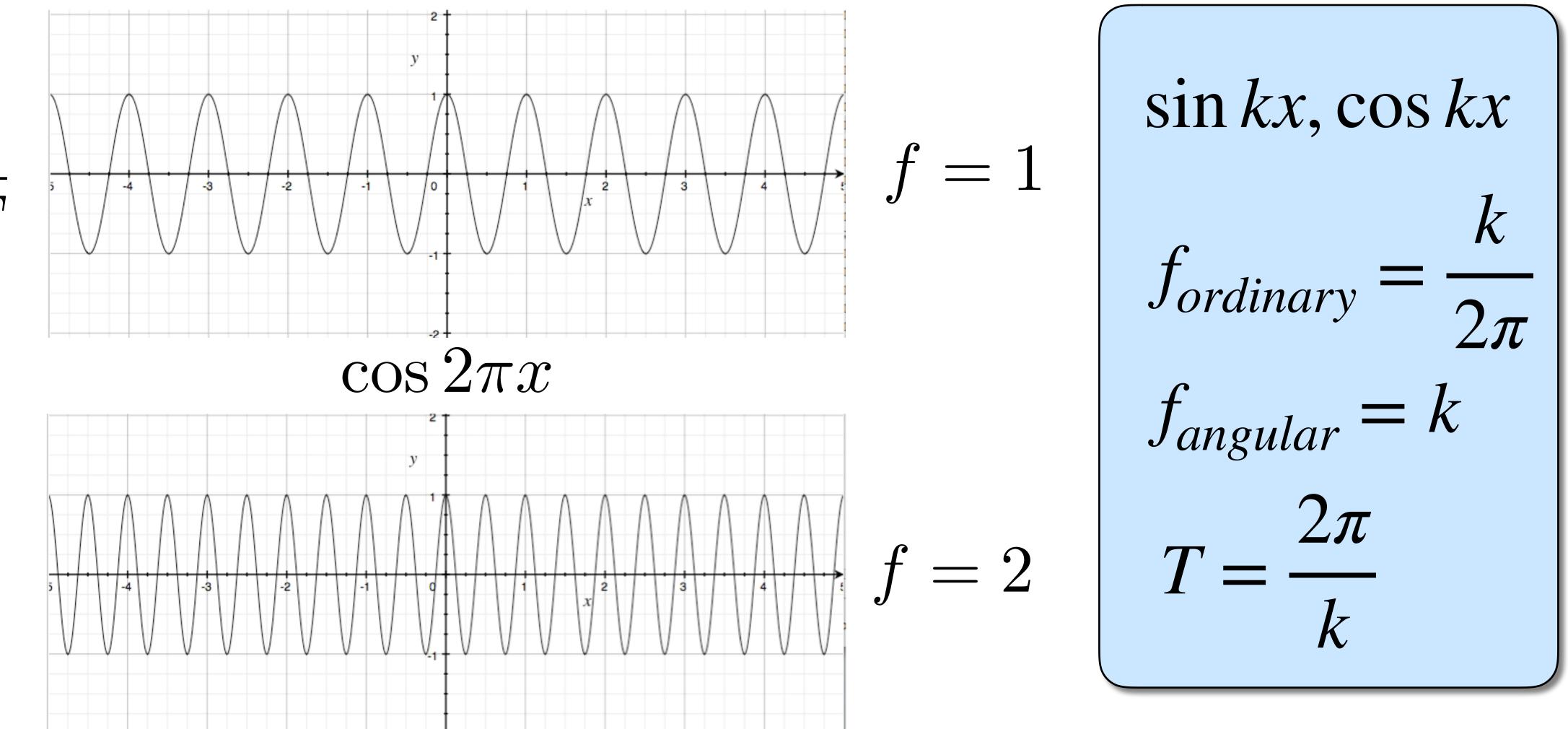


Repeating at an interval of 1, i.e., period (T) = 1 "Even" function

Repeating at an interval of 1, i.e., period (T) = 1 "Odd" function

Sinusoidal Function Frequency

 $f = \frac{1}{T}$



 $\cos 4\pi x$

Fourier Series: What It Says

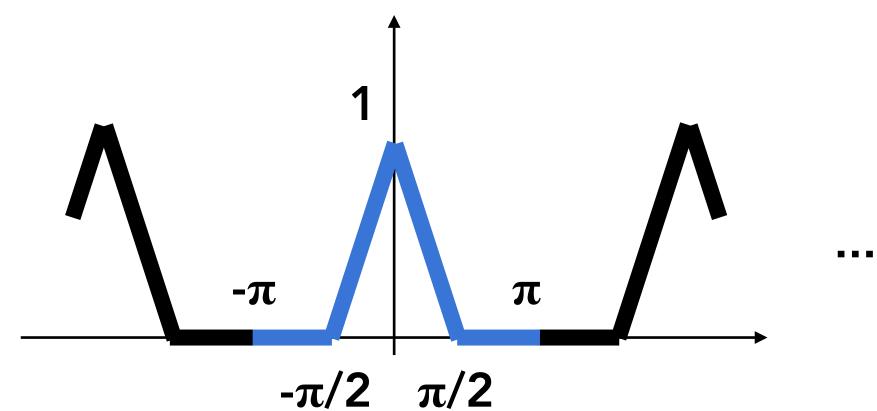
Joseph Fourier (1768 – 1830)

Any periodic function can be represented as an infinite weighted sum of sines and cosines with increasing frequencies.

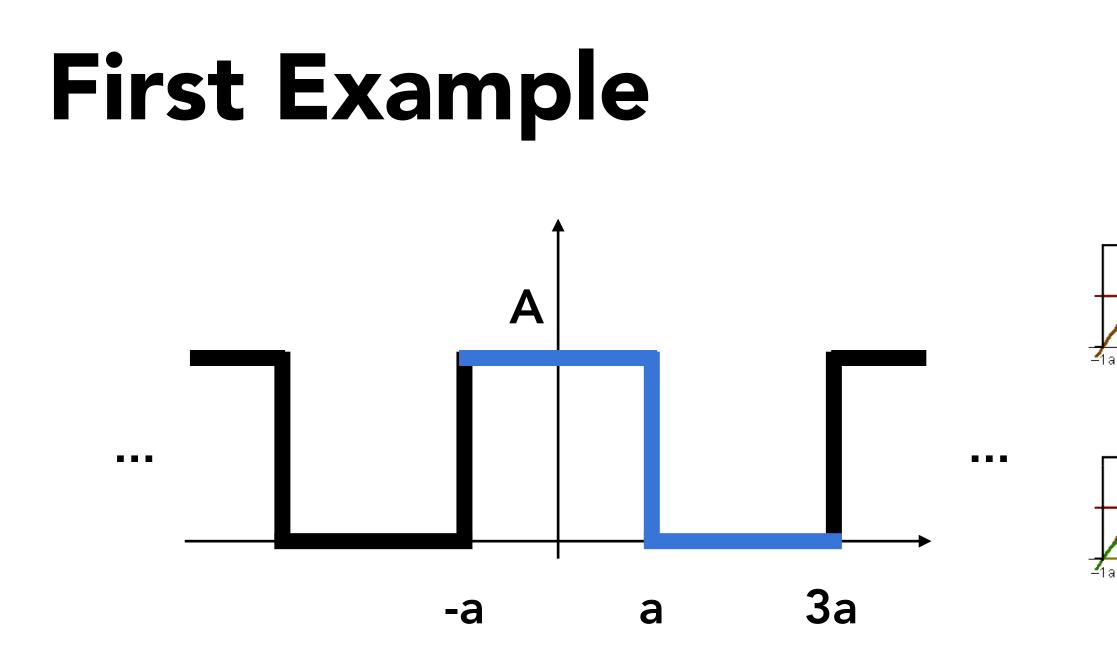
7

Two Examples to Build Intuition

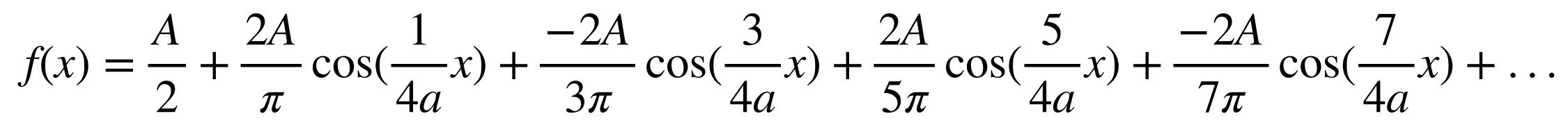
A square function Period T = 4a Frequency is 1/4a Amplitude is A



A hat function Period T = 2π Frequency is $1/2\pi$ Amplitude is 1

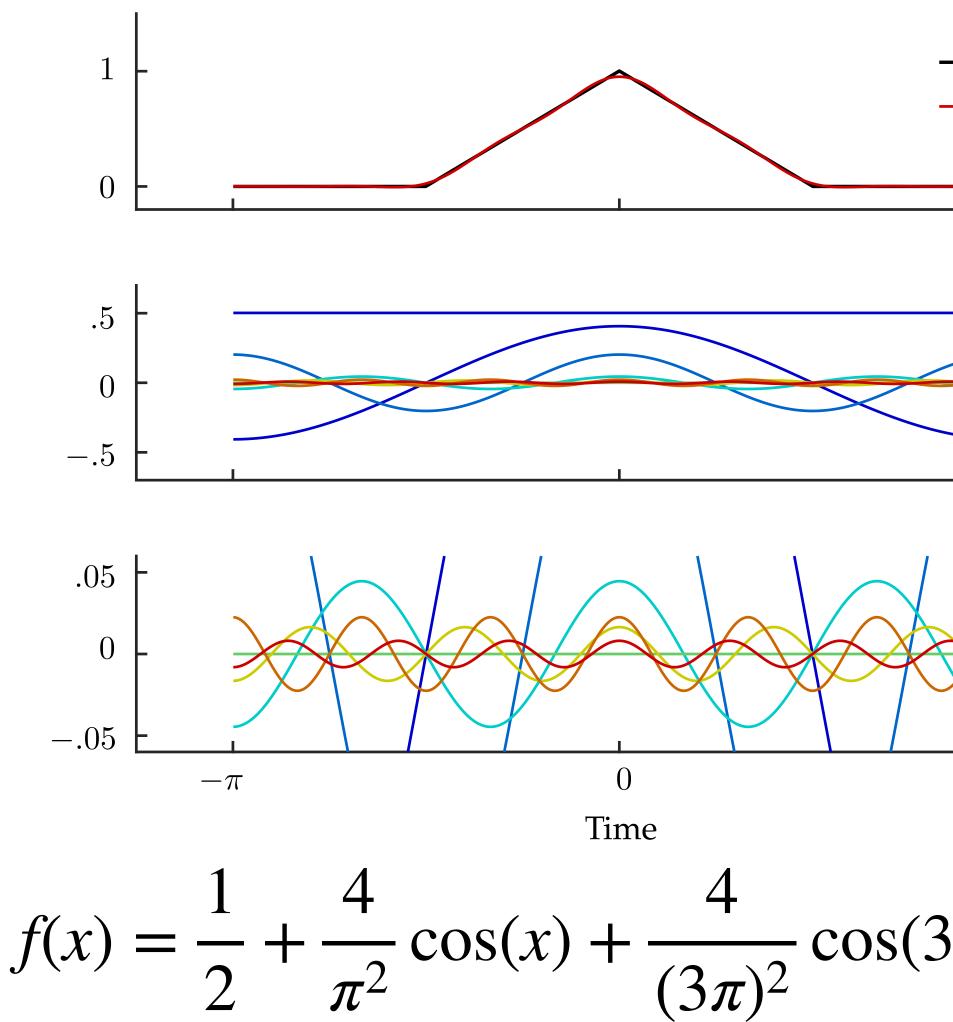


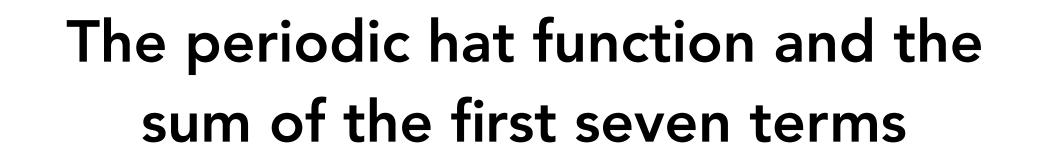
A square function Period T = 4aFrequency is 1/4a Amplitude is A



The periodic square function to be represented Add first 2 waves 2a -1a Add first 3 waves -1a Add first 4 waves Add first 5 waves

Second Example





The first seven terms

$$(3x) + \frac{4}{(5\pi)^2}\cos(5x) + \frac{4}{(7\pi)^2}\cos(7x) + \dots$$

 π

1	0
	$\mathbf{\tilde{\mathbf{v}}}$

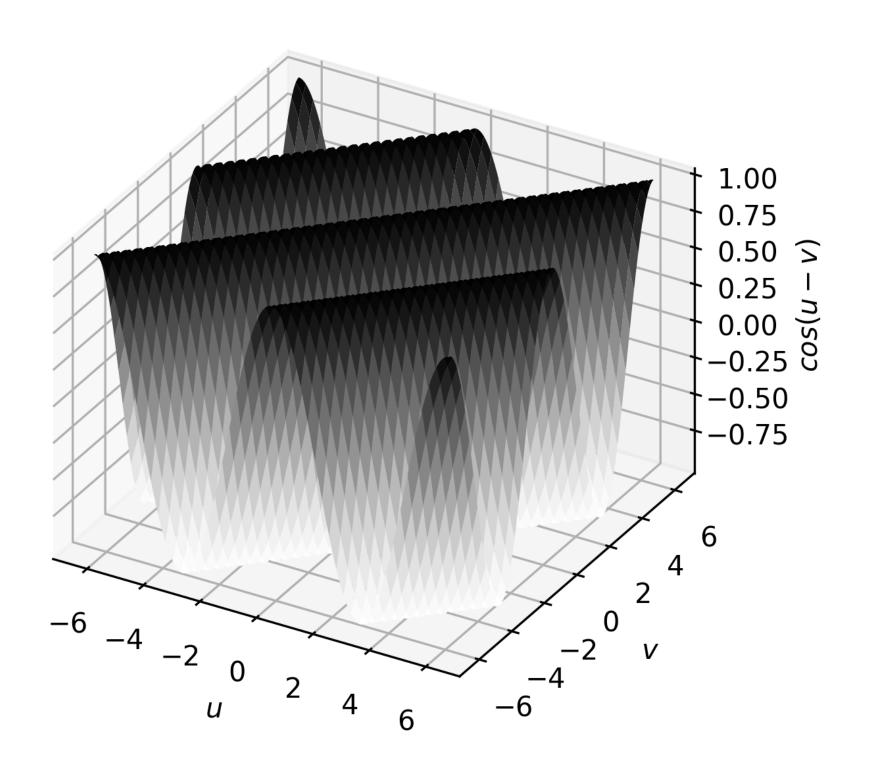
Building Intuitions

(2D)

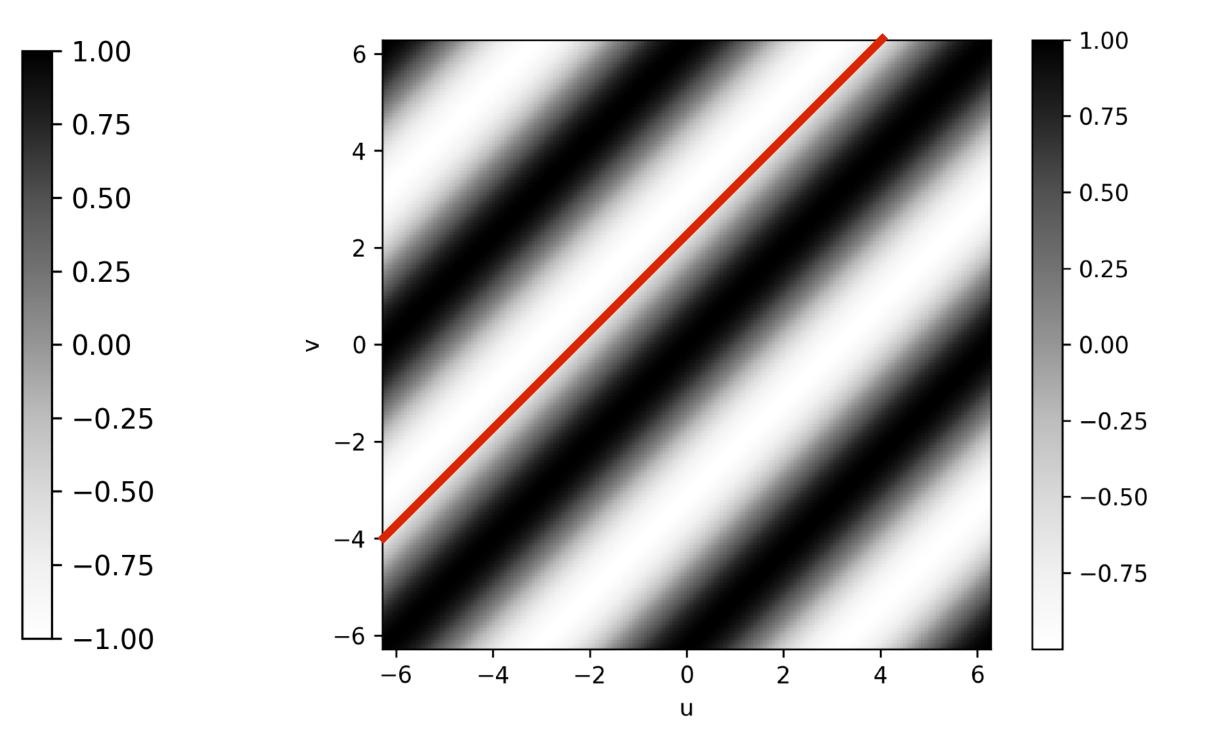
11

2D Sinusoidal Functions

cos(u-v)

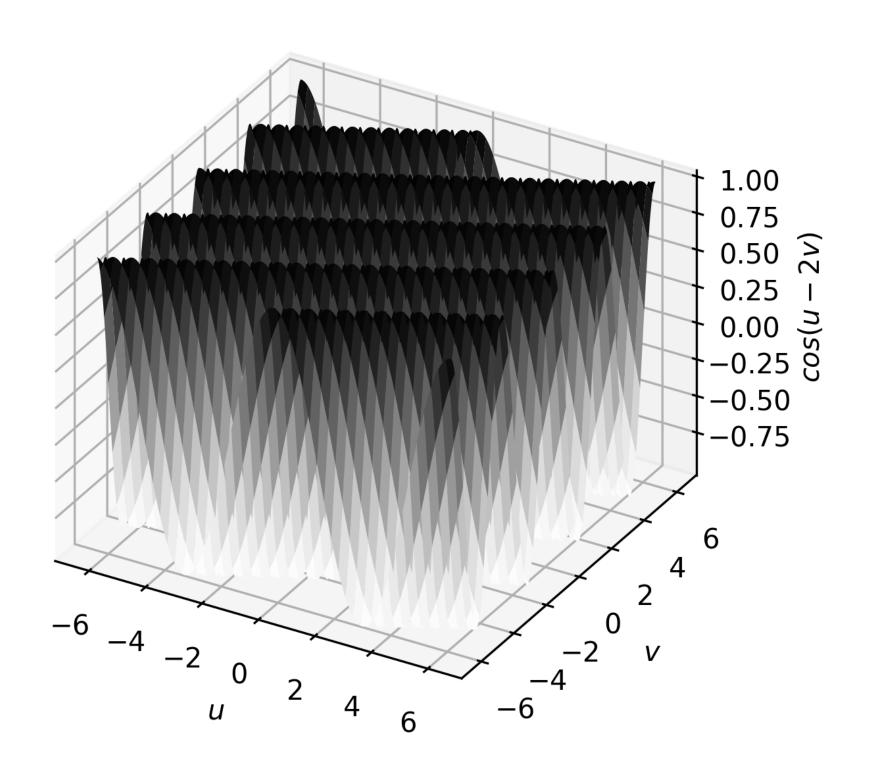


cos(u-v) is constant where u-v is constant

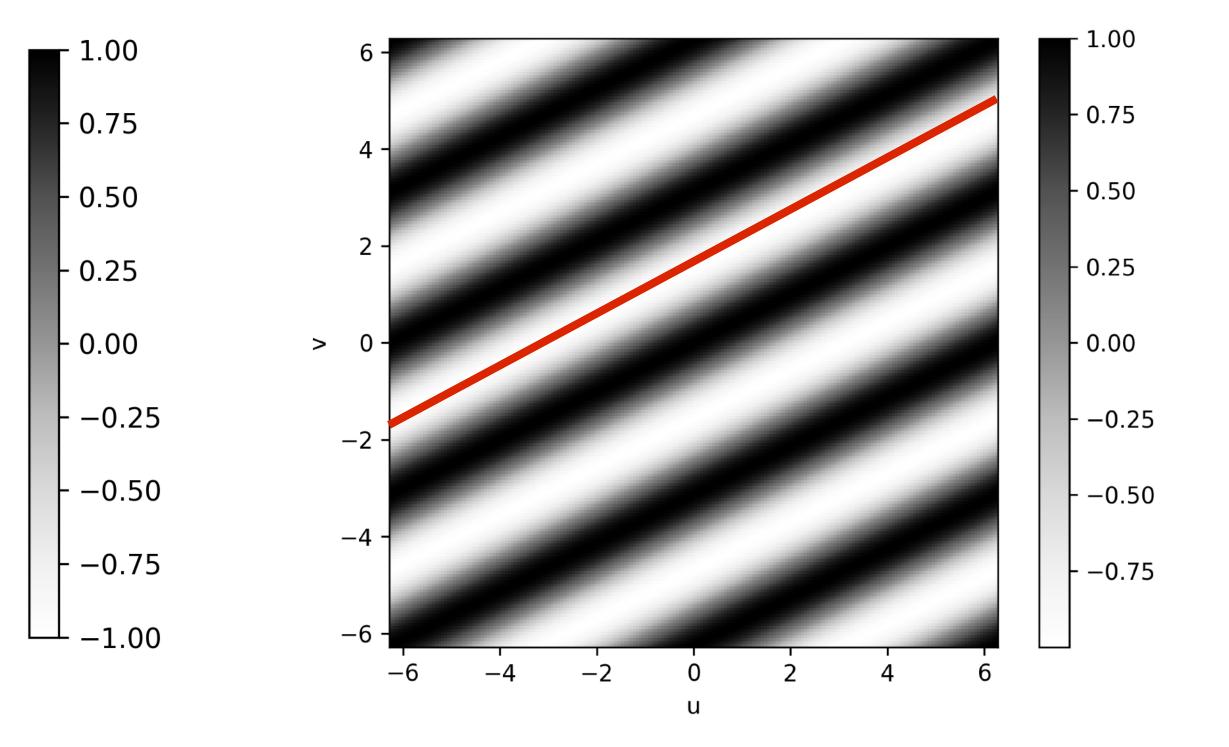


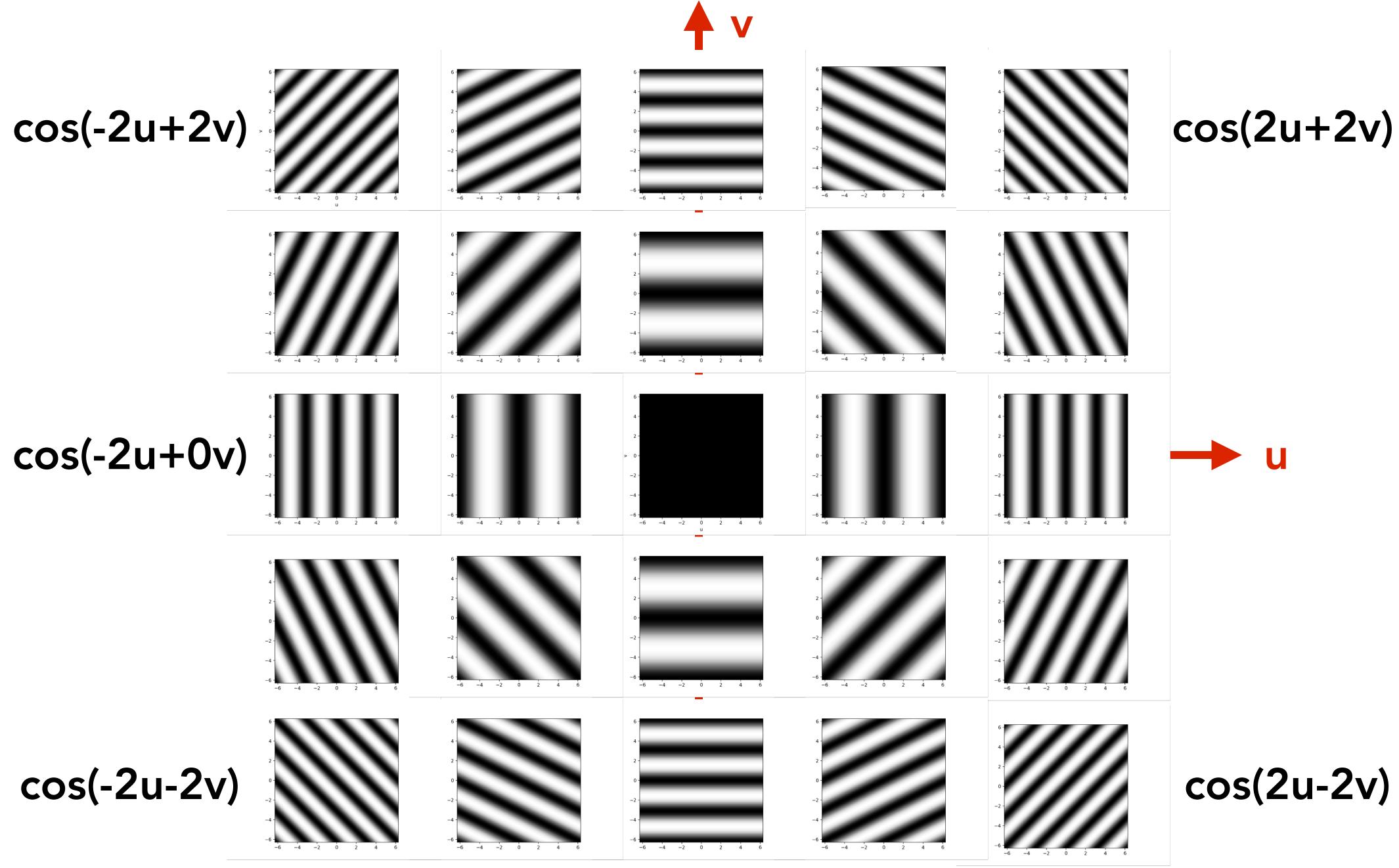
2D Sinusoidal Functions

cos(u-2v)



cos(u-2v) has the same value with u-2v is constant

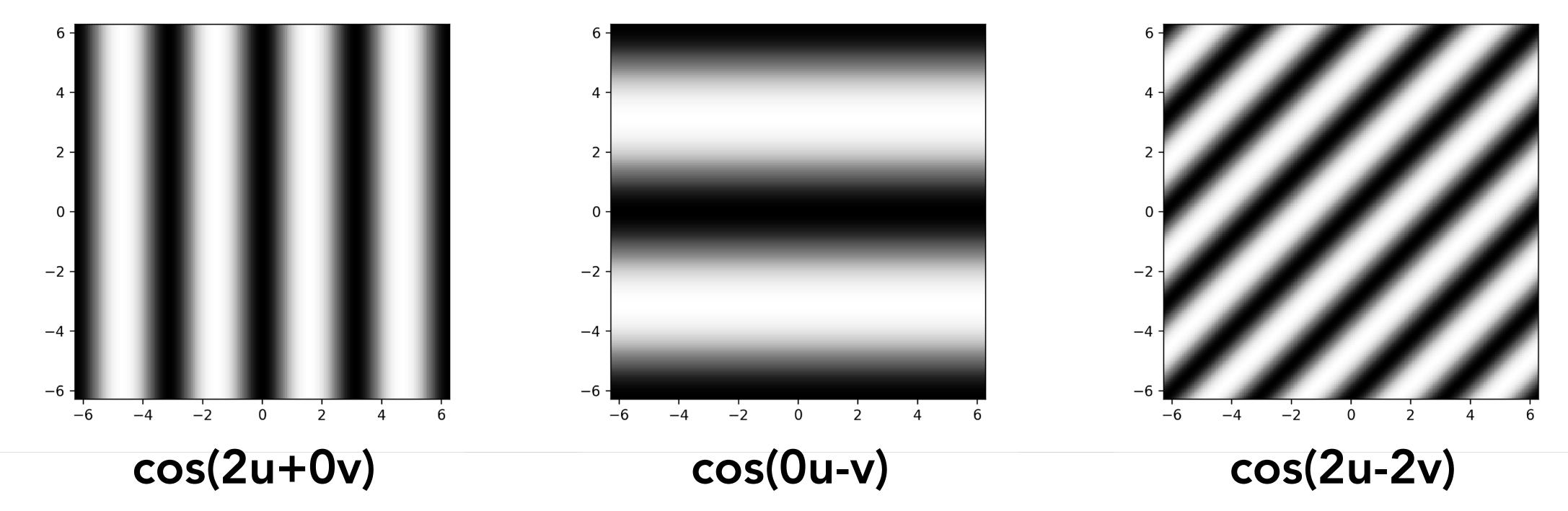




cos(0u-2v)

2D Frequency Intuitions

- 2D frequencies characterize the in vertical directions
 - Smooth changes —> low frequencies
 - Sharp changes —> high frequencies



• 2D frequencies characterize the image spatial changes in horizontal and

Image = 2D Signal

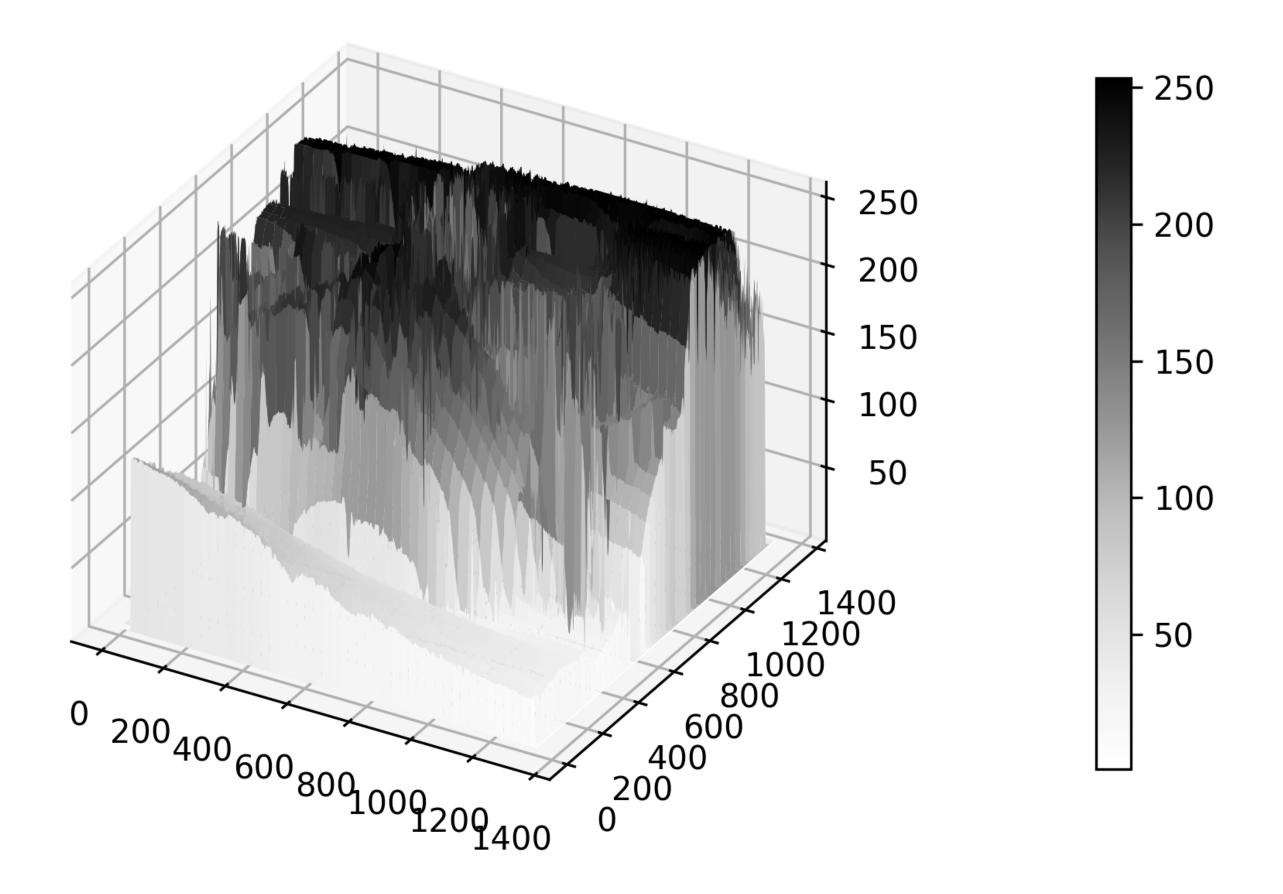
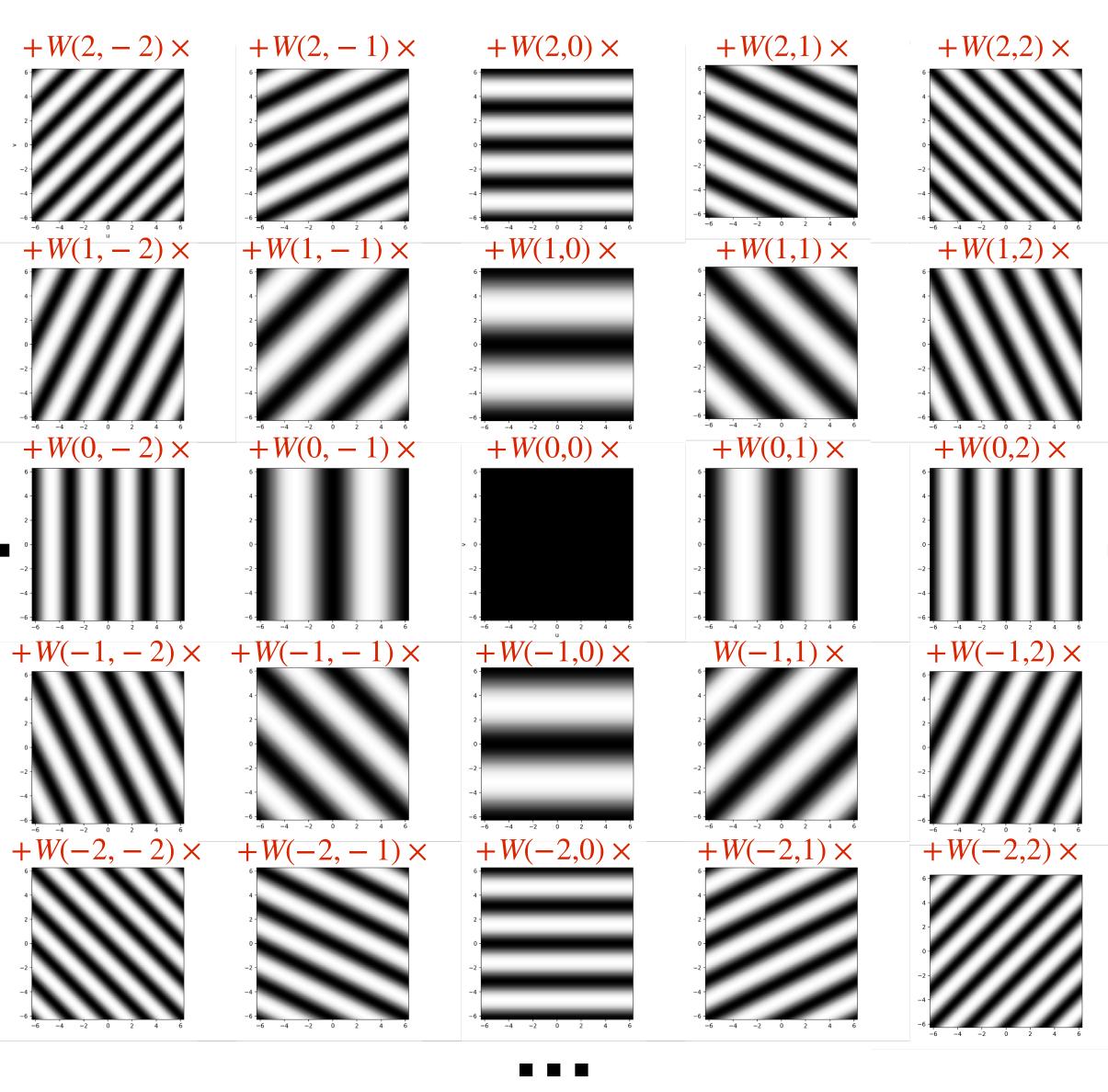


Image = 2D Signal

- An image is nothing more than a (complicated) 2D function *f*(*x*, *y*)
- f(x, y) maps a pixel coordinates [x, y] to its pixel value
- Can a 2D signal be expressed as a weighted sum of a set of 2D sinusoidal functions?

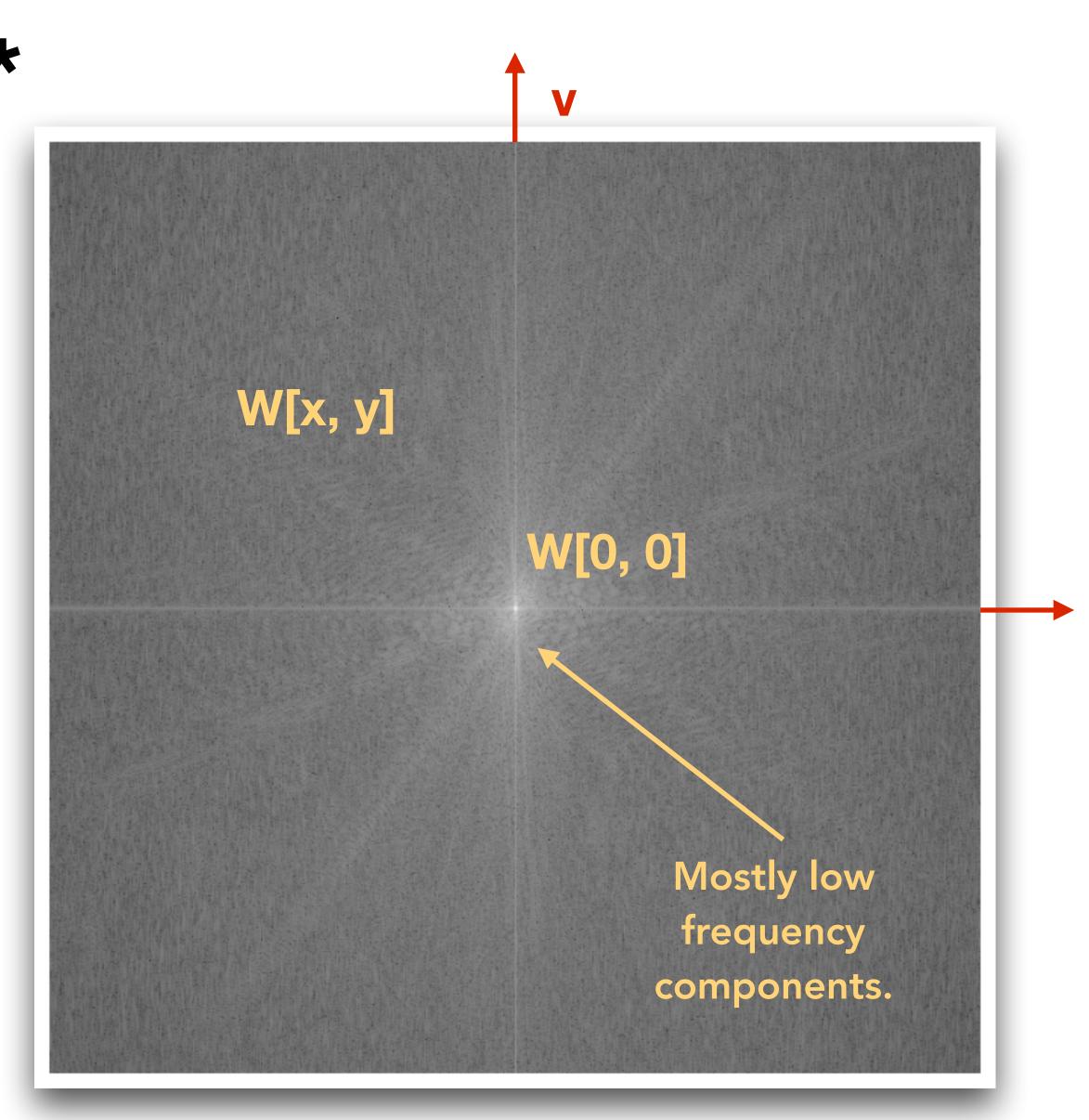
Decomposing 2D Signals



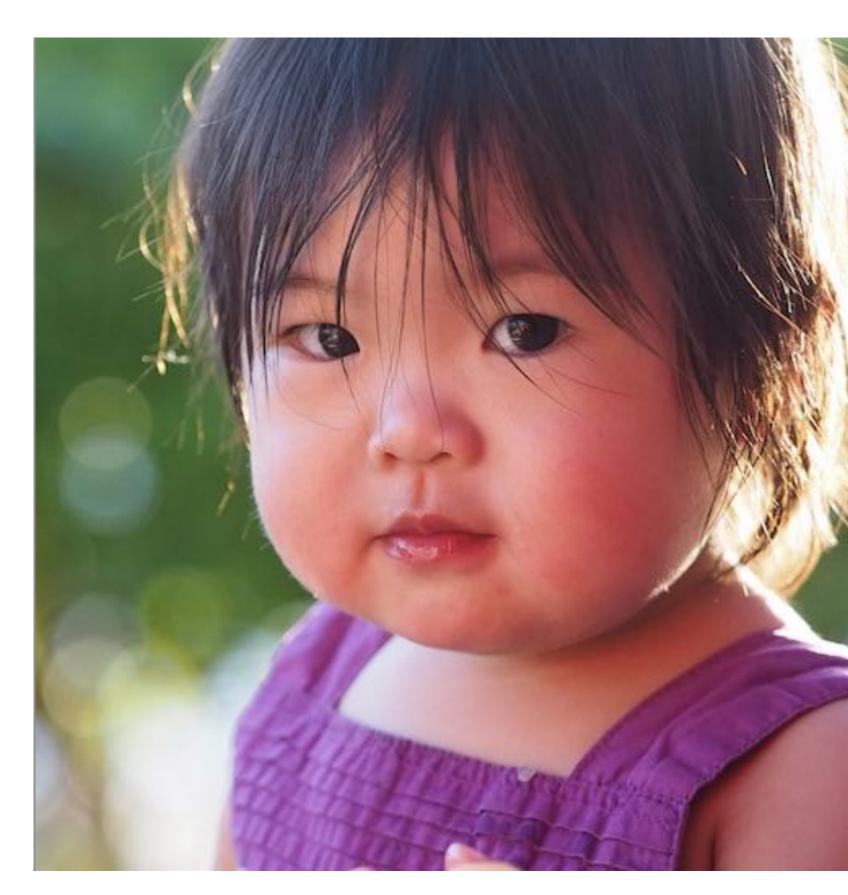
https://www.theverge.com/2016/8/2/12351210/ferrari-488-spider-supercar-test-drive

Plotting the 2D Weights*

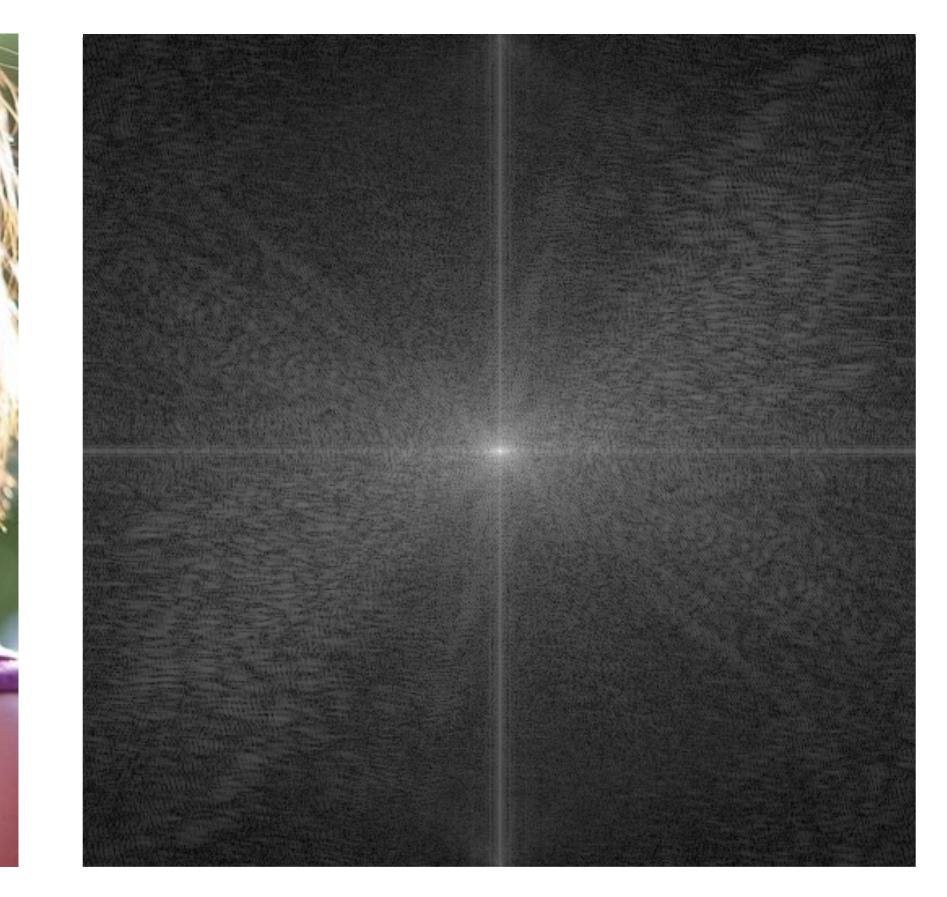
* the weights are actually complex values, so we plot their magnitudes here.



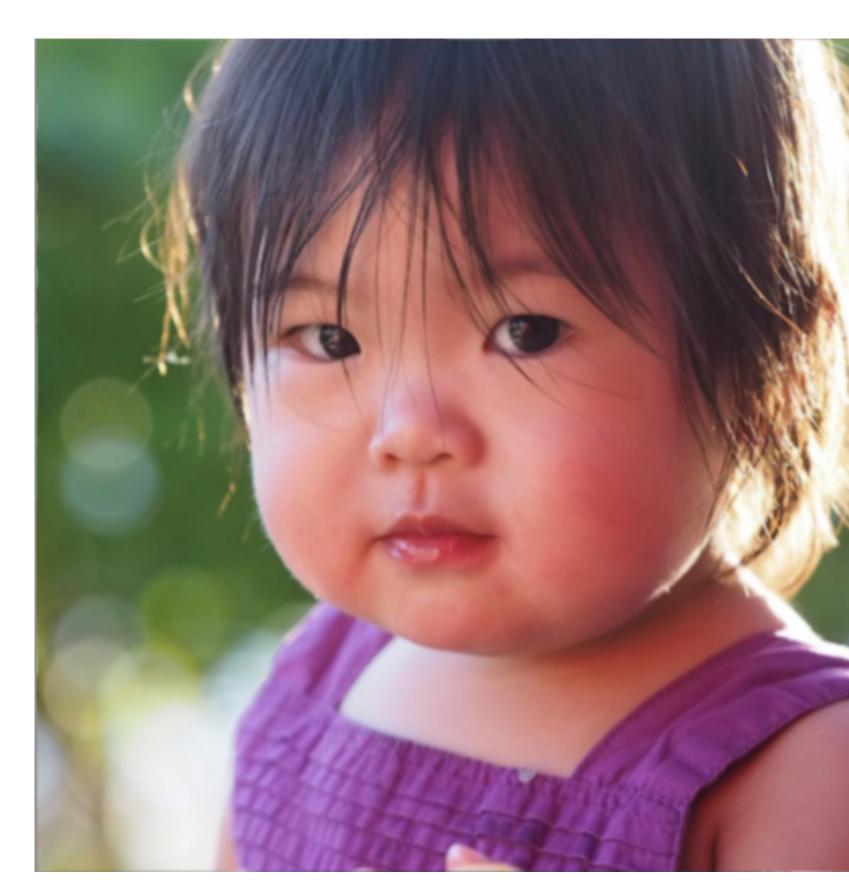
https://www.theverge.com/2016/8/2/12351210/ferrari-488-spider-supercar-test-drive



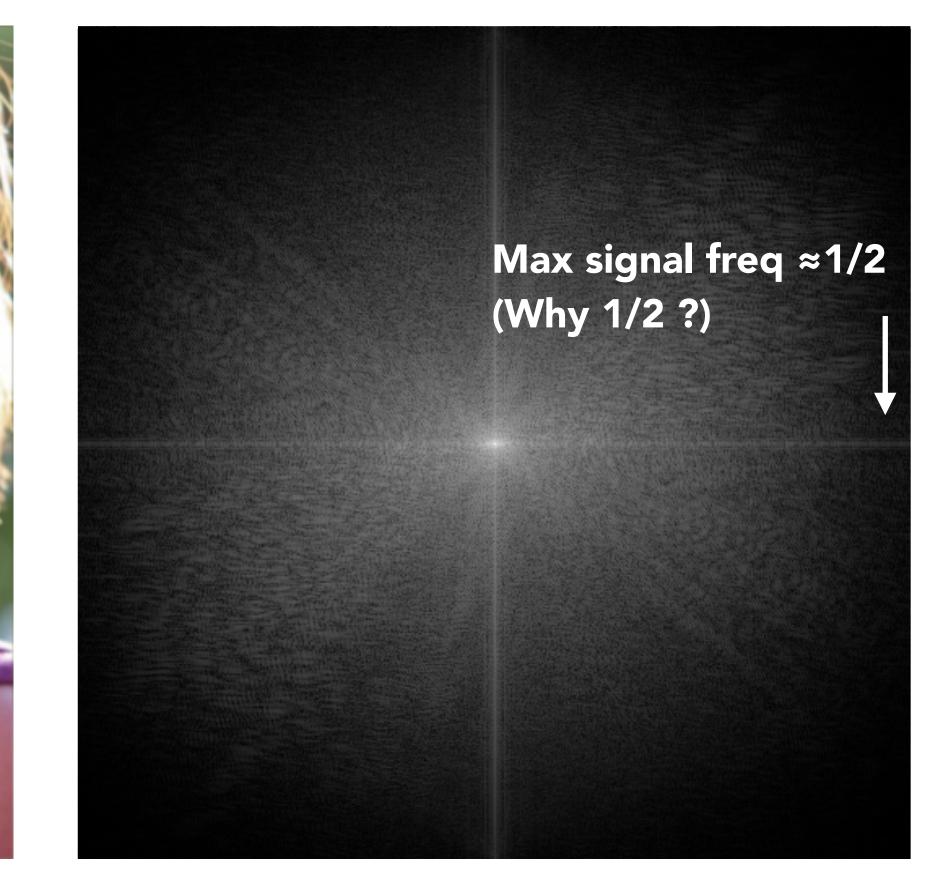
Spatial Domain



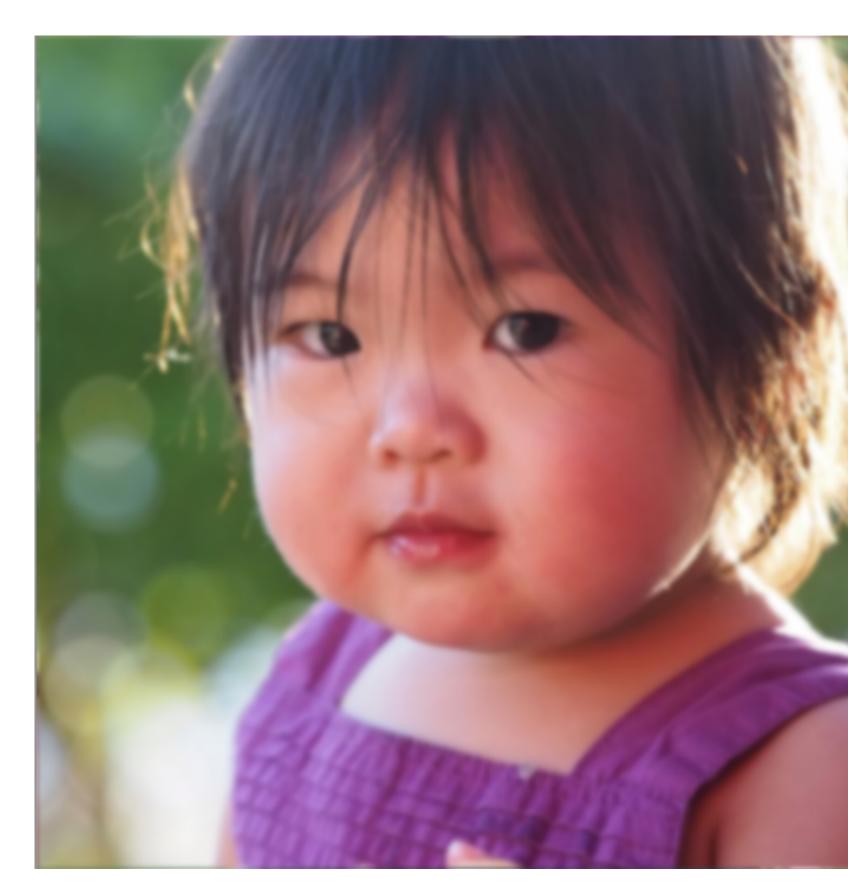
Frequency Domain



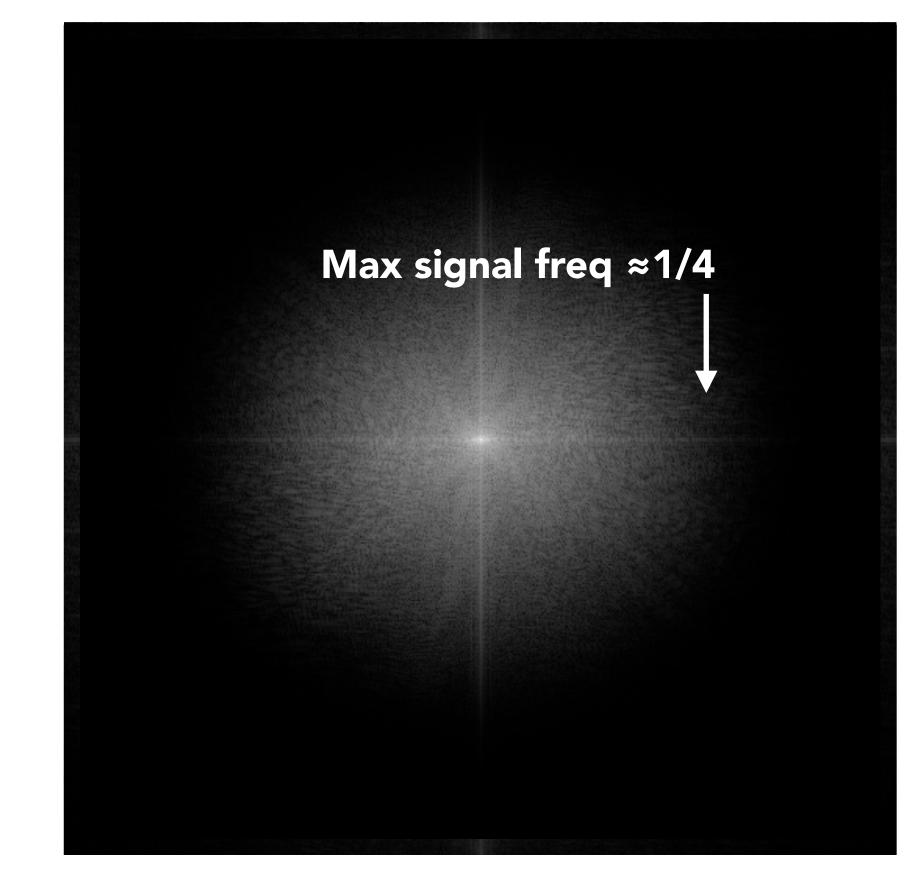
Spatial Domain



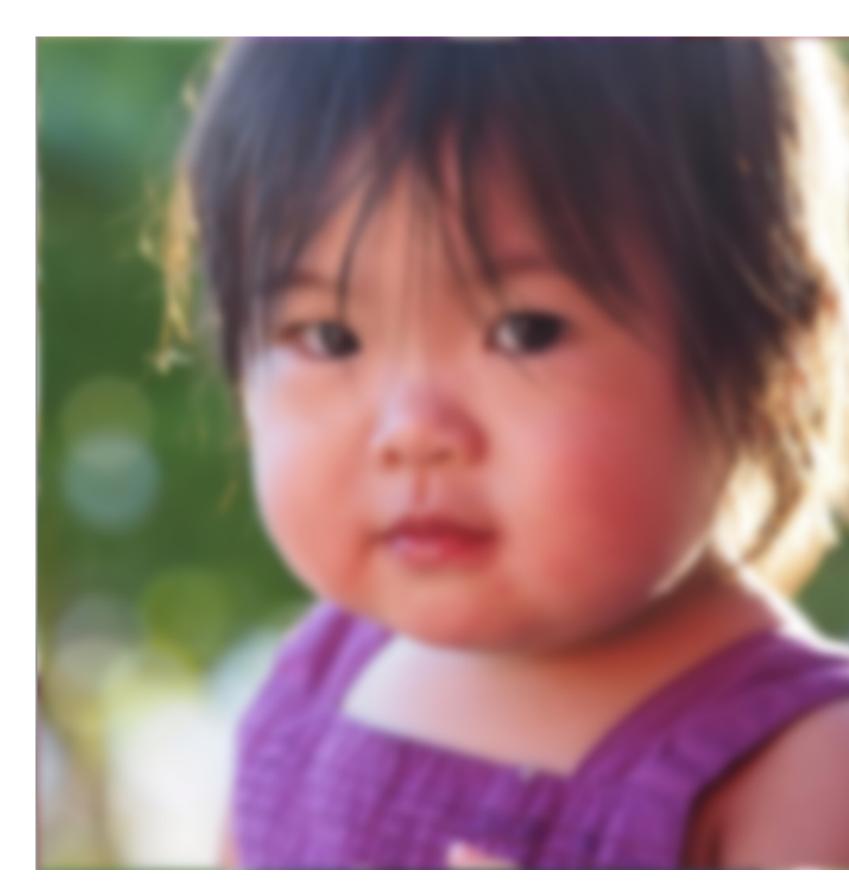
Frequency Domain



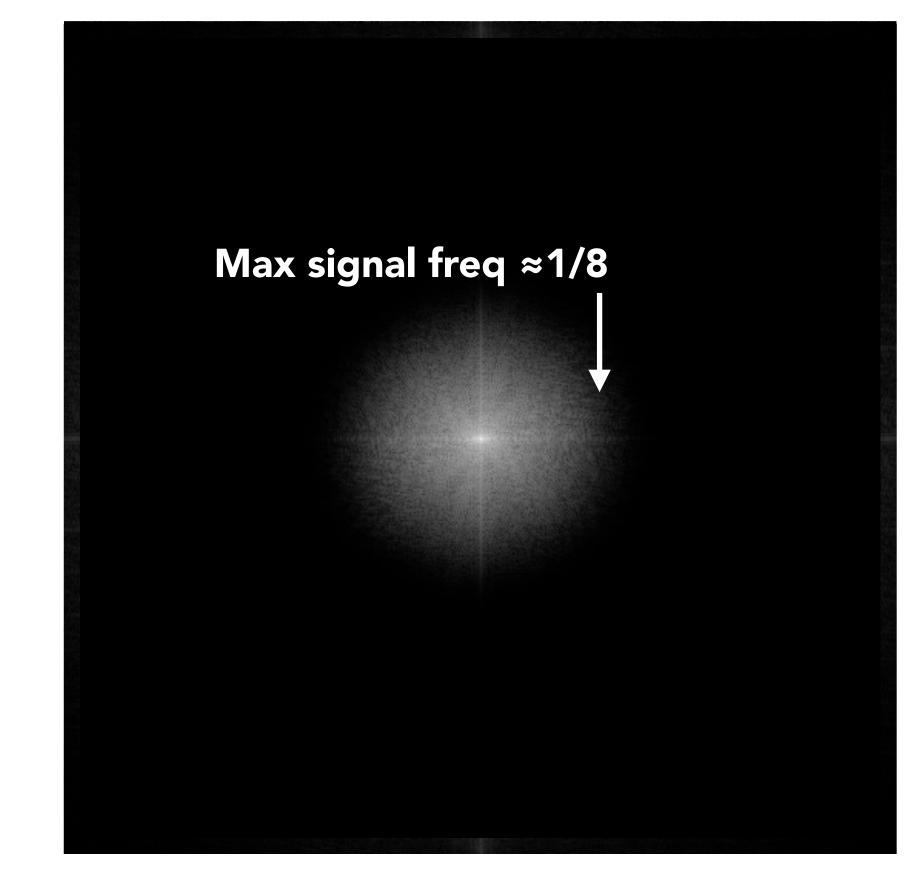
Spatial Domain



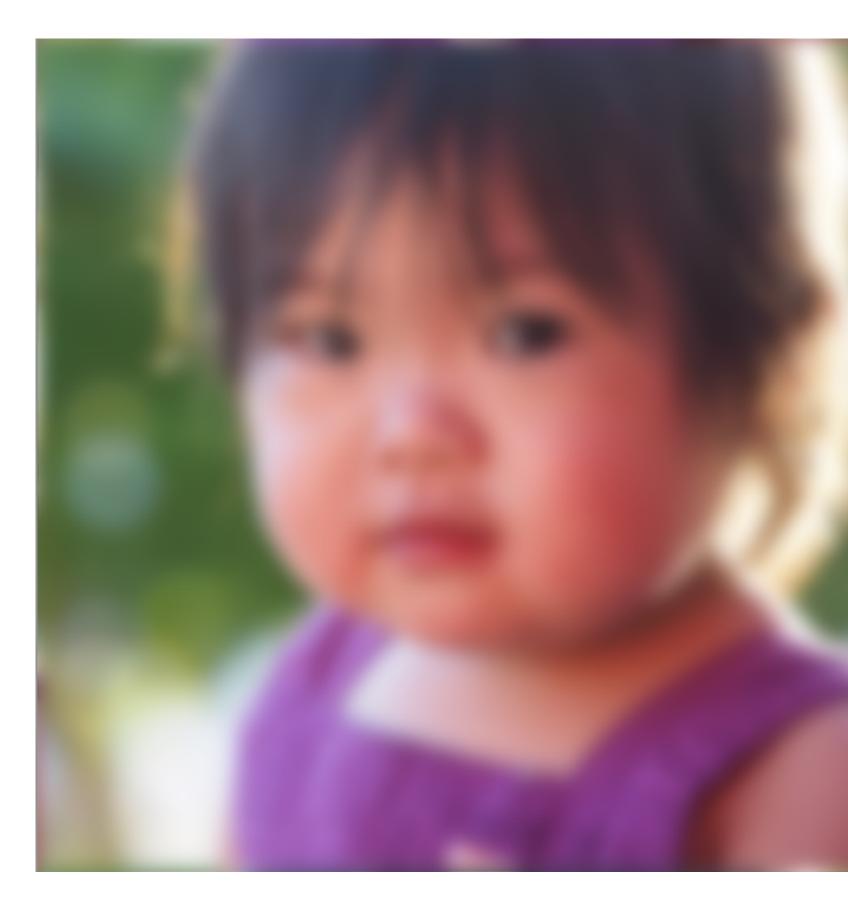
Frequency Domain



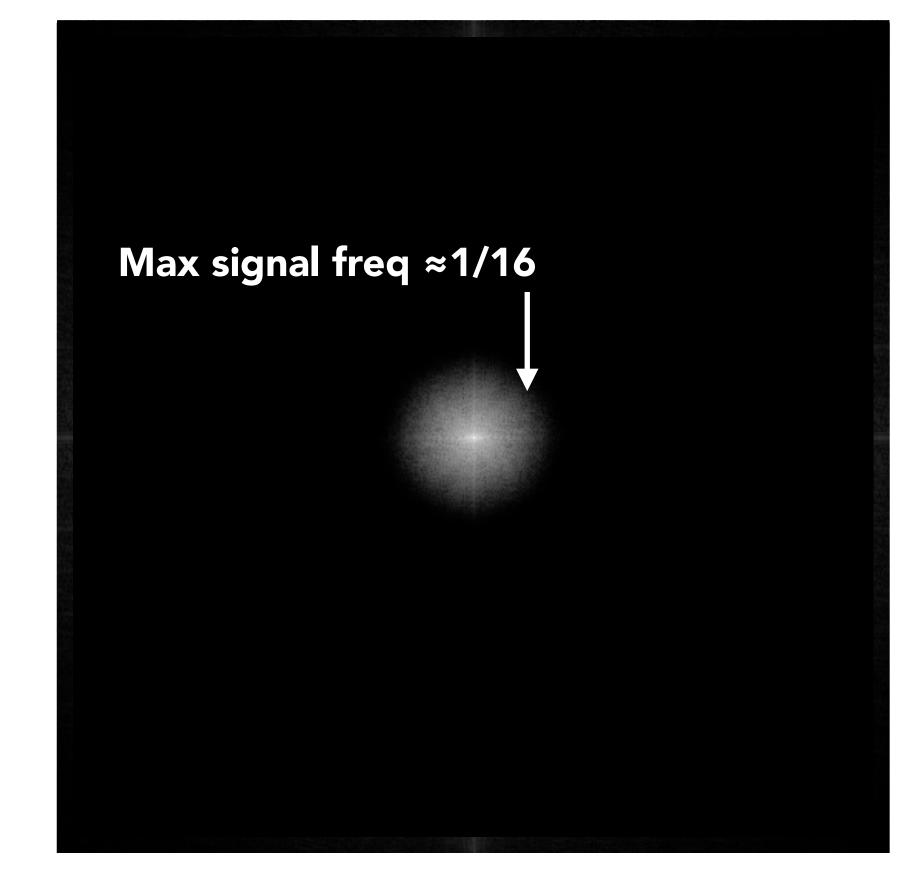
Spatial Domain



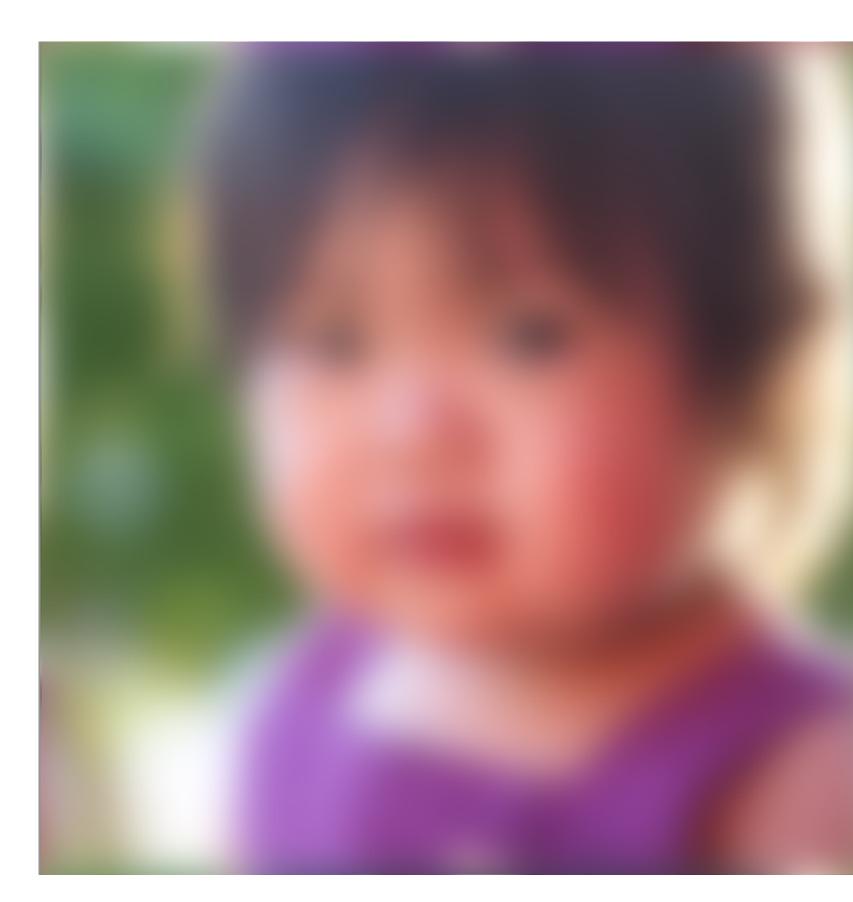
Frequency Domain



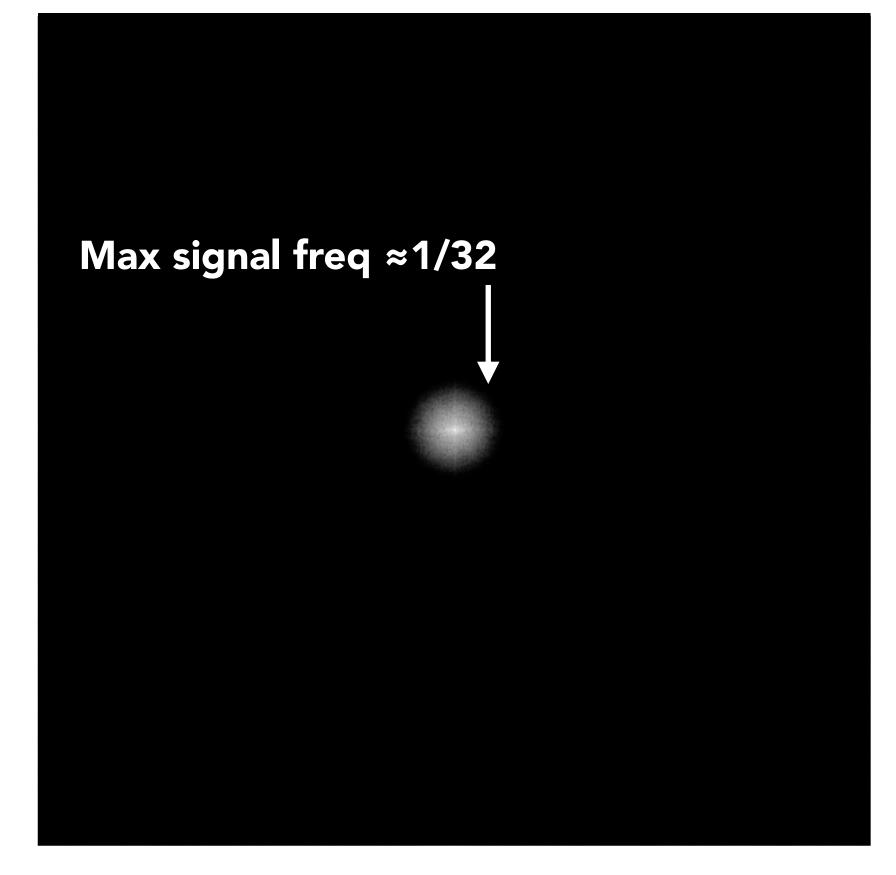
Spatial Domain



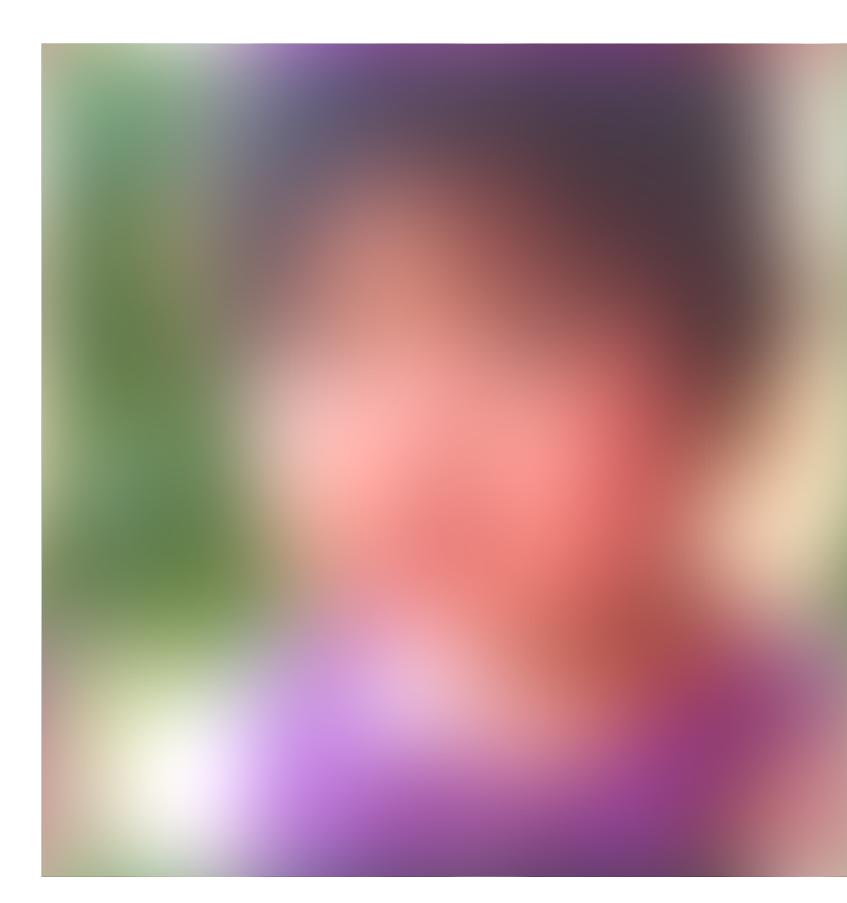
Frequency Domain



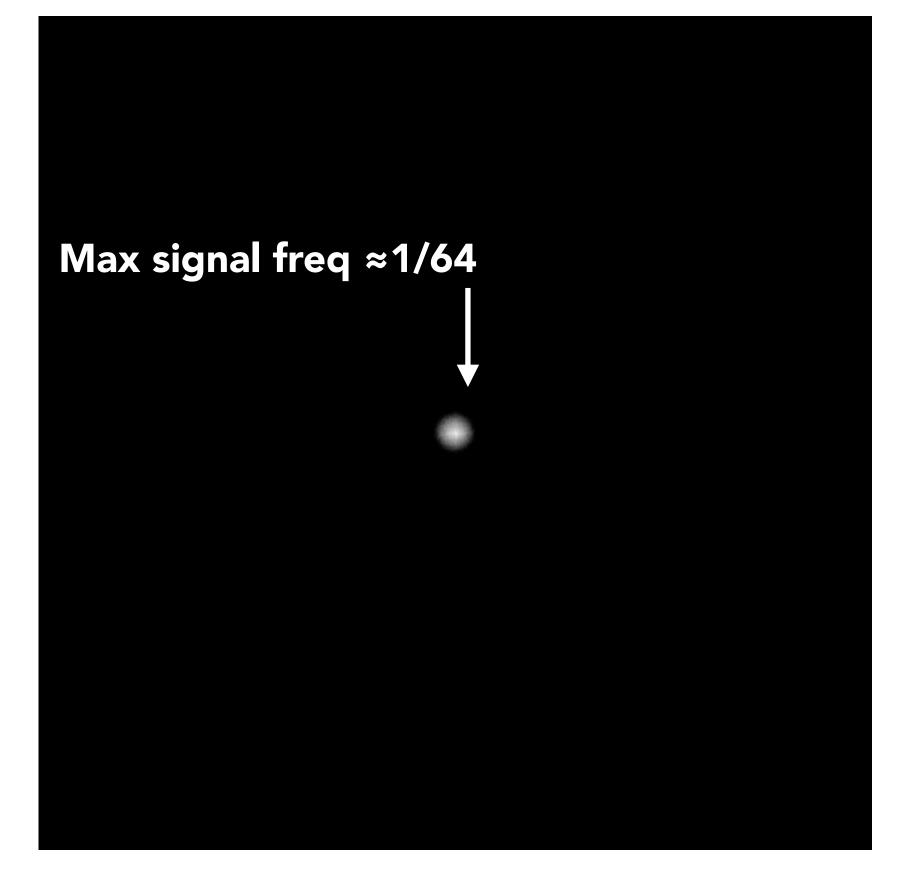
Spatial Domain



Frequency Domain



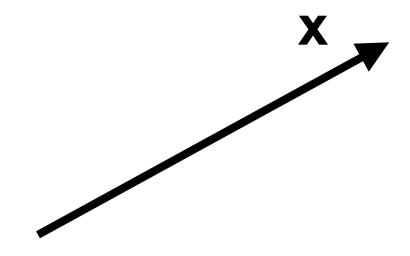
Spatial Domain



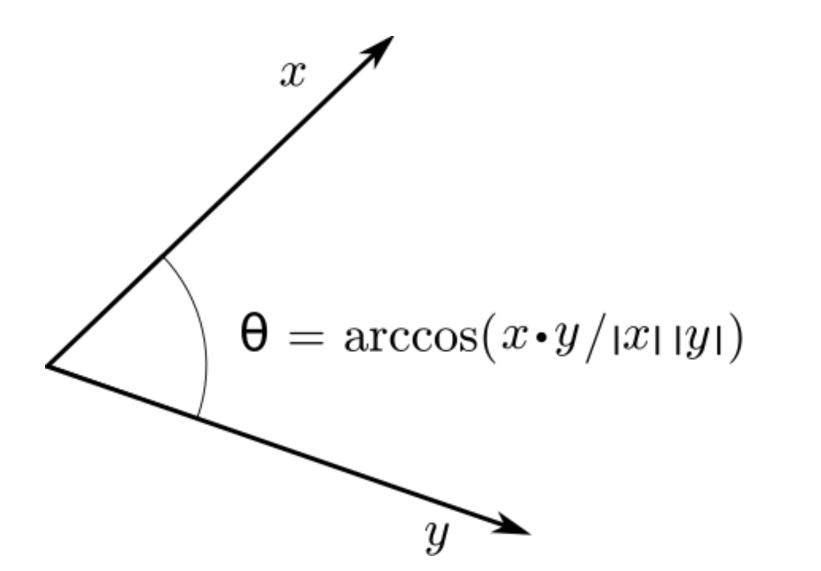
Frequency Domain

Why Does It Work?

Vector Norm

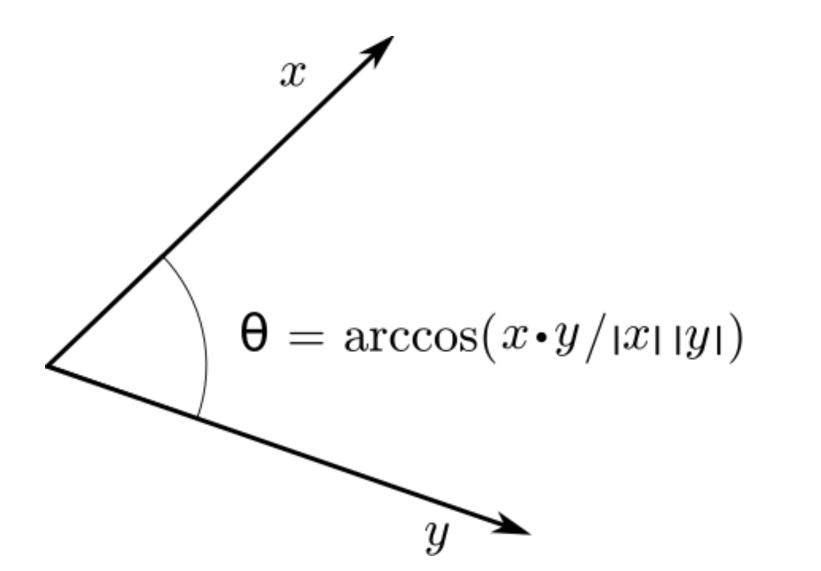


Vector norm $\|\mathbf{X}\| = \sqrt{\mathbf{X} \cdot \mathbf{X}}$ Unit vector $\hat{\mathbf{X}} = \frac{\mathbf{X}}{\|\mathbf{X}\|}$



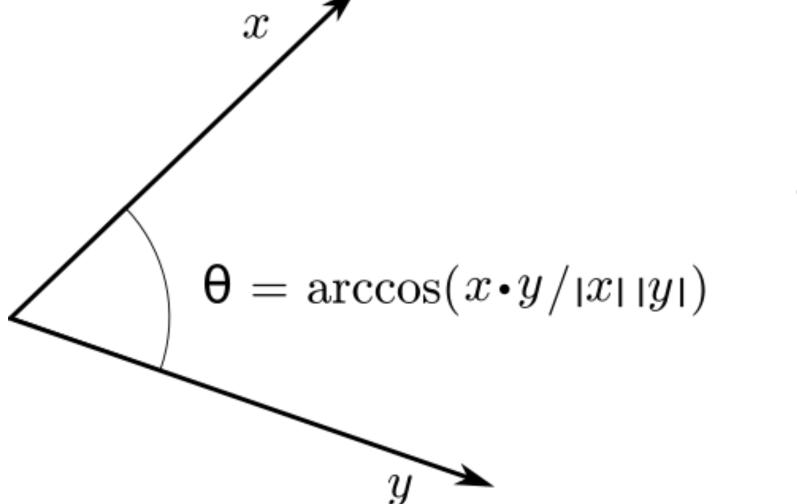
$X = [X_1, X_2]$ $y = [y_1, y_2]$ Geometric $\mathbf{X} \cdot \mathbf{y} = \|\mathbf{X}\| \|\mathbf{y}\| \cos\theta$ definition Length (norm) of x Algebraic $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}_1 \mathbf{y}_1 + \mathbf{x}_2 \mathbf{y}_2$

definition



$X = [X_1, X_2]$ These two definitions are $y = [y_1, y_2]$ equivalent. Prove it in WA2. Geometric $\mathbf{X} \cdot \mathbf{y} = \|\mathbf{X}\| \|\mathbf{y}\| \cos\theta$ definition Length (norm) of x Algebraic $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}_1 \mathbf{y}_1 + \mathbf{x}_2 \mathbf{y}_2$

definition

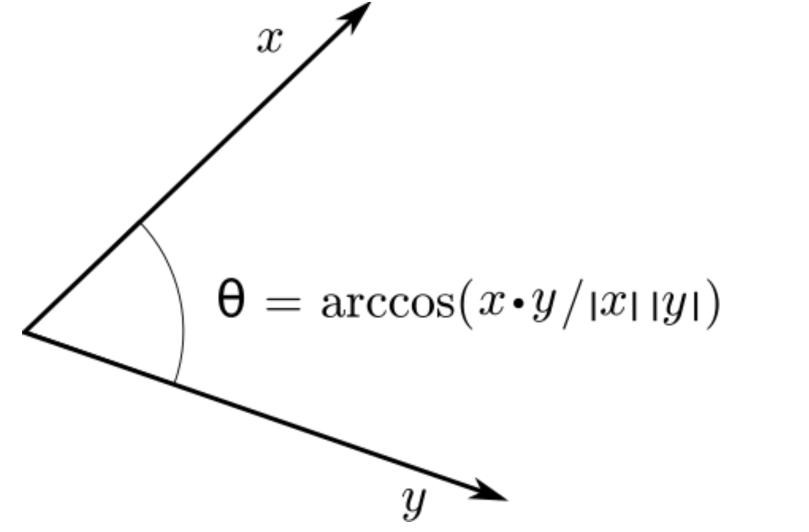


 $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2]$ $\mathbf{y} = [\mathbf{y}_1, \mathbf{y}_2]$

Geometric definition

Algebraic definition

• Inner product of two vectors tells us how "similar" two vectors are.



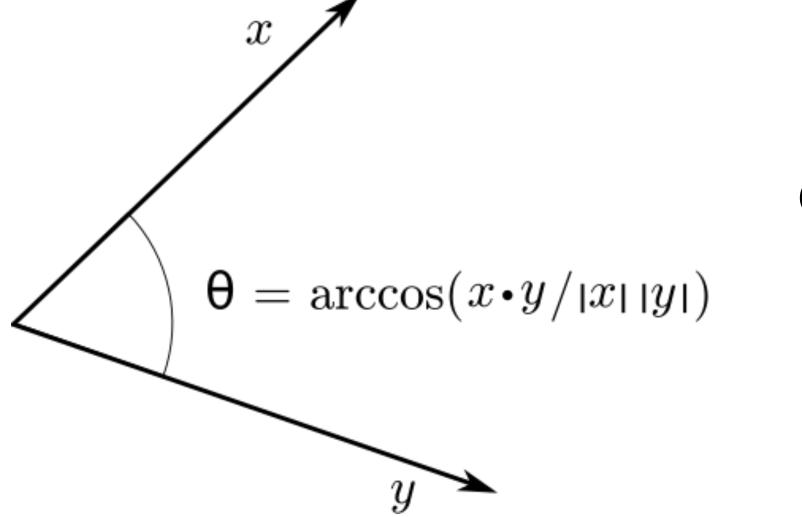
 $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2]$ $\mathbf{y} = [\mathbf{y}_1, \mathbf{y}_2]$

Geometric definition

Algebraic definition

• Inner product of two vectors tells us how "similar" two vectors are.

• 0 if they are orthogonal;



 $X = [X_1, X_2]$ $y = [y_1, y_2]$

Geometric definition

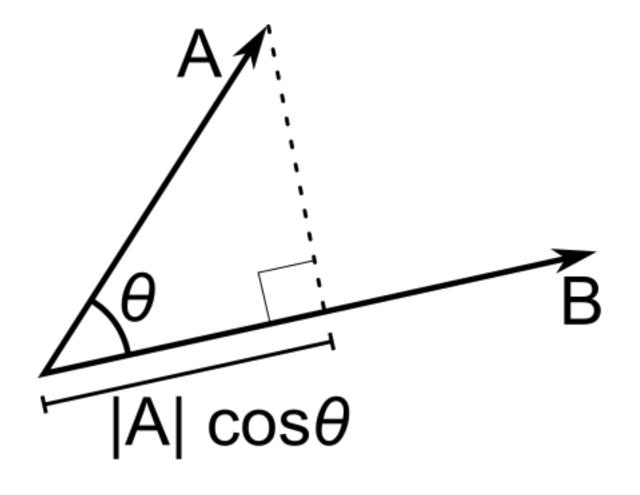
Algebraic definition

Inner product of two vectors tells us how "similar" two vectors are.

- 0 if they are orthogonal;
- Maximal if they have the same direction.

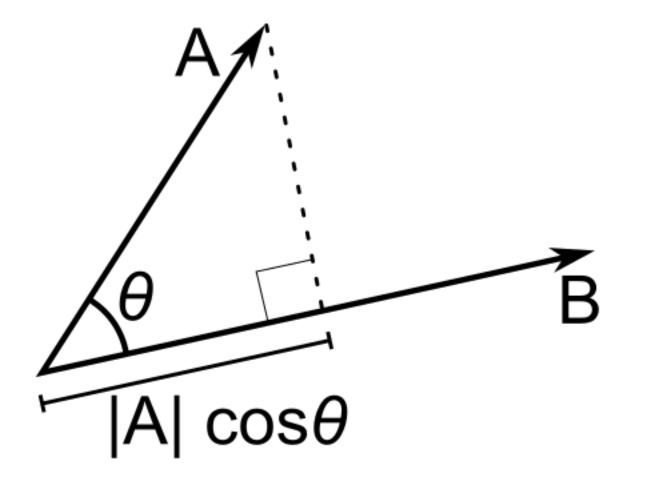
These two definitions are equivalent. Prove it in WA2. $\mathbf{X} \cdot \mathbf{y} = \|\mathbf{X}\| \|\mathbf{y}\| cos\theta$ Length (norm) of x $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}_1 \mathbf{y}_1 + \mathbf{x}_2 \mathbf{y}_2$

Vector Projection



$\mathbf{A} \cdot \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| cos\theta$

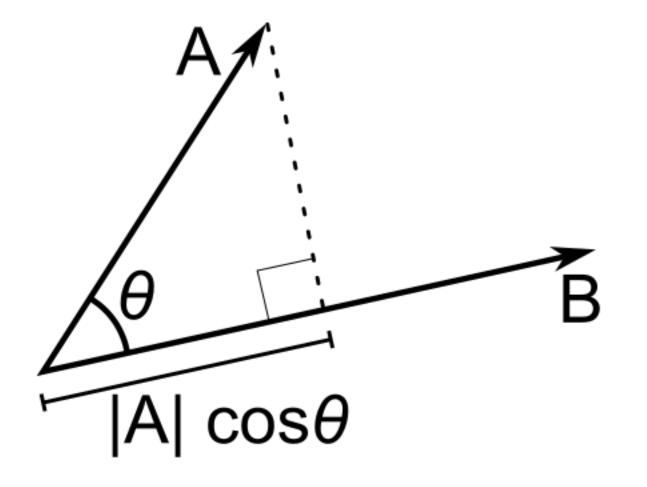
Vector Projection



 $\begin{array}{ll} \text{Magnitude of} \\ \text{projection of vector } \mathbf{A} & A_B = \|\mathbf{A}\| cos \theta = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{B}\|} \\ \text{in the direction of } \mathbf{B} \end{array}$

$\mathbf{A} \cdot \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| cos\theta$

Vector Projection

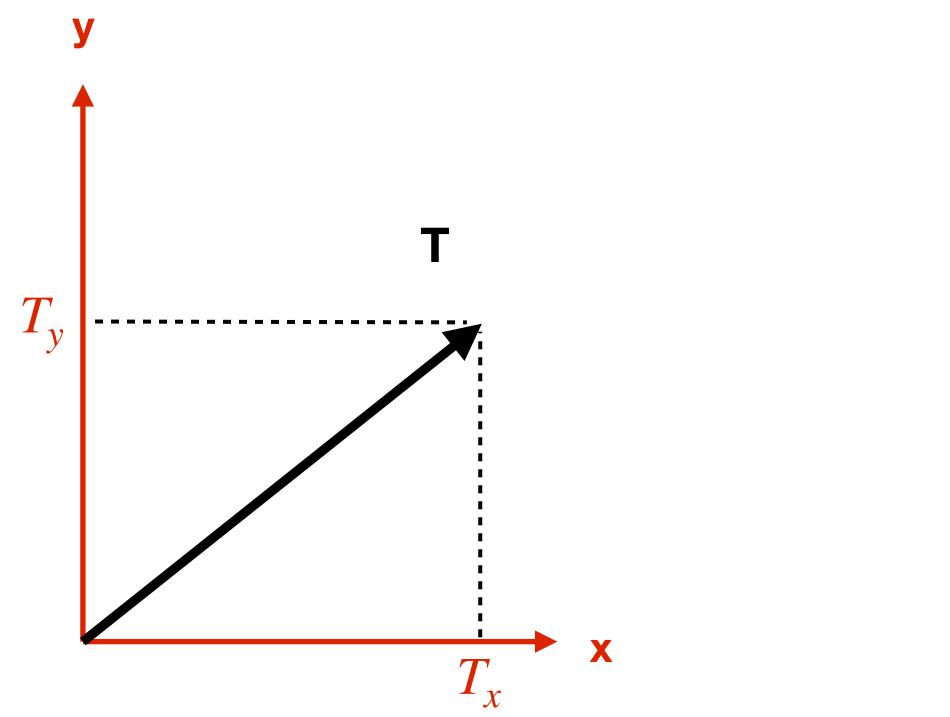


in the direction of **B**

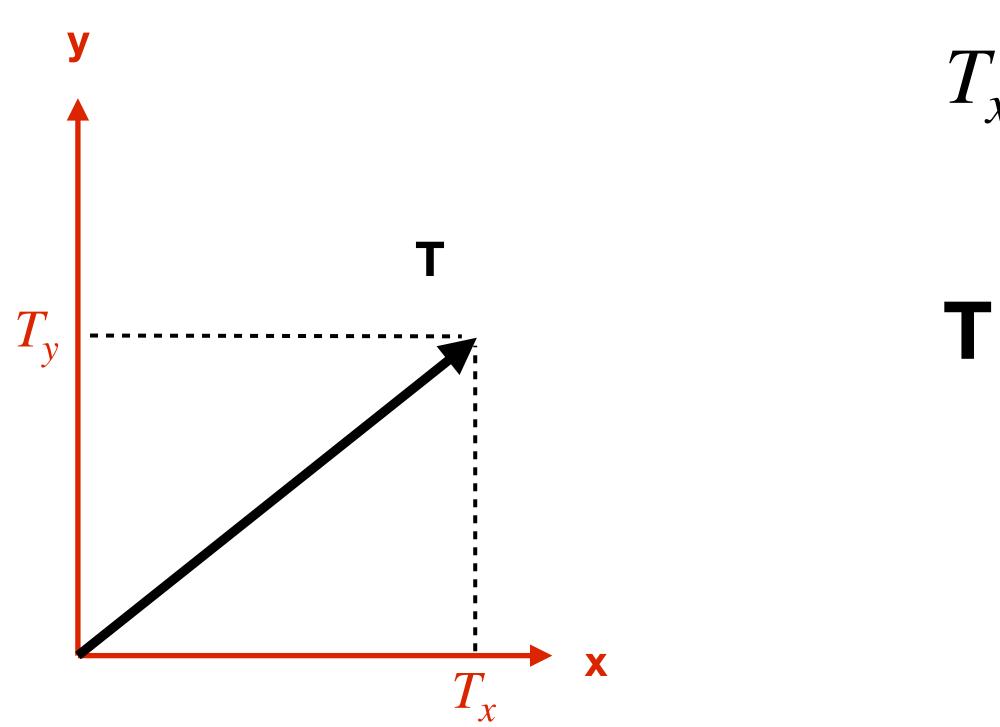
$$\mathbf{A} \cdot \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| cos\theta$$

- Magnitude of projection of vector **A** $A_B = \|\mathbf{A}\| \cos\theta = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{B}\|}$
- The projected vector $A_B \hat{\mathbf{B}} = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{B}\|} \frac{\mathbf{B}}{\|\mathbf{B}\|} = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{B}\|^2} \mathbf{B}$

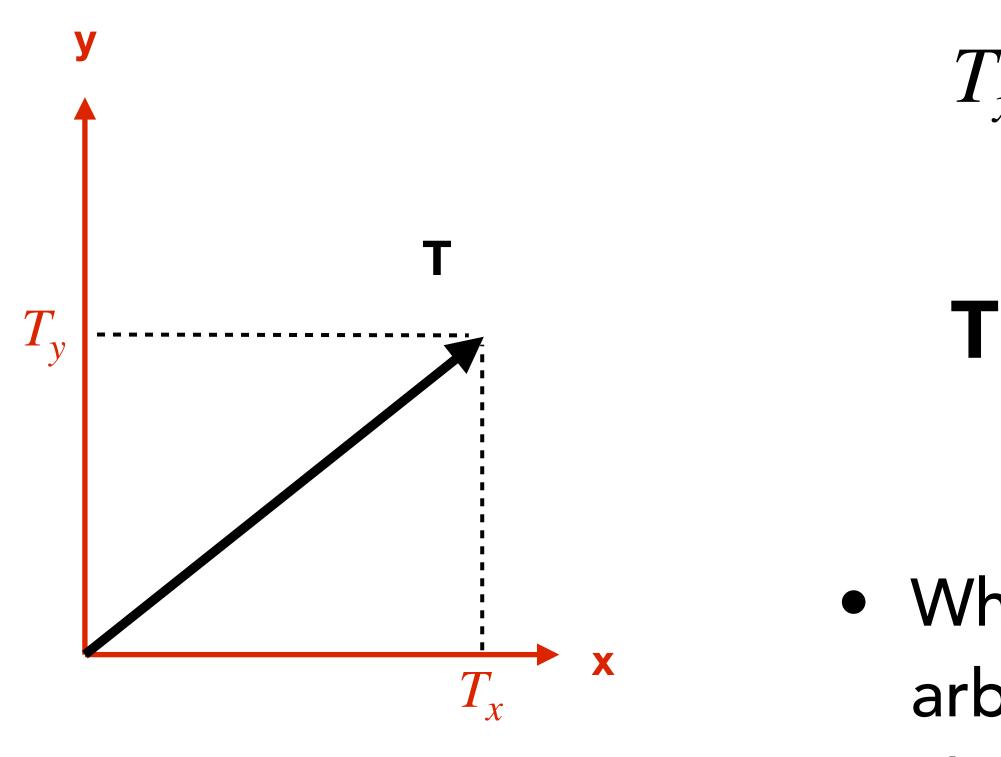
Projecting a Vector to Two Orthogonal Vectors $T_x = \frac{\mathbf{T} \cdot \mathbf{x}}{\|\mathbf{x}\|}, \ T_y = \frac{\mathbf{T} \cdot \mathbf{y}}{\|\mathbf{y}\|}, \ \mathbf{T} = [T_x, T_y]$



Projecting a Vector to Two Orthogonal Vectors $T_x = \frac{\mathbf{T} \cdot \mathbf{x}}{\|\mathbf{x}\|}, \quad T_y = \frac{\mathbf{T} \cdot \mathbf{y}}{\|\mathbf{y}\|}, \quad \mathbf{T} = [T_x, T_y]$ $\mathbf{T} = T_x \hat{\mathbf{x}} + T_y \hat{\mathbf{y}} = \frac{\mathbf{T} \cdot \mathbf{x}}{\|\mathbf{x}\|^2} \mathbf{x} + \frac{\mathbf{T} \cdot \mathbf{y}}{\|\mathbf{v}\|^2} \mathbf{y}$

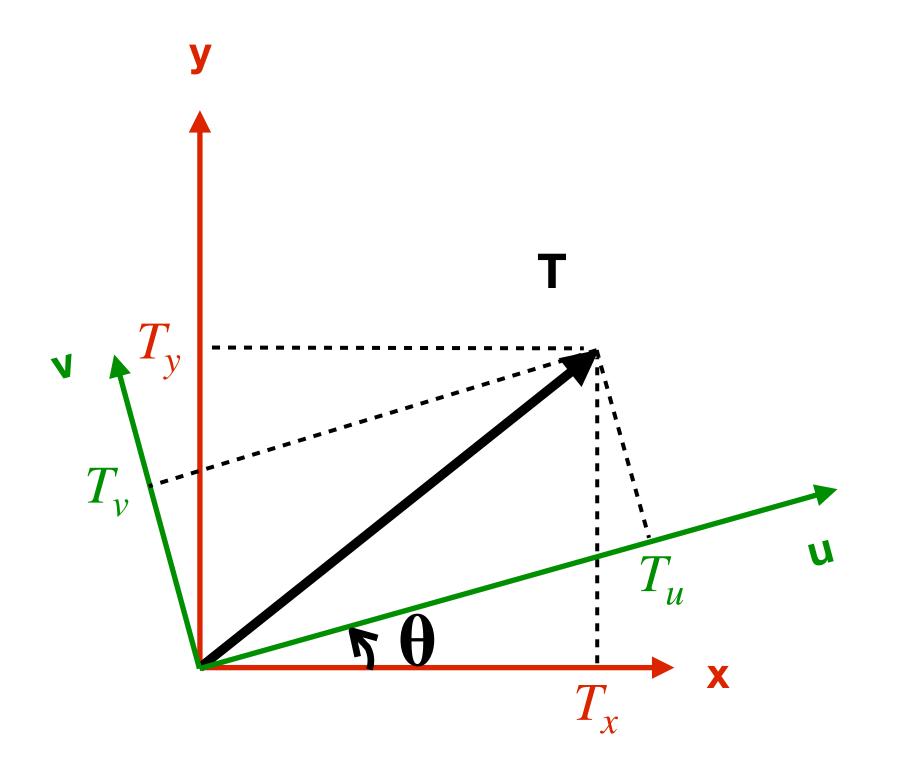


Projecting a Vector to Two Orthogonal Vectors $T_x = \frac{\mathbf{T} \cdot \mathbf{x}}{\|\mathbf{x}\|}, \quad T_y = \frac{\mathbf{T} \cdot \mathbf{y}}{\|\mathbf{v}\|}, \quad \mathbf{T} = [T_x, T_y]$ $\mathbf{T} = T_x \hat{\mathbf{x}} + T_y \hat{\mathbf{y}} = \frac{\mathbf{T} \cdot \mathbf{x}}{\|\mathbf{x}\|^2} \mathbf{x} + \frac{\mathbf{T} \cdot \mathbf{y}}{\|\mathbf{v}\|^2} \mathbf{y}$



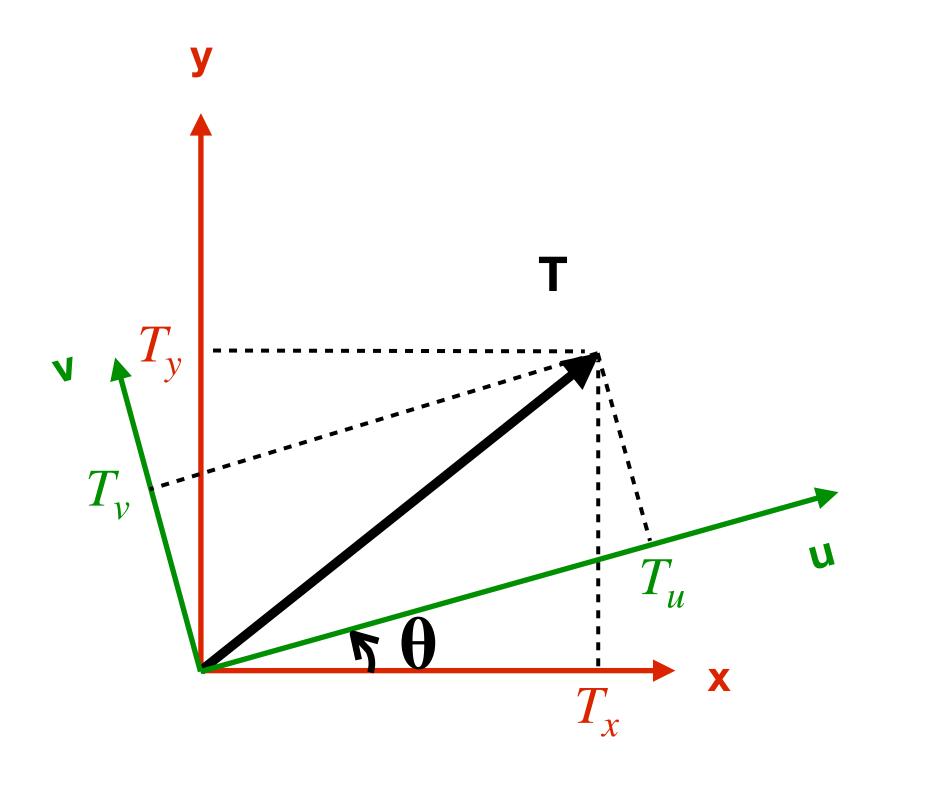
 What's happened here? We can express an arbitrary vector T using two orthogonal "basis" vectors by projecting the vector to the two basis vectors.

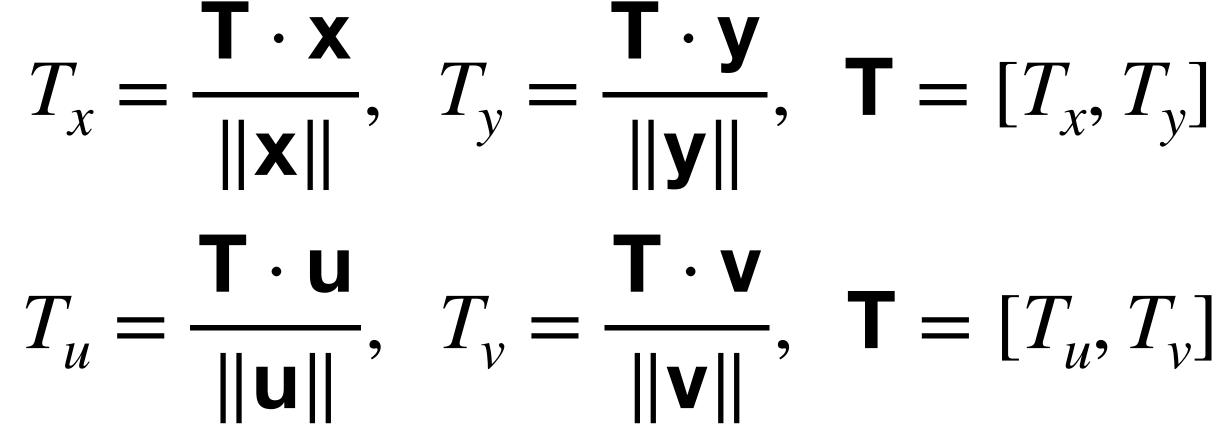
Change of Coordinates



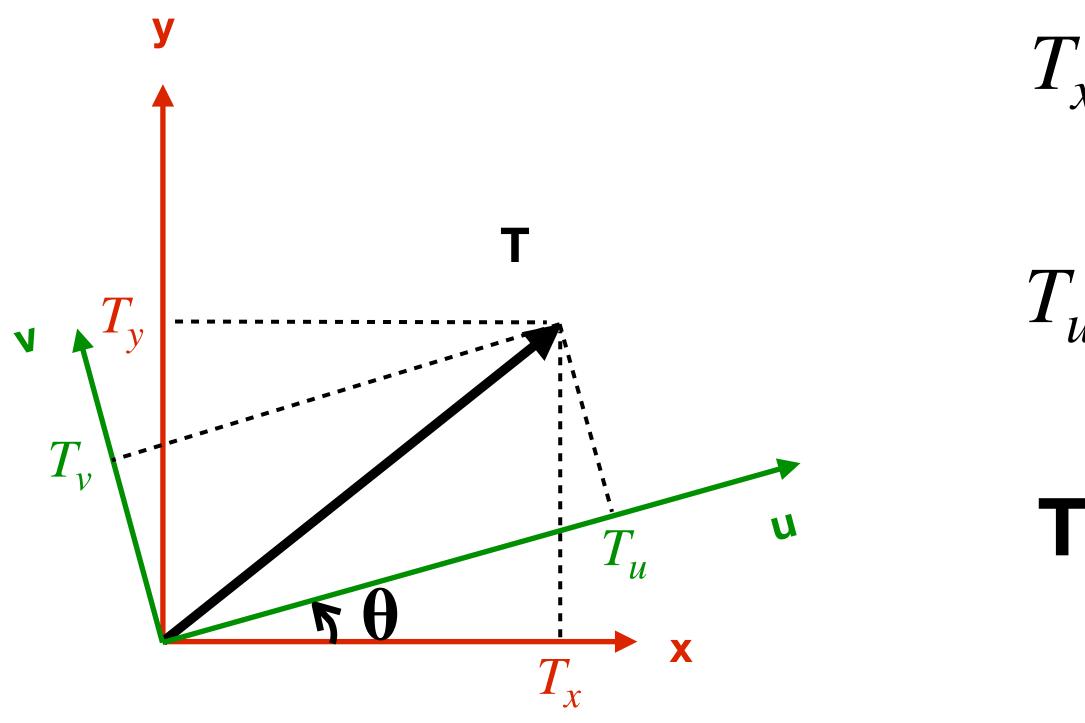
$T_x = \frac{\mathbf{T} \cdot \mathbf{x}}{\|\mathbf{x}\|}, \quad T_y = \frac{\mathbf{T} \cdot \mathbf{y}}{\|\mathbf{y}\|}, \quad \mathbf{T} = [T_x, T_y]$

Change of Coordinates





Change of Coordinates



 $T_{x} = \frac{\mathbf{T} \cdot \mathbf{x}}{\|\mathbf{x}\|}, \quad T_{y} = \frac{\mathbf{T} \cdot \mathbf{y}}{\|\mathbf{y}\|}, \quad \mathbf{T} = [T_{x}, T_{y}]$ $T_{u} = \frac{\mathbf{T} \cdot \mathbf{u}}{\|\mathbf{u}\|}, \quad T_{v} = \frac{\mathbf{T} \cdot \mathbf{v}}{\|\mathbf{v}\|}, \quad \mathbf{T} = [T_{u}, T_{v}]$ $\mathbf{T} = \frac{\mathbf{T} \cdot \mathbf{u}}{\|\mathbf{u}\|^{2}}\mathbf{u} + \frac{\mathbf{T} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}}\mathbf{v}$

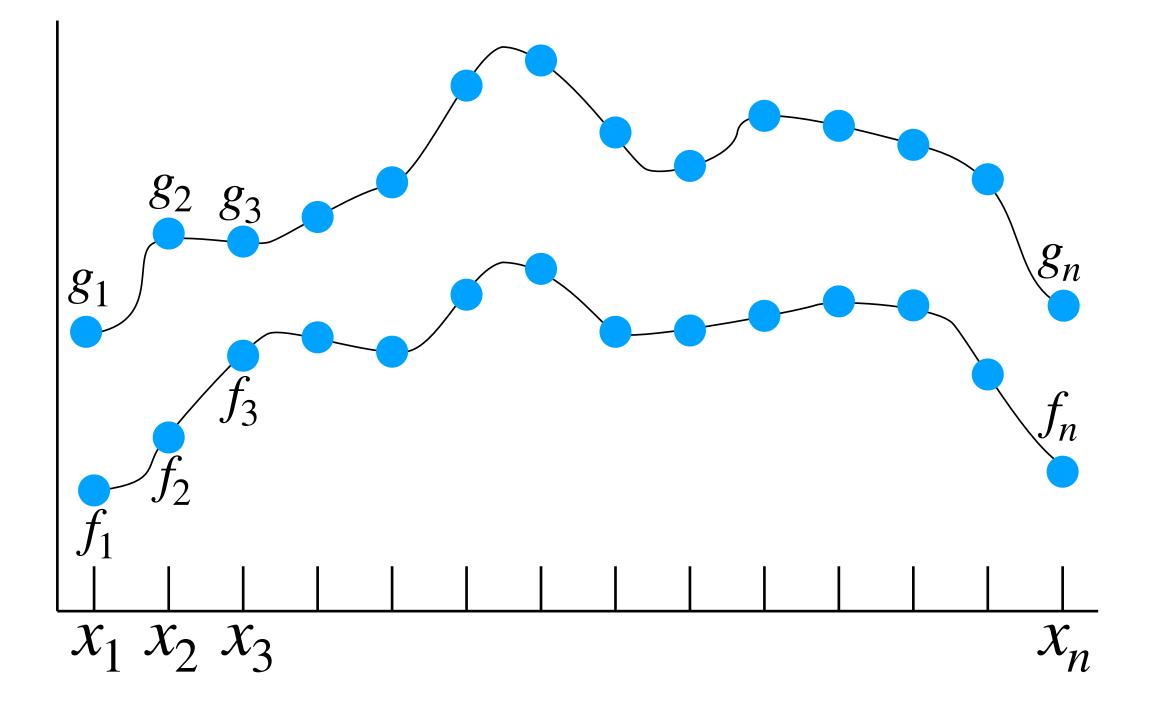
Change of Coordinates U X T_r

 $[T_x, T_y]$ and $[T_u, T_v]$ are related by a geometric transformation. WA1 asks you to come up with the transformation.

 $T_{x} = \frac{\mathbf{T} \cdot \mathbf{x}}{\|\mathbf{x}\|}, \quad T_{y} = \frac{\mathbf{T} \cdot \mathbf{y}}{\|\mathbf{y}\|}, \quad \mathbf{T} = [T_{x}, T_{y}]$ $T_{u} = \frac{\mathbf{T} \cdot \mathbf{u}}{\|\mathbf{u}\|}, \quad T_{v} = \frac{\mathbf{T} \cdot \mathbf{v}}{\|\mathbf{v}\|}, \quad \mathbf{T} = [T_{u}, T_{v}]$ $\mathbf{T} = \frac{\mathbf{T} \cdot \mathbf{u}}{\|\mathbf{u}\|^{2}}\mathbf{u} + \frac{\mathbf{T} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}}\mathbf{v}$

Functions are Vectors

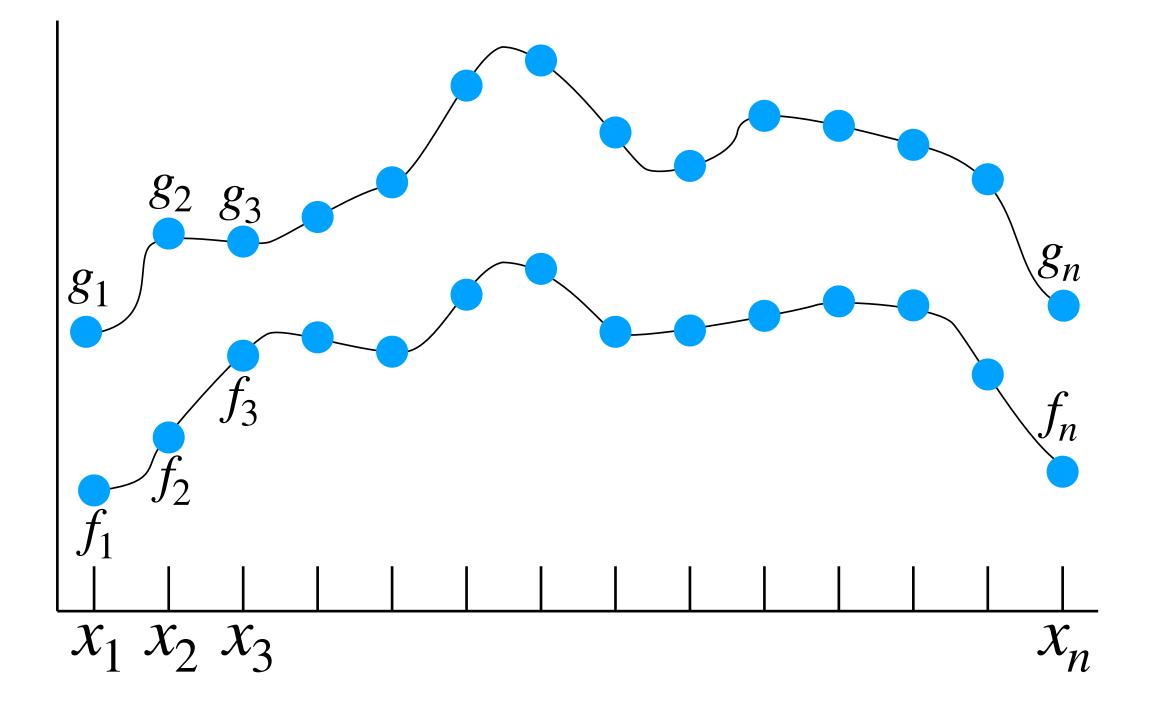
• Assume functions f and g are defined as N discrete points



Functions are Vectors

- Assume functions f and g are defined as N discrete points
- f and g are nothing more than two N-dimensional vectors.

$$f = [f_1, f_2, \dots, f_n]$$
$$g = [g_1, g_2, \dots, g_n]$$

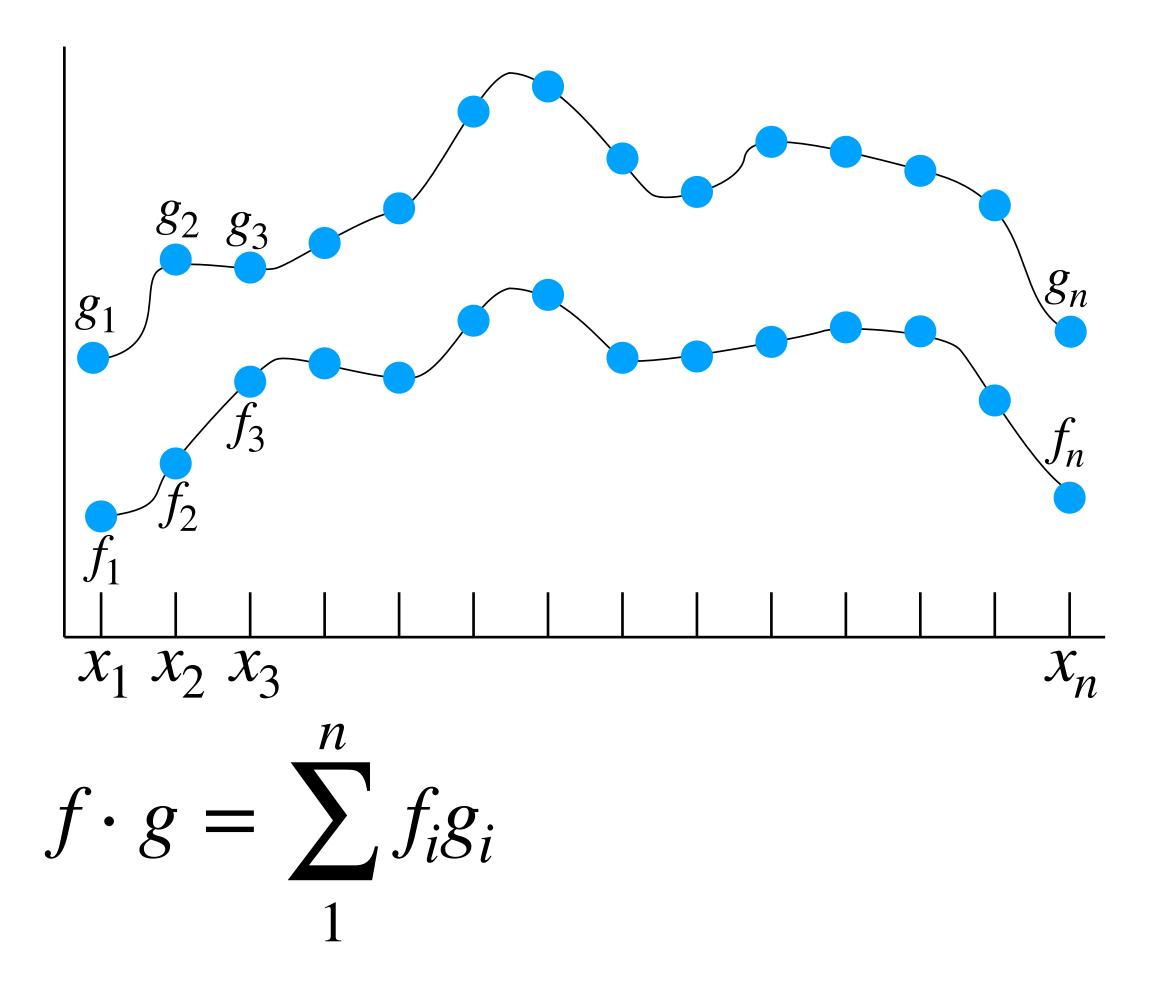


Functions are Vectors

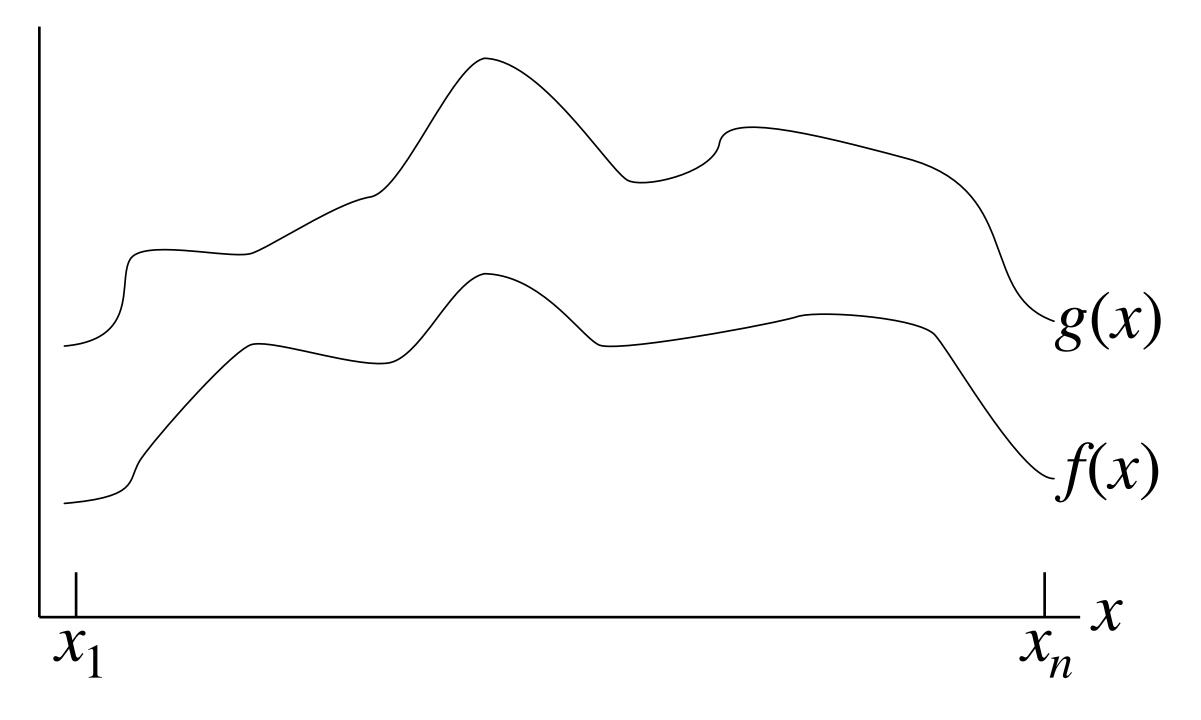
- Assume functions f and g are defined as N discrete points
- f and g are nothing more than two N-dimensional vectors.

$$f = [f_1, f_2, \dots, f_n]$$
$$g = [g_1, g_2, \dots, g_n]$$

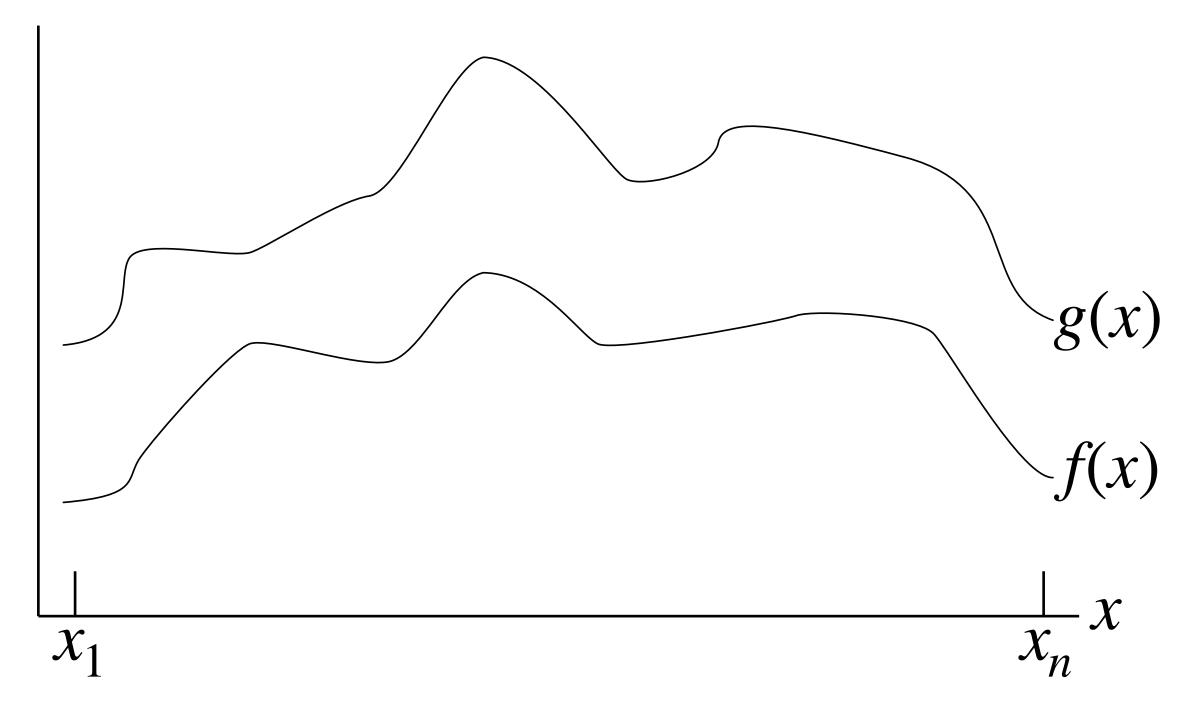
Inner product of two Ndimensional vectors



• When f and g are continuous functions, they can be seen as two infinite-dimensional vectors.

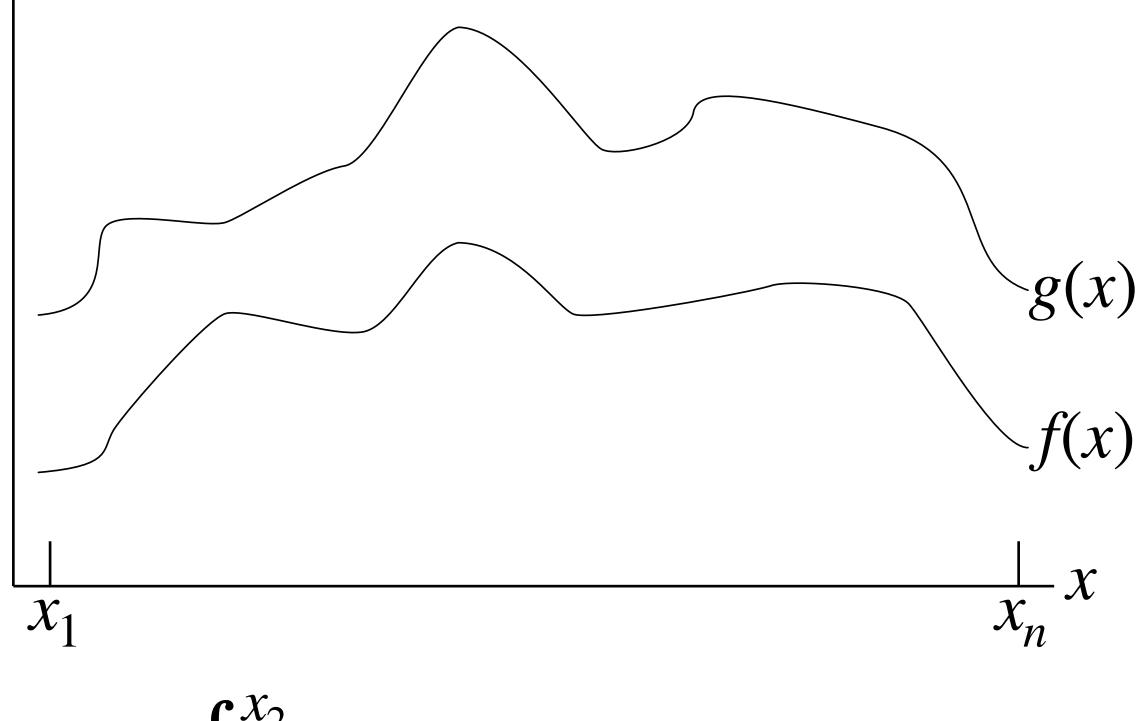


- When f and g are continuous functions, they can be seen as two infinite-dimensional vectors.
- The inner product of two continuous functions is the integration of the product.



- When f and g are continuous functions, they can be seen as two infinite-dimensional vectors.
- The inner product of two continuous functions is the integration of the product.

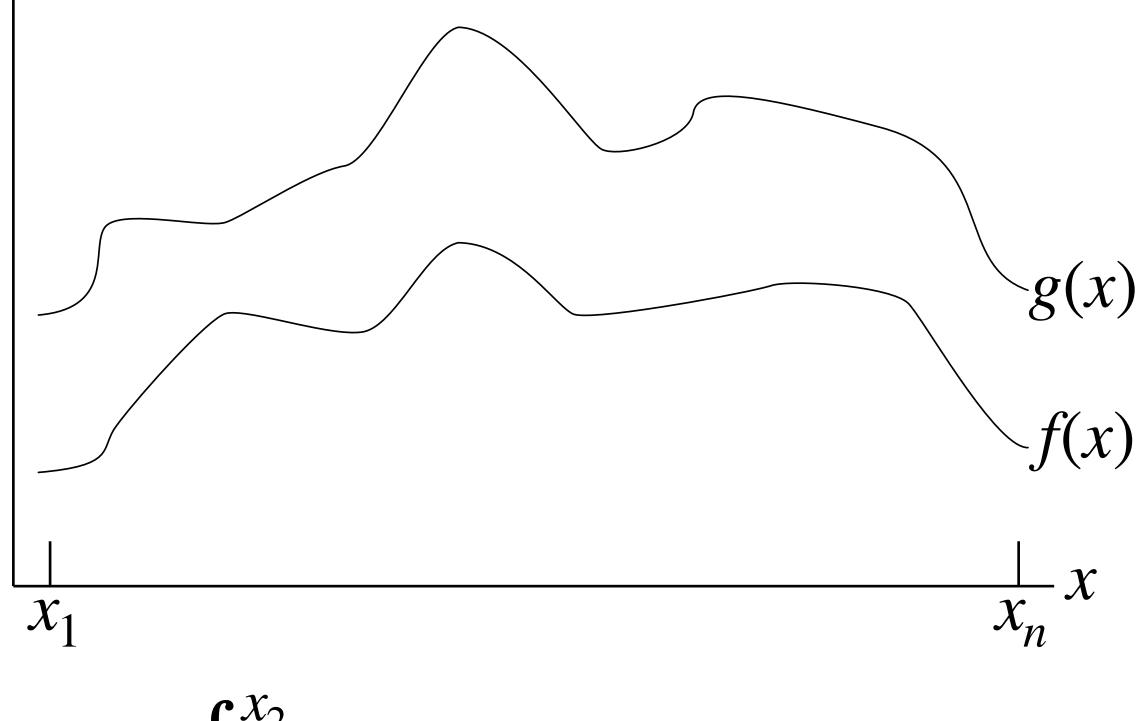
Inner product of two continuous functions



$$f \cdot g = \int_{x_1}^{x_2} f(x)g(x)dx$$

- When f and g are continuous functions, they can be seen as two infinite-dimensional vectors.
- The inner product of two continuous functions is the integration of the product.
 - Use complex conjugate of g if they are complex-valued.

Inner product of two continuous functions



$$f \cdot g = \int_{x_1}^{x_2} f(x)g(x)dx$$

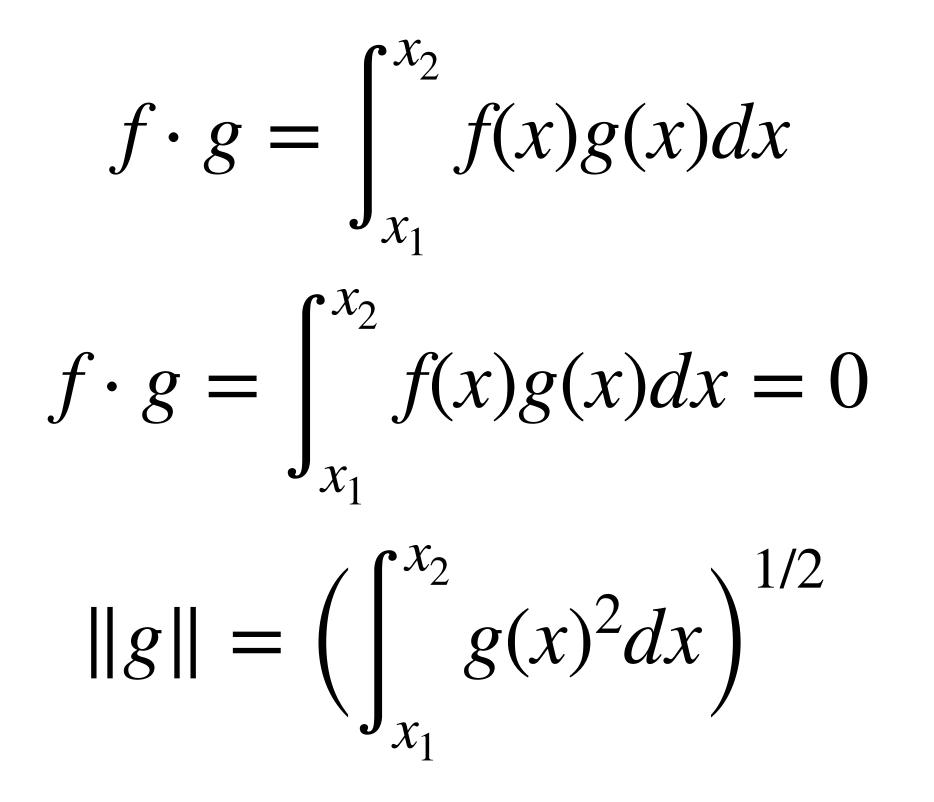
Function Inner Product

Inner product of two continuous functions

Function f and g are orthogonal if:

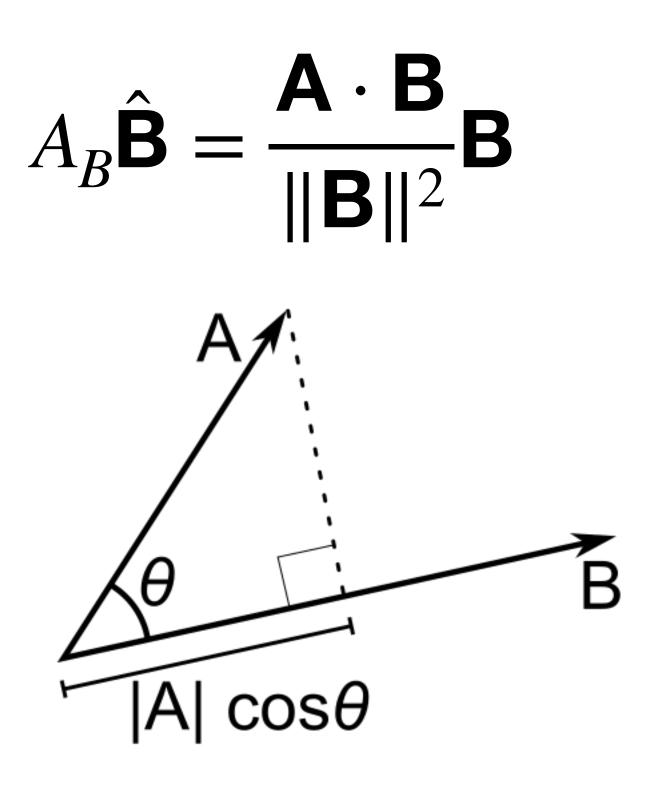
Norm of a function g is:

 An infinite-dimensional space that also defines vector operations (e.g., dot project) is called a Hilbert space.

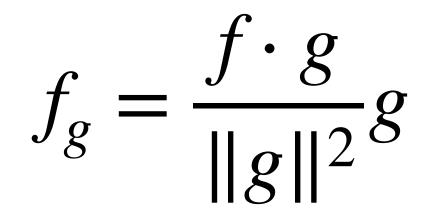


Vector vs. Function Projection

Vector A projected to vector B



Function f projected to function g



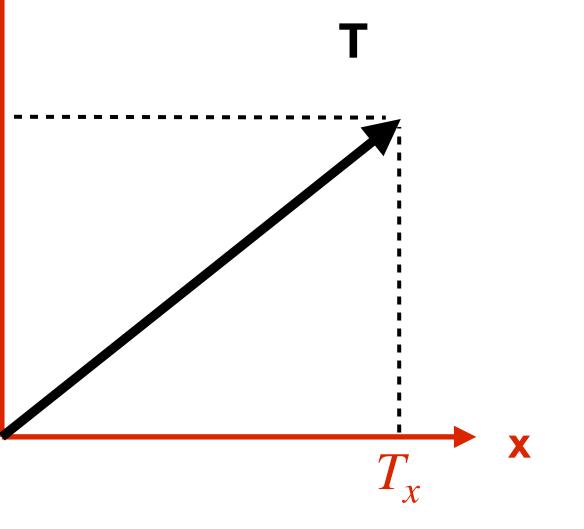
Recall: Expressing a Vector Using Basis Vectors

- - By projecting **T** to the two basis vectors

$\mathbf{T} = \frac{\mathbf{T} \cdot \mathbf{x}}{\|\mathbf{x}\|^2} \mathbf{x} + \frac{\mathbf{T} \cdot \mathbf{y}}{\|\mathbf{v}\|^2} \mathbf{y}$

• We can express a 2D vector as a sum of two orthogonal basis vectors.

T



Expressing a Function as Basis Functions

- Similarly, we can express a function using "basis functions".
 - How many basis functions do we need?
- Expressing a continuous function requires infinitely many basis functions.
 - Basis functions must be orthogonal.

$\mathbf{T} = \frac{\mathbf{T} \cdot \mathbf{x}}{\|\mathbf{x}\|^2} \mathbf{x} + \frac{\mathbf{T} \cdot \mathbf{y}}{\|\mathbf{v}\|^2} \mathbf{y}$

$$f = \sum_{i=1}^{\infty} \frac{f \cdot v_i}{\|v_i\|^2} v_i$$

v1, v2, ... are orthogonal functions

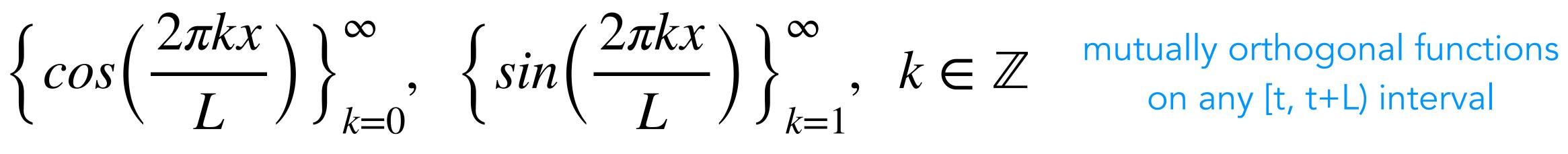
Problem Setup

- The basis functions need to be defined over [t, t+L) too.
- Now assuming we have a continuous function f defined over [t, t+L) How do we represent f as a sum of a set of basis functions?

$\mathbf{T} = \frac{\mathbf{T} \cdot \mathbf{x}}{\|\mathbf{x}\|^2} \mathbf{x} + \frac{\mathbf{T} \cdot \mathbf{y}}{\|\mathbf{v}\|^2} \mathbf{y}$

$$f = \sum_{i=1}^{\infty} \frac{f \cdot v_i}{\|v_i\|^2} v_i$$

v1, v2, ... are orthogonal functions



 $\left\{ cos\left(\frac{2\pi kx}{L}\right) \right\}_{k=0}^{\infty}, \quad \left\{ sin\left(\frac{2\pi kx}{L}\right) \right\}_{k=1}^{\infty},$

 $cos\left(\frac{0\pi x}{I}\right), cos\left(\frac{2\pi x}{I}\right), cos\left(\frac{4\pi x}{I}\right), cos\left(\frac{6\pi x}{I}\right)$

https://tutorial.math.lamar.edu/classes/de/PeriodicOrthogonal.aspx

$$\Big) \Big\}_{k=1}^{\infty}, \ k \in \mathbb{Z} \quad \begin{array}{c} \text{mutually orthogonal function} \\ \text{on any [t, t+L) interval} \\ \end{array}$$

$$\left(\frac{x}{L}\right), \dots, sin\left(\frac{2\pi x}{L}\right), sin\left(\frac{4\pi x}{L}\right), sin\left(\frac{6\pi x}{L}\right), \dots$$

$$\left\{ cos\left(\frac{2\pi kx}{L}\right) \right\}_{k=0}^{\infty}, \quad \left\{ sin\left(\frac{2\pi kx}{L}\right) \right\}_{k=1}^{\infty}, \quad k \in \mathbb{Z} \quad \begin{array}{c} \text{mutually orthogonal function} \\ \text{on any [t, t+L) interval} \end{array} \right\}$$

$$cos\left(\frac{0\pi x}{L}\right), cos\left(\frac{2\pi x}{L}\right), cos\left(\frac{4\pi x}{L}\right), cos\left(\frac{6\pi x}{L}\right), \dots, sin\left(\frac{2\pi x}{L}\right), sin\left(\frac{4\pi x}{L}\right), sin\left(\frac{6\pi x}{L}\right), \dots$$

For instance:

$$\int_{t}^{t+L} \cos\left(\frac{2\pi x}{L}\right) \sin\left(\frac{6\pi x}{L}\right) dx = 0$$

$$\left\{ cos\left(\frac{2\pi kx}{L}\right) \right\}_{k=0}^{\infty}, \quad \left\{ sin\left(\frac{2\pi kx}{L}\right) \right\}_{k=1}^{\infty}, \quad k \in \mathbb{Z} \quad \begin{array}{c} \text{mutually orthogonal function} \\ \text{on any [t, t+L) interval} \end{array} \right\}$$

$$cos\left(\frac{0\pi x}{L}\right), cos\left(\frac{2\pi x}{L}\right), cos\left(\frac{4\pi x}{L}\right), cos\left(\frac{6\pi x}{L}\right), \dots, sin\left(\frac{2\pi x}{L}\right), sin\left(\frac{4\pi x}{L}\right), sin\left(\frac{6\pi x}{L}\right), \dots$$

For instance:

$$\int_{t}^{t+L} \cos\left(\frac{2\pi x}{L}\right) \sin\left(\frac{6\pi x}{L}\right) dx = 0$$
$$\int_{t}^{t+L} \cos\left(\frac{2\pi x}{L}\right) \cos\left(\frac{6\pi x}{L}\right) dx = 0$$

$$\left\{ cos\left(\frac{2\pi kx}{L}\right) \right\}_{k=0}^{\infty}, \quad \left\{ sin\left(\frac{2\pi kx}{L}\right) \right\}_{k=1}^{\infty}, \quad k \in \mathbb{Z} \quad \begin{array}{c} \text{mutually orthogonal function} \\ \text{on any [t, t+L) interval} \end{array} \right\}_{k=0}^{\infty}$$

$$cos\left(\frac{0\pi x}{L}\right), cos\left(\frac{2\pi x}{L}\right), cos\left(\frac{4\pi x}{L}\right), cos\left(\frac{6\pi x}{L}\right), \dots, sin\left(\frac{2\pi x}{L}\right), sin\left(\frac{4\pi x}{L}\right), sin\left(\frac{6\pi x}{L}\right), \dots$$

For instance:

ce:
$$\int_{t}^{t+L} \cos\left(\frac{2\pi x}{L}\right) \sin\left(\frac{6\pi x}{L}\right) dx = 0$$
$$\int_{t}^{t+L} \cos\left(\frac{2\pi x}{L}\right) \cos\left(\frac{6\pi x}{L}\right) dx = 0$$

 $\int f = \sum_{i=1}^{\infty} \frac{f \cdot v_i}{\|v_i\|^2} v_i \qquad v_i \in \left\{ \left\{ \cos\left(\frac{2\pi i}{L}\right) \right\} \right\}$

$$\left\{\frac{\pi kx}{L}\right\}_{k=0}^{\infty}, \left\{\sin\left(\frac{2\pi kx}{L}\right)\right\}_{k=1}^{\infty}, x \in [t, t+L)\right\}$$

 $f = \sum_{i=1}^{\infty} \frac{f \cdot v_i}{\|v_i\|^2} v_i \qquad v_i \in \left\{ \left\{ \cos\left(\frac{2\pi i}{L}\right) \right\} \right\}$

 $f(x) = \sum_{k=0}^{\infty} \left(a_k cos\left(\frac{2\pi kx}{L}\right) \right) + \sum_{k=0}^{\infty} \left(a$

$$\left\{\frac{\pi kx}{L}\right\}_{k=0}^{\infty}, \left\{\sin\left(\frac{2\pi kx}{L}\right)\right\}_{k=1}^{\infty}, x \in [t, t+L]\right\}$$

$$\left(b_k sin\left(\frac{2\pi kx}{L}\right)\right), x \in [t, t+L)$$

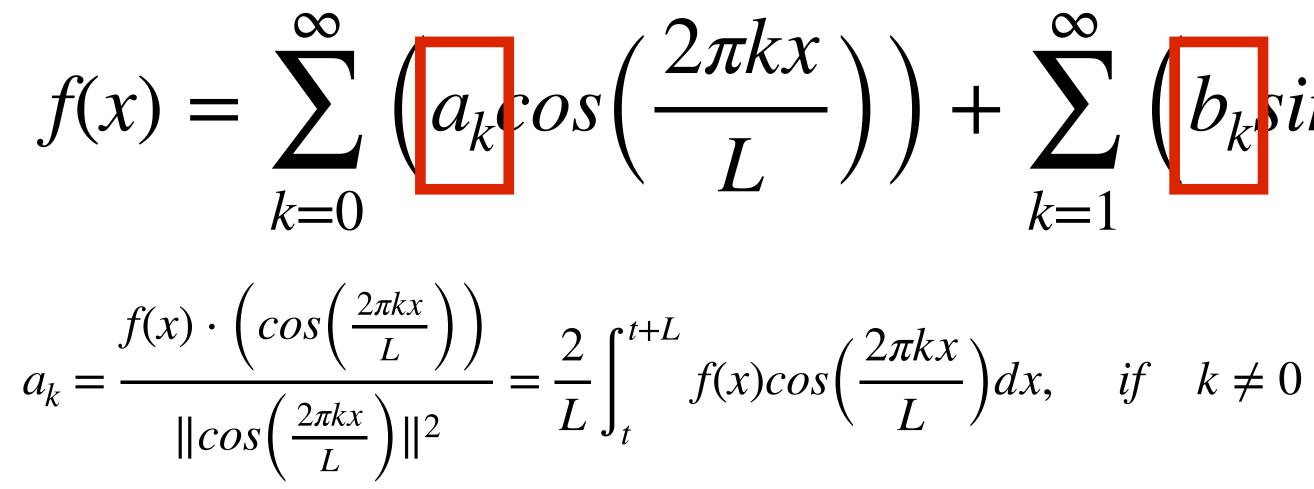
 $f = \sum_{i=1}^{\infty} \frac{f \cdot v_i}{\|v_i\|^2} v_i \qquad v_i \in \left\{ \left\{ \cos\left(\frac{2\pi u_i}{L}\right) \right\} \right\}$

 $f(x) = \sum_{k=0}^{\infty} \left(a_k \cos\left(\frac{2\pi kx}{L}\right) \right) + \sum_{k=1}^{\infty}$

$$\left\{\frac{\pi kx}{L}\right\}_{k=0}^{\infty}, \left\{\sin\left(\frac{2\pi kx}{L}\right)\right\}_{k=1}^{\infty}, x \in [t, t+L]\right\}$$

$$\left(b_k \sin\left(\frac{2\pi kx}{L}\right)\right), x \in [t, t+L)$$

$$\left\{ f = \sum_{i=1}^{\infty} \frac{f \cdot v_i}{\|v_i\|^2} v_i \qquad v_i \in \left\{ \left\{ \cos\left(\frac{2\pi kx}{L}\right) \right\}_{k=0}^{\infty}, \left\{ \sin\left(\frac{2\pi kx}{L}\right) \right\}_{k=1}^{\infty}, x \in [t, t+L) \right\} \right\}$$



https://math.stackexchange.com/questions/1161147/why-does-a-fourier-series-have-a-1-2-in-front-of-the-a-0-coefficient

$$\left(b_k \sin\left(\frac{2\pi kx}{L}\right)\right), x \in [t, t+L)$$

$$\left\{ f = \sum_{i=1}^{\infty} \frac{f \cdot v_i}{\|v_i\|^2} v_i \qquad v_i \in \left\{ \left\{ \cos\left(\frac{2\pi kx}{L}\right) \right\}_{k=0}^{\infty}, \left\{ \sin\left(\frac{2\pi kx}{L}\right) \right\}_{k=1}^{\infty}, x \in [t, t+L) \right\} \right\}$$

$$f(x) = \sum_{k=0}^{\infty} \left(a_k \cos\left(\frac{2\pi kx}{L}\right) \right) + \sum_{k=1}^{\infty} \left(b_k \sin\left(\frac{2\pi kx}{L}\right) \right), x \in [t, t+L)$$
$$a_k = \frac{f(x) \cdot \left(\cos\left(\frac{2\pi kx}{L}\right)\right)}{\|\cos\left(\frac{2\pi kx}{L}\right)\|^2} = \frac{2}{L} \int_{t}^{t+L} f(x) \cos\left(\frac{2\pi kx}{L}\right) dx, \quad \text{if} \quad k \neq 0$$
$$= \frac{1}{L} \int_{t}^{t+L} f(x) \cos\left(\frac{2\pi kx}{L}\right) dx, \quad \text{if} \quad k = 0$$

$$\left\{ f = \sum_{i=1}^{\infty} \frac{f \cdot v_i}{\|v_i\|^2} v_i \qquad v_i \in \left\{ \left\{ \cos\left(\frac{2\pi kx}{L}\right) \right\}_{k=0}^{\infty}, \left\{ \sin\left(\frac{2\pi kx}{L}\right) \right\}_{k=1}^{\infty}, x \in [t, t+L) \right\} \right\}$$

$$f(x) = \sum_{k=0}^{\infty} \left(a_k \cos\left(\frac{2\pi kx}{L}\right) \right) + \sum_{k=1}^{\infty} \left(b_k \sin\left(\frac{2\pi kx}{L}\right) \right), x \in [t, t+L)$$

$$a_k = \frac{f(x) \cdot \left(\cos\left(\frac{2\pi kx}{L}\right)\right)}{\|\cos\left(\frac{2\pi kx}{L}\right)\|^2} = \frac{2}{L} \int_{t}^{t+L} f(x) \cos\left(\frac{2\pi kx}{L}\right) dx, \quad \text{if} \quad k \neq 0 \quad b_k = \frac{f(x) \cdot \left(\sin\left(\frac{2\pi kx}{L}\right)\right)}{\|\sin\left(\frac{2\pi kx}{L}\right)\|^2} = \frac{2}{L} \int_{t}^{t+L} f(x) \sin\left(\frac{2\pi kx}{L}\right) dx$$

$$= \frac{1}{L} \int_{t}^{t+L} f(x) \cos\left(\frac{2\pi kx}{L}\right) dx, \quad \text{if} \quad k = 0$$

Fourier Coefficients

- Rearrange terms to get a more compact equation.
- a_k and b_k are called the Fourier coefficients of f(x).

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2\pi kx}{L}\right) + b_k \sin\left(\frac{2\pi kx}{L}\right) \right), x \in [t, t+L), k \in \mathbb{Z}^+$$

$$a_k = \frac{2}{L} \int_t^{t+L} f(x) \cos\left(\frac{2\pi kx}{L}\right) dx$$

ompact equation. oefficients of f(x).

$$b_k = \frac{2}{L} \int_t^{t+L} f(x) \sin\left(\frac{2\pi kx}{L}\right) dx$$

Fourier Coefficients

- Rearrange terms to get a more compact equation.
- a_k and b_k are called the Fourier coefficients of f(x).

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(\omega_k x))$$

$$a_k = \frac{2}{L} \int_0^L f(x) \cos(\omega_k x) dx \qquad b_k =$$

ompact equation. **Defficients** of *f*(*x*).

 $+ b_k sin(\omega_k x))$

 $\omega_k = \frac{2k\pi}{L}$

 $=\frac{2}{L}\int_{0}^{L}f(x)sin(\omega_{k}x)dx$

Frequency

• As k increases, the frequency of the basis functions increase.

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(\omega_k x))$$

$$a_k = \frac{2}{L} \int_0^L f(x) \cos(\omega_k x) dx \qquad b_k = \frac{2}{L} \int_0^L f(x) \cos(\omega_k x) dx$$

 $+ b_k sin(\omega_k x))$

 $\omega_k = \frac{2k\pi}{L}$

 $=\frac{2}{L}\int_{0}^{L}f(x)sin(\omega_{k}x)dx$

Frequency-Domain Representation of a Function

- We have converted a function f(x) into an infinite sequence of a_k and b_{k} .
- The (infinite) coefficient sequence is called the frequency-domain representation, or the spectrum, of the function *f*.

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(\omega_k x))$$

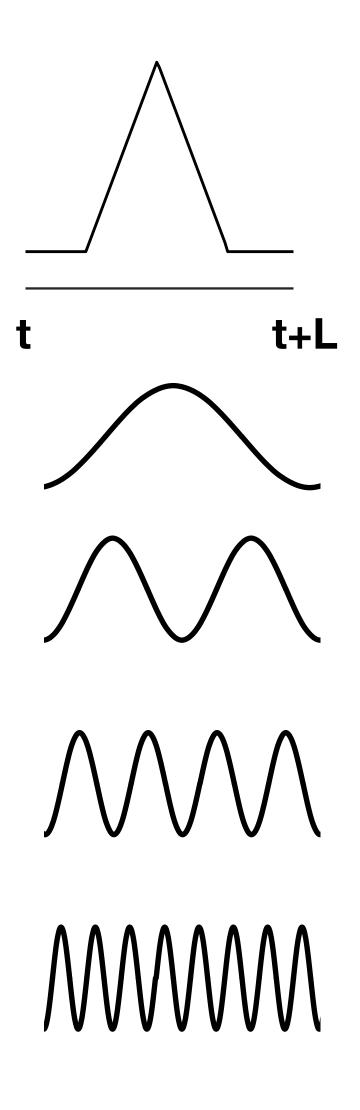
$$a_k = \frac{2}{L} \int_0^L f(x) \cos(\omega_k x) dx \qquad b_k = \frac{2}{L} \int_0^L f(x) \sin(\omega_k x) dx$$

$$+ b_k sin(\omega_k x))$$

$$\omega_k = \frac{2k\pi}{L}$$

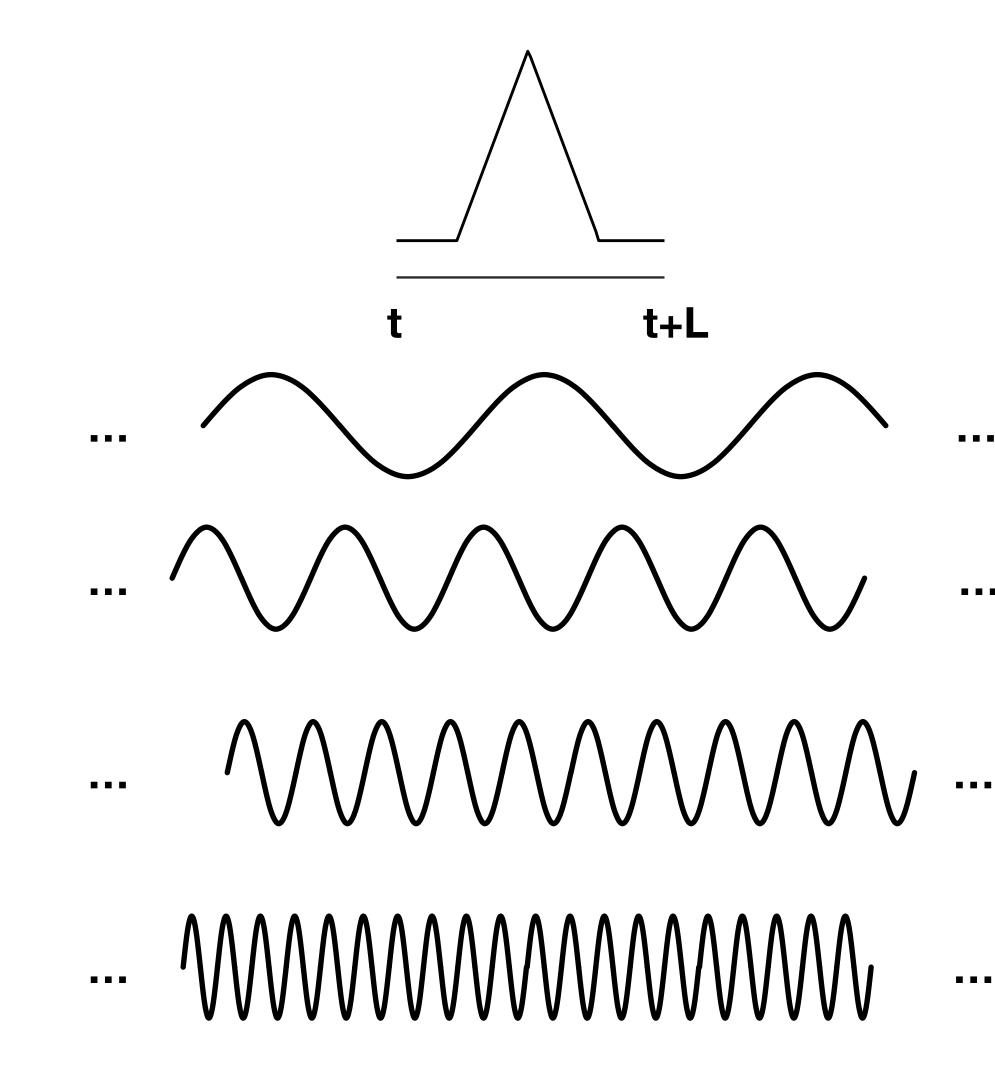
Applies to Only Periodic Functions

• We assumed f and the basis functions are defined only over a fixed internal [t, t+L)

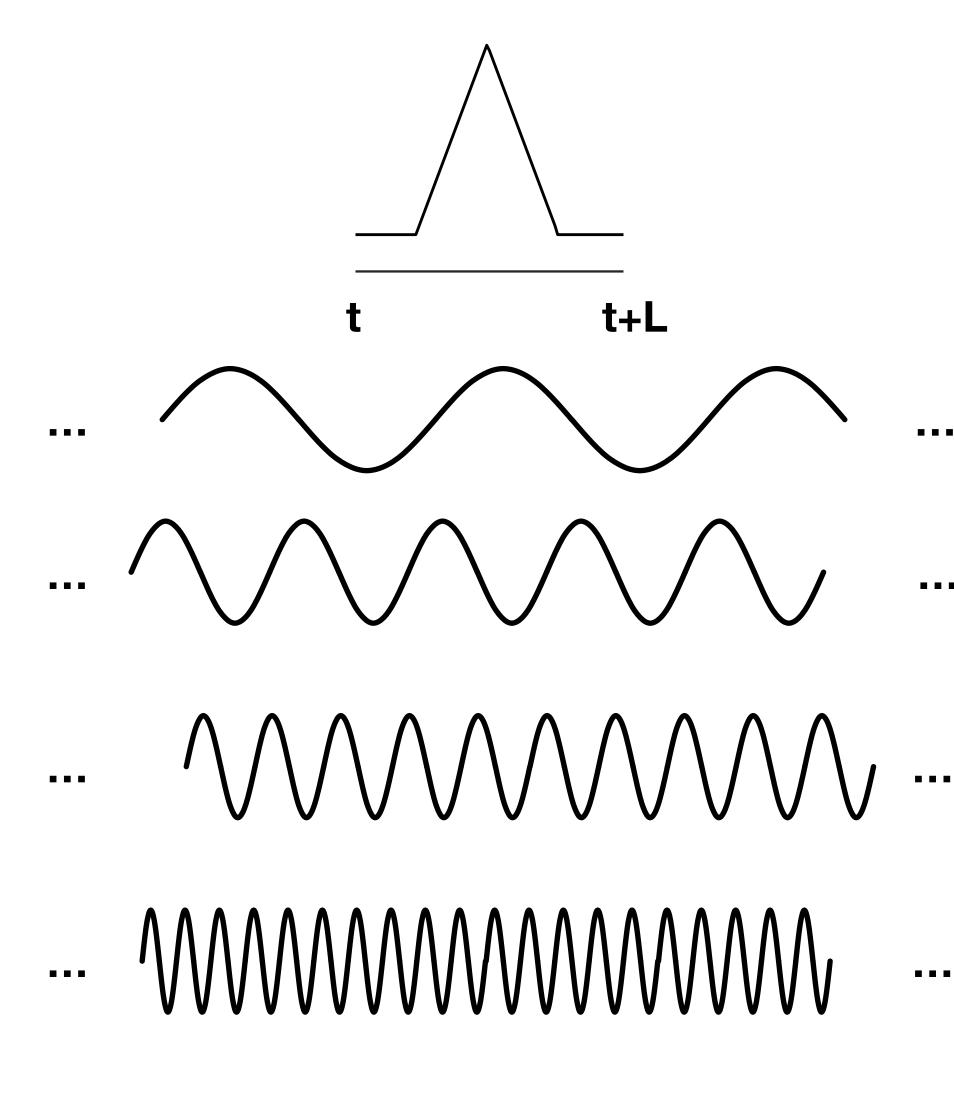


Applies to Only Periodic Functions

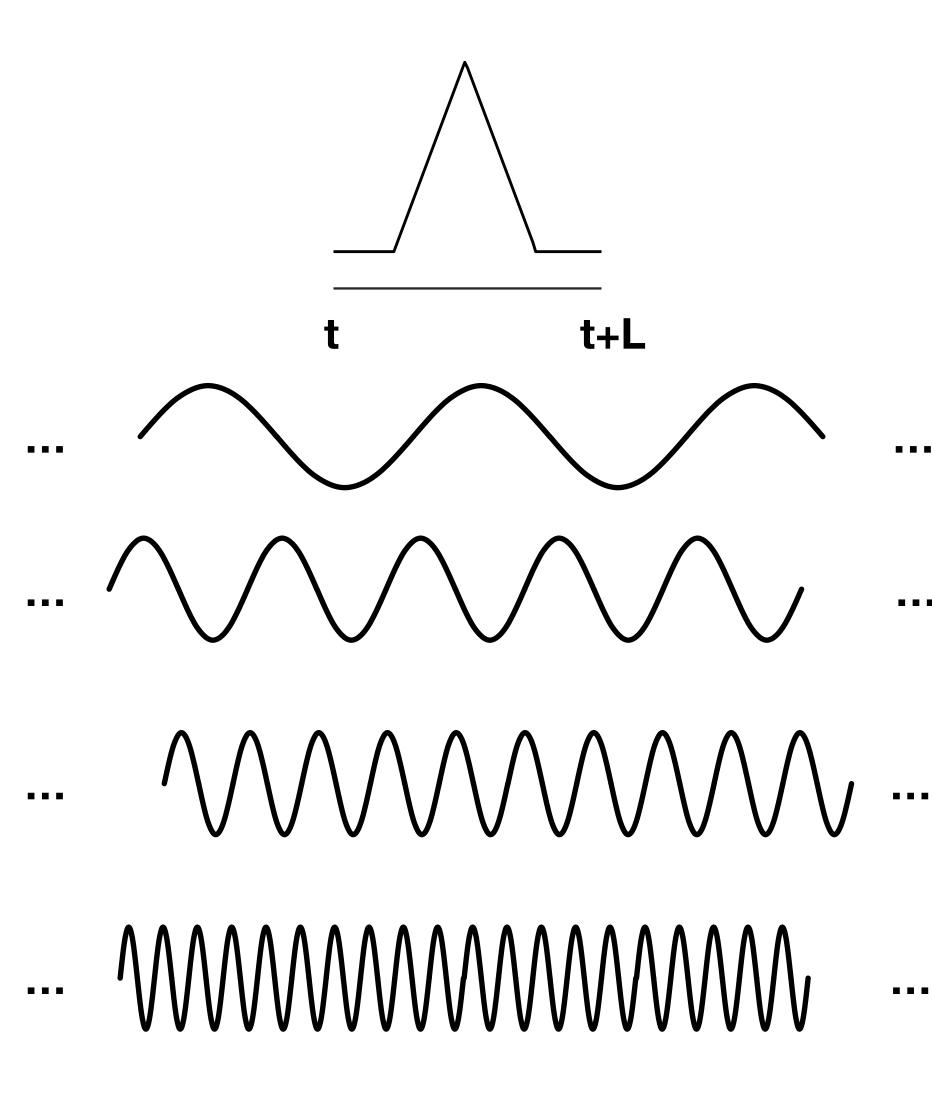
We assumed f and the basis functions are defined only over a fixed internal [t, t+L)



- We assumed f and the basis functions are defined only over a fixed internal [t, t+L)
- But sinusoidal functions have infinite span; they are not limited to a fixed interval



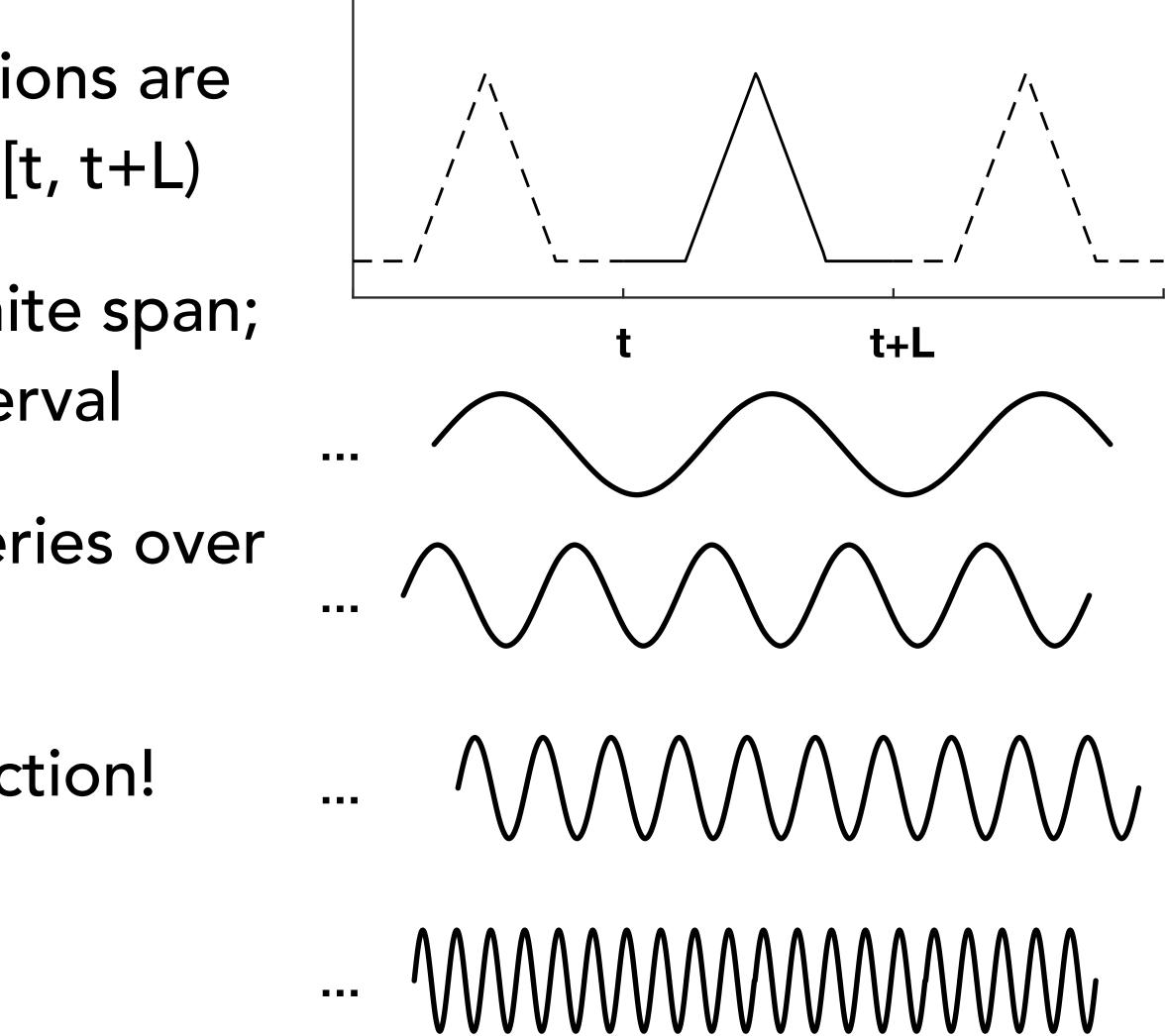
- We assumed f and the basis functions are defined only over a fixed internal [t, t+L)
- But sinusoidal functions have infinite span; they are not limited to a fixed interval
- What if we just add the Fourier series over the entire span?



- We assumed f and the basis functions are defined only over a fixed internal [t, t+L) • But sinusoidal functions have infinite span; t+L they are not limited to a fixed interval What if we just add the Fourier series over the entire span? • We will generate a L-periodic function!

. . .

- We assumed *f* and the basis functions are defined only over a fixed internal [t, t+L)
- But sinusoidal functions have infinite span; they are not limited to a fixed interval
- What if we just add the Fourier series over the entire span?
- We will generate a L-periodic function!



. . .

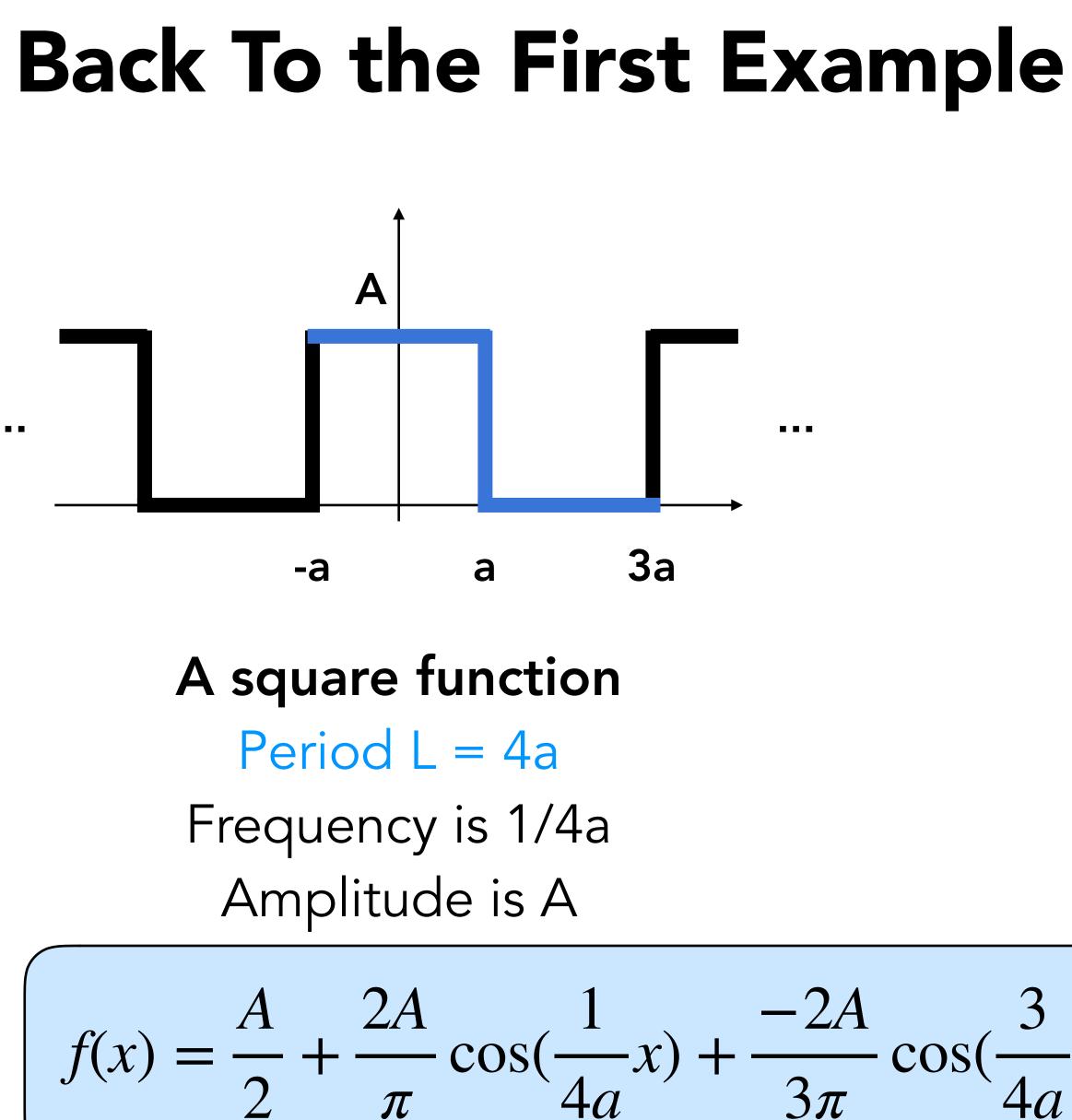
Fourier Series: What It Says

Any periodic function can be/ represented as an infinite weighted sum of sines and cosines with increasing frequencies.

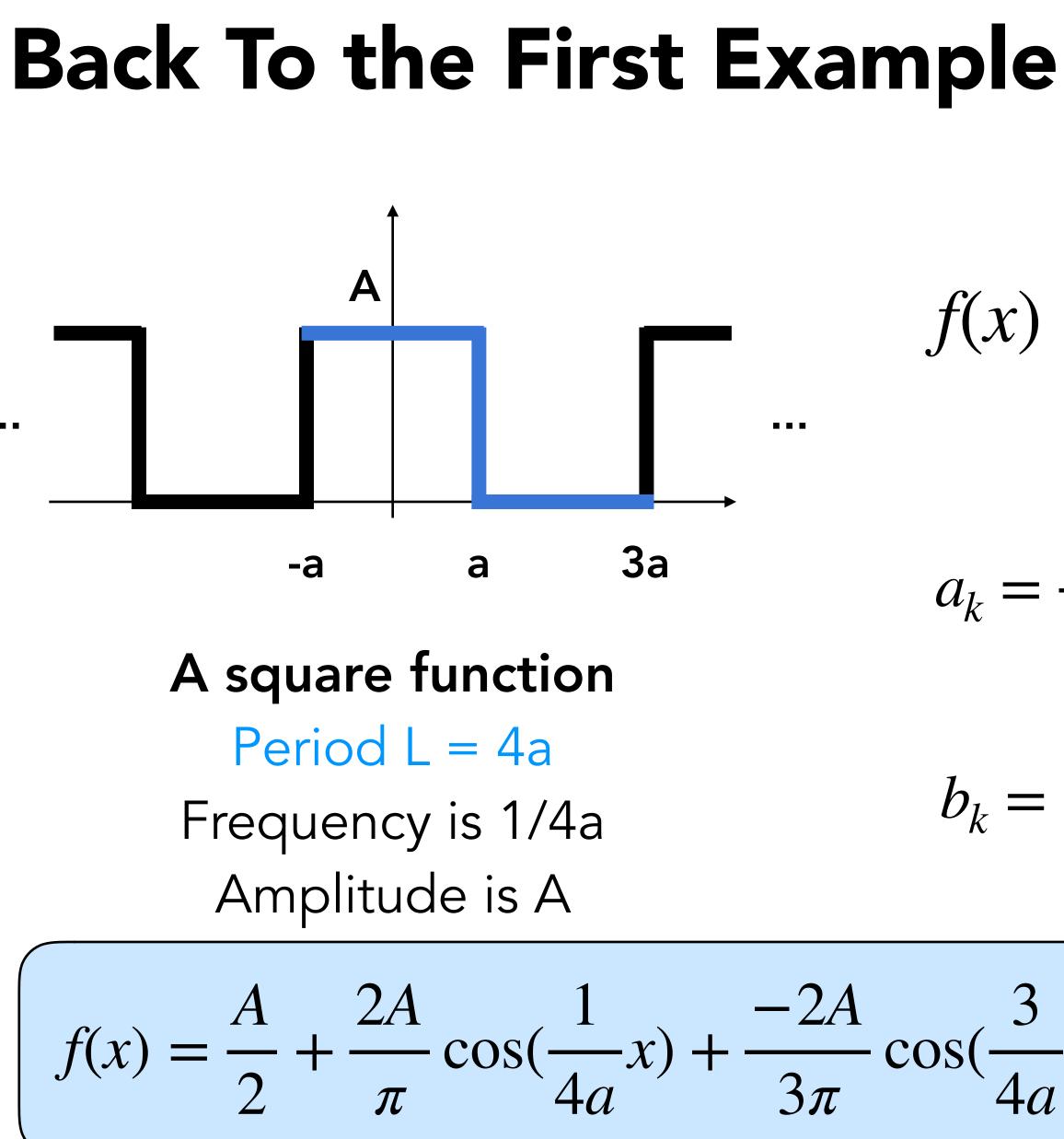
Joseph Fourier (1768 – 1830)

Fourier coefficients

Basis functions



 $f(x) = \frac{A}{2} + \frac{2A}{\pi}\cos(\frac{1}{4a}x) + \frac{-2A}{3\pi}\cos(\frac{3}{4a}x) + \frac{2A}{5\pi}\cos(\frac{5}{4a}x) + \frac{-2A}{7\pi}\cos(\frac{7}{4a}x) + \dots$



 $\omega_k = \frac{2k\pi}{L}$

$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(\omega_k x) + b_k \sin(\omega_k x) \right)$

$$= \frac{2}{L} \int_{t}^{t+L} f(x) \cos(\omega_{k} x) dx$$

$$= \frac{2}{L} \int_{t}^{t+L} f(x) sin(\omega_{k} x) dx$$

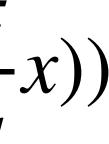
$$\frac{3}{4a}x) + \frac{2A}{5\pi}\cos(\frac{5}{4a}x) + \frac{-2A}{7\pi}\cos(\frac{7}{4a}x) + \dots$$

Back To the First Example $... f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(\frac{k\pi}{2a}x) + b_k \sin(\frac{k\pi}{2a}x))$ 3a -a a $a_k =$ b_k = $f(x) = \frac{A}{2} + \frac{2A}{\pi} \cos(\frac{1}{4a}x) + \frac{-2A}{3\pi} \cos(\frac{1}{4a}x) + \frac$

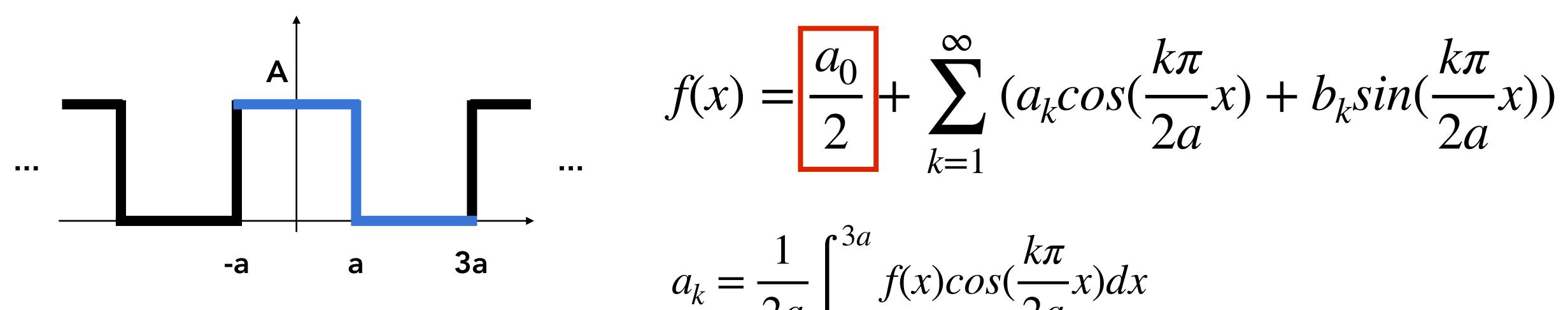
$$=\frac{1}{2a}\int_{-a}^{3a}f(x)cos(\frac{k\pi}{2a}x)dx$$

$$=\frac{1}{2a}\int_{-a}^{3a}f(x)sin(\frac{k\pi}{2a}x)dx$$

$$\frac{3}{4a}x) + \frac{2A}{5\pi}\cos(\frac{5}{4a}x) + \frac{-2A}{7\pi}\cos(\frac{7}{4a}x) + \dots$$

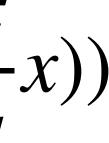


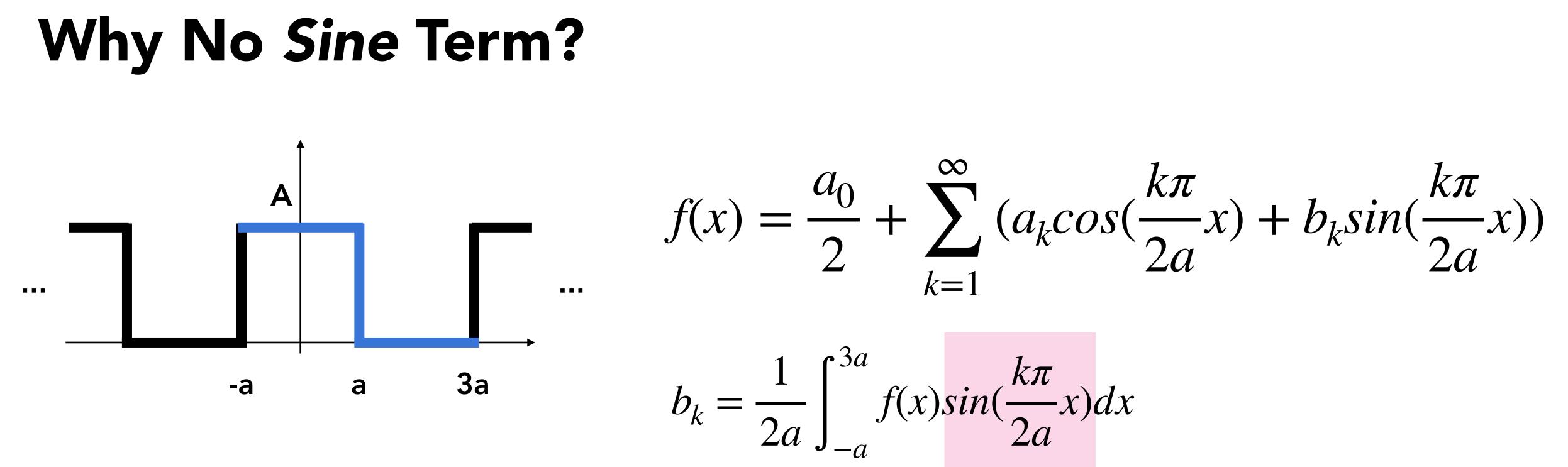
Back To the First Example



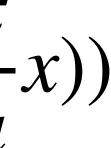
$$a_{0} = \frac{1}{2a} \int_{-a}^{3a} f(x) \cos(\frac{0\pi}{2a}x) dx = \frac{1}{2a} \int_{-a}^{3a} f(x) dx = \frac{1}{2a} 2aA = A$$
$$f(x) = \frac{A}{2} + \frac{2A}{\pi} \cos(\frac{1}{4a}x) + \frac{-2A}{3\pi} \cos(\frac{3}{4a}x) + \frac{2A}{5\pi} \cos(\frac{5}{4a}x) + \frac{-2A}{7\pi} \cos(\frac{7}{4a}x) + \dots$$

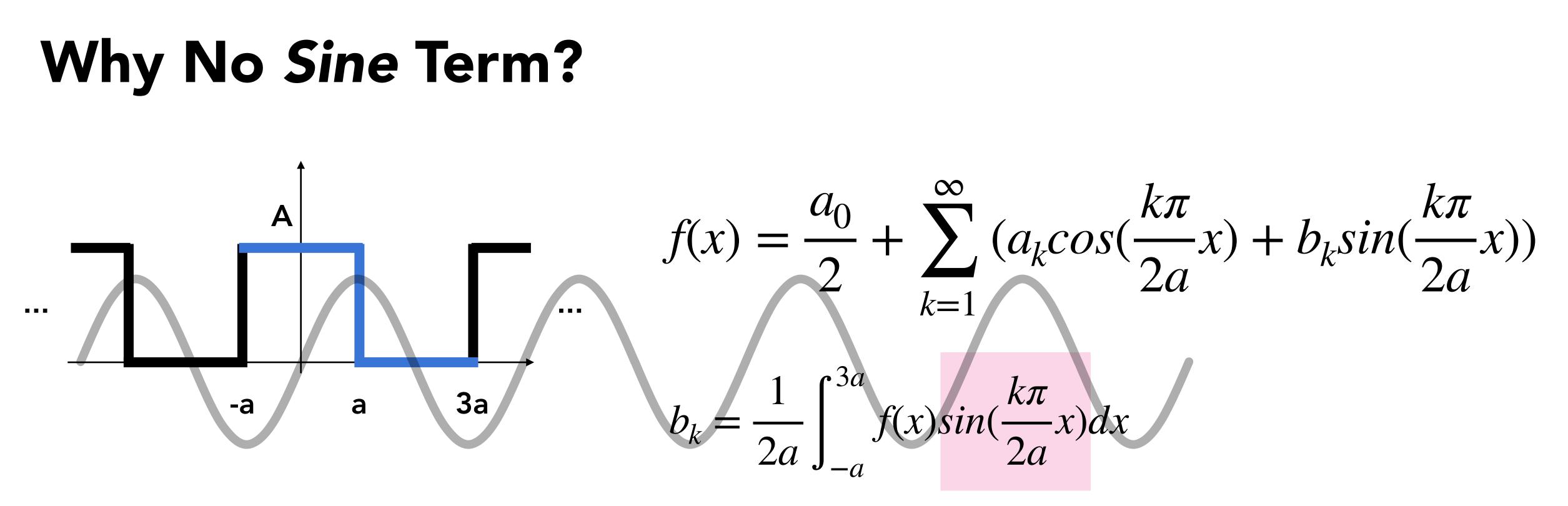
 $a_k = \frac{1}{2a} \int_{a}^{3a} f(x) \cos(\frac{k\pi}{2a}x) dx$





The period of the sine functions are 4a/k, i.e., 4a, 2a, a, a/2, ...

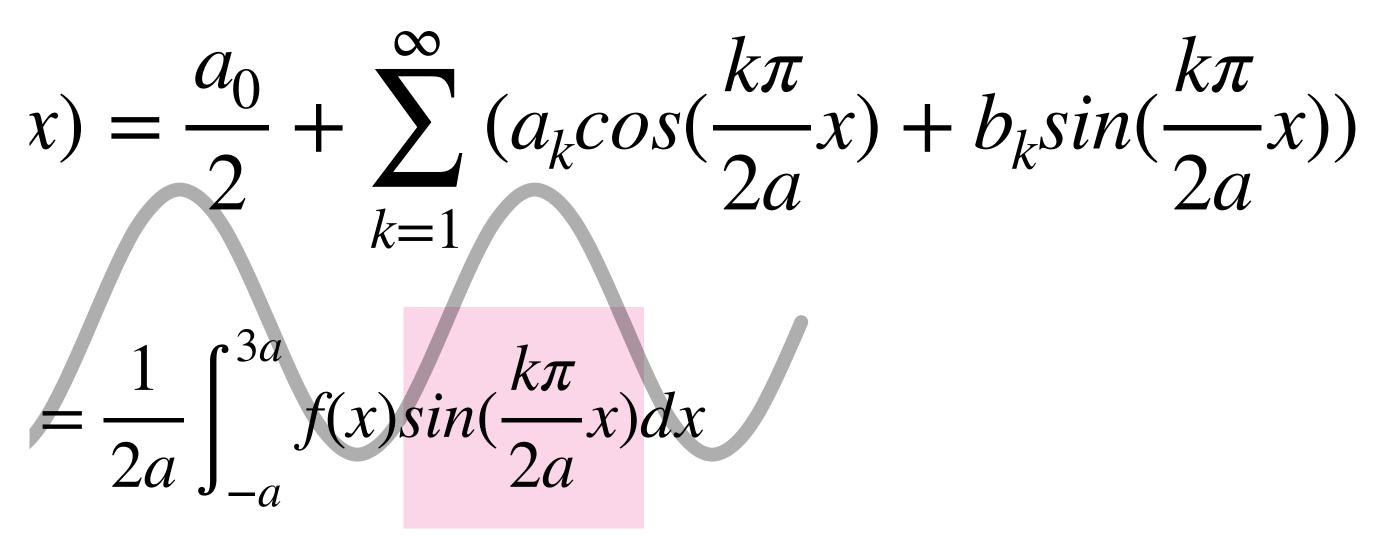




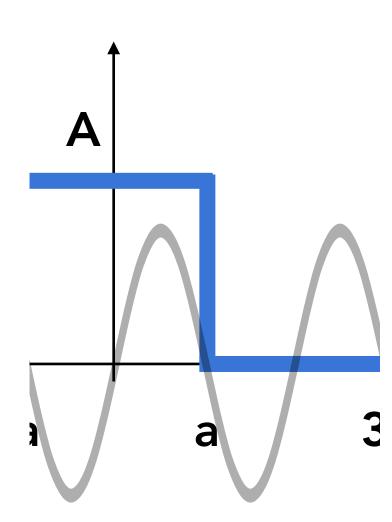
• The period of the sine functions are 4a/k, i.e., 4a, 2a, a, a/2, ...

Why No Sine Term? 3 a

• The period of the sine functions are 4a/k, i.e., 4a, 2a, a, a/2, ...



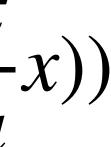
Why No Sine Term?



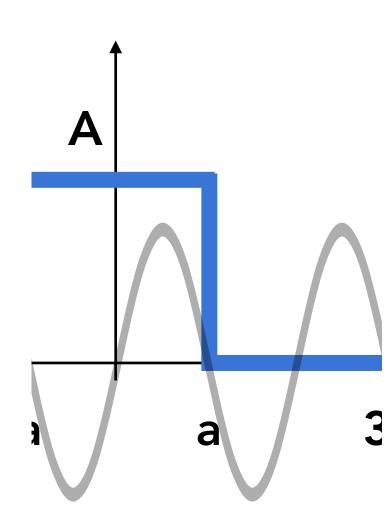
The period of the sine functions are 4a/k, i.e., 4a, 2a, a, a/2, ...

 $x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(\frac{k\pi}{2a}x) + b_k \sin(\frac{k\pi}{2a}x) \right)$

 $=\frac{1}{2a}\int_{-a}^{3a}f(x)sin(\frac{k\pi}{2a}x)dx$



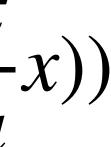
Why No Sine Term?



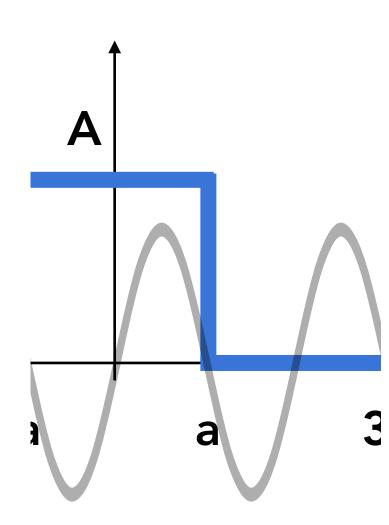
- The period of the *sine* functions are 4a/k, i.e., 4a, 2a, a, a/2, ...
- Since sine is an odd function, b_k always becomes 0

$$x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(\frac{k\pi}{2a}x) + b_k \sin(\frac{k\pi}{2a}x)\right)$$

$$=\frac{1}{2a}\int_{-a}^{3a}f(x)\sin(\frac{k\pi}{2a}x)dx$$



Why No Sine Term?

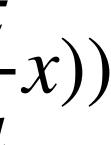


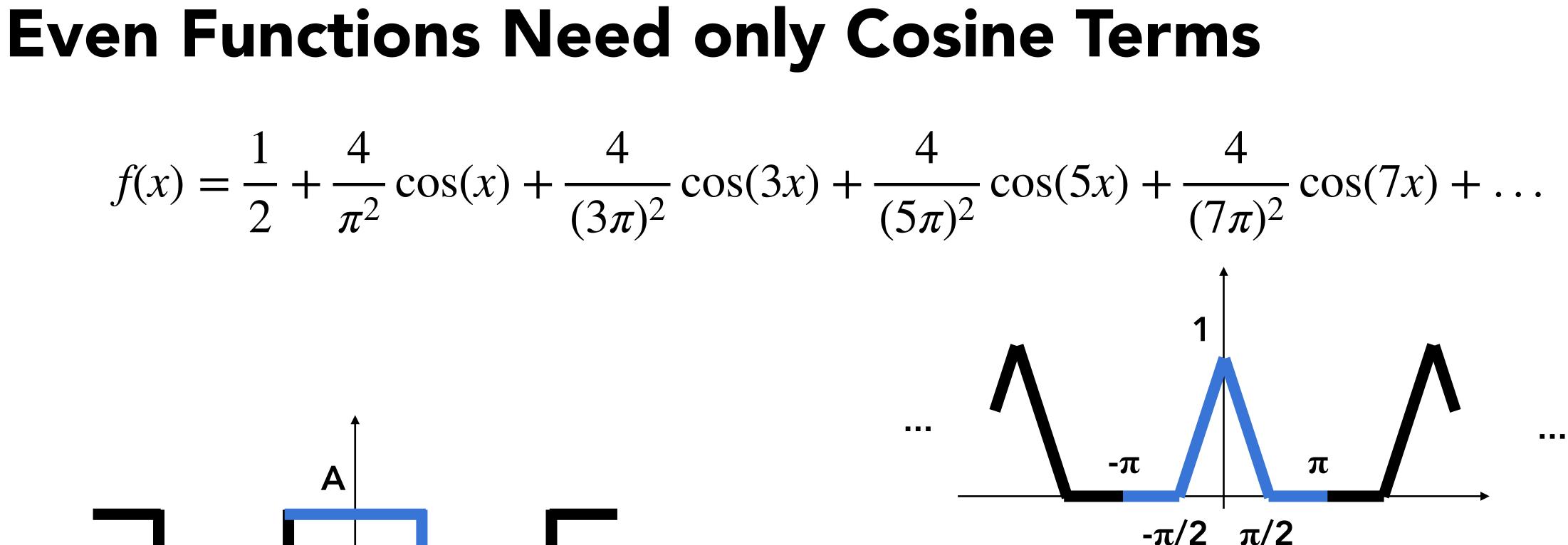
- The period of the sine functions are 4a/k, i.e., 4a, 2a, a, a/2, ...
- Since sine is an odd function, b_k always becomes 0

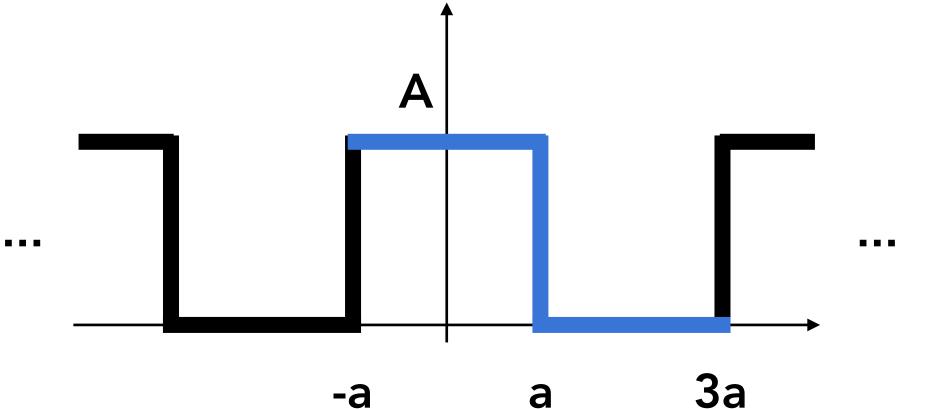
$$\int f(x) = \frac{A}{2} + \frac{2A}{\pi} \cos(\frac{1}{4a}x) + \frac{-2A}{3\pi} \cos(\frac{3}{4a}x) + \frac{2A}{5\pi} \cos(\frac{5}{4a}x) + \frac{-2A}{7\pi} \cos(\frac{7}{4a}x) + \dots$$

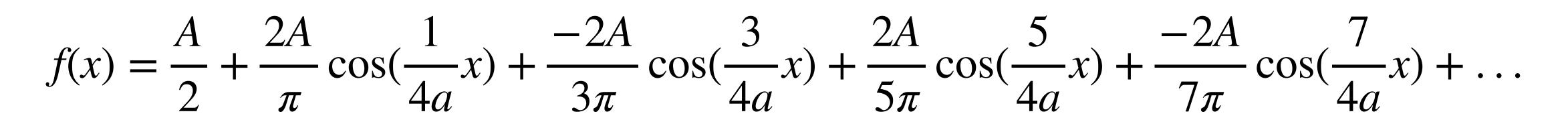
$$x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(\frac{k\pi}{2a}x) + b_k \sin(\frac{k\pi}{2a}x)\right)$$

$$=\frac{1}{2a}\int_{-a}^{3a}f(x)\sin(\frac{k\pi}{2a}x)dx$$

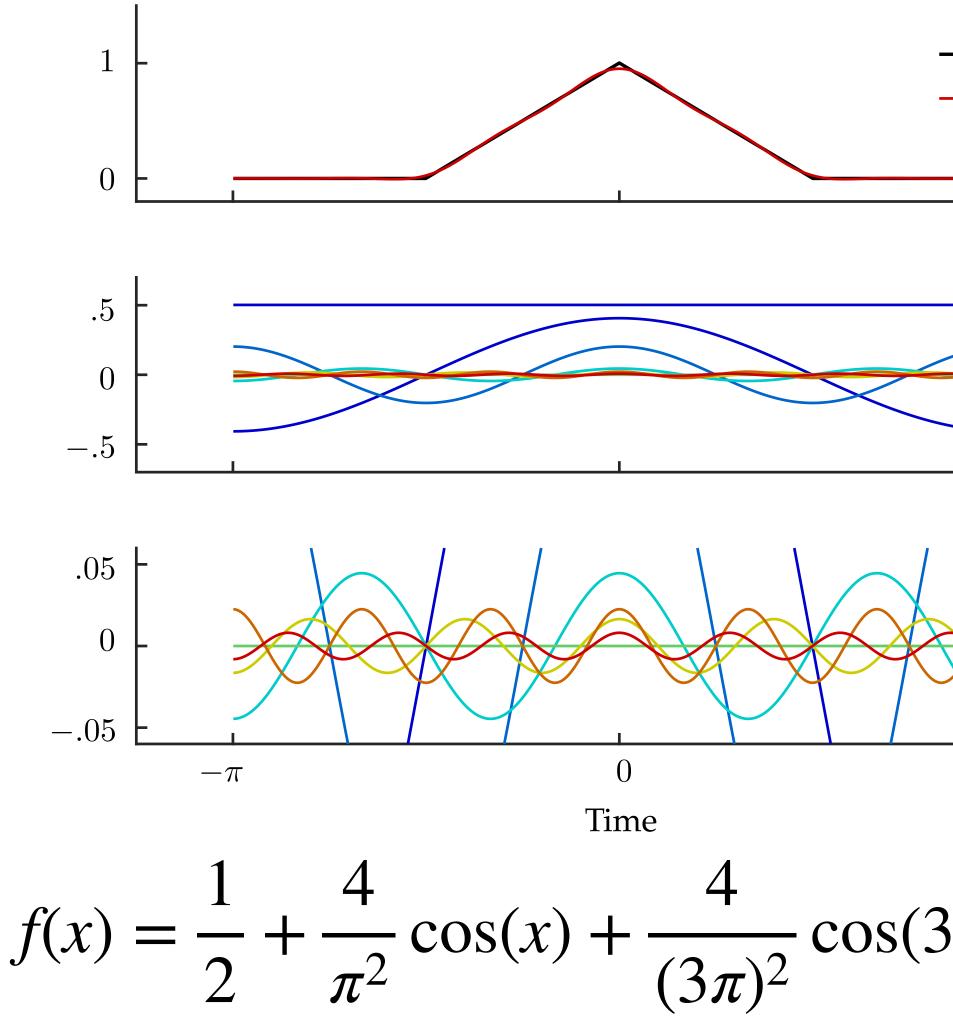


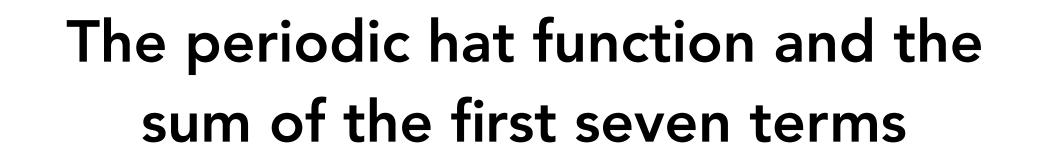






Function Approximation

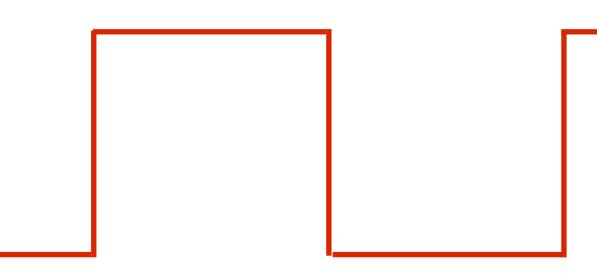


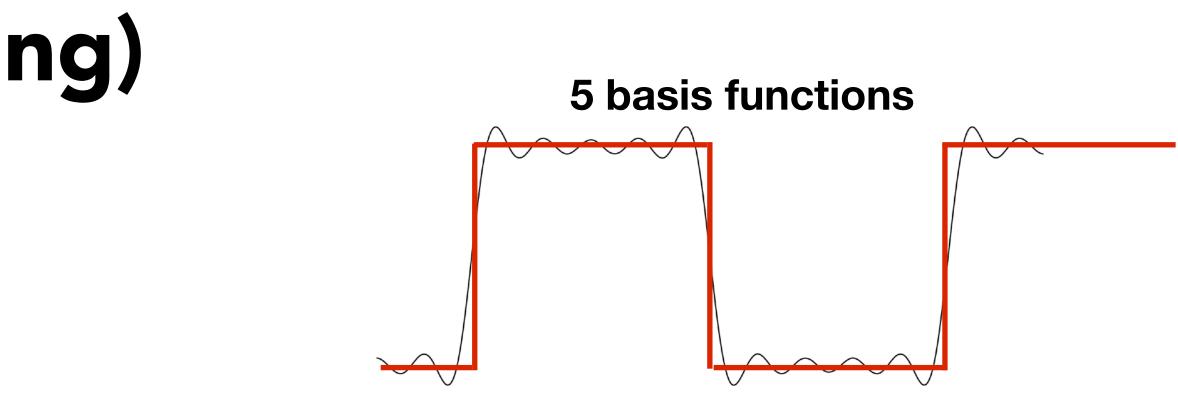


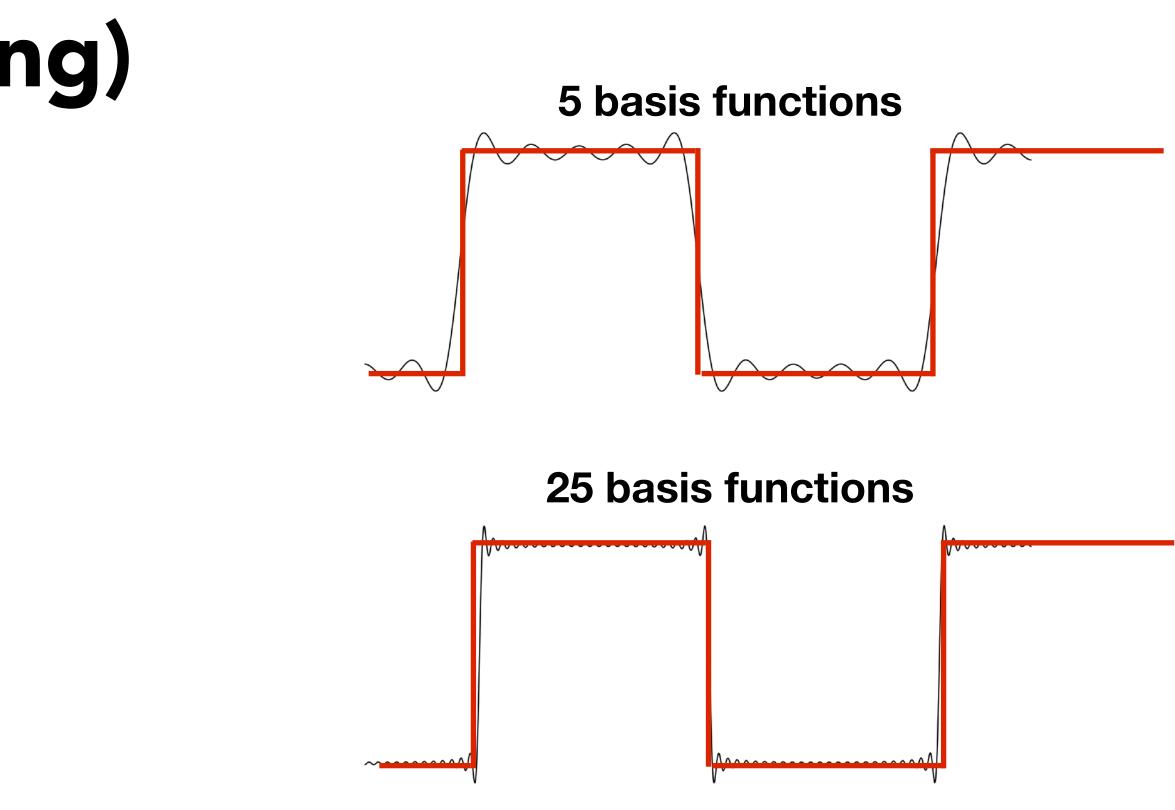
The first seven terms

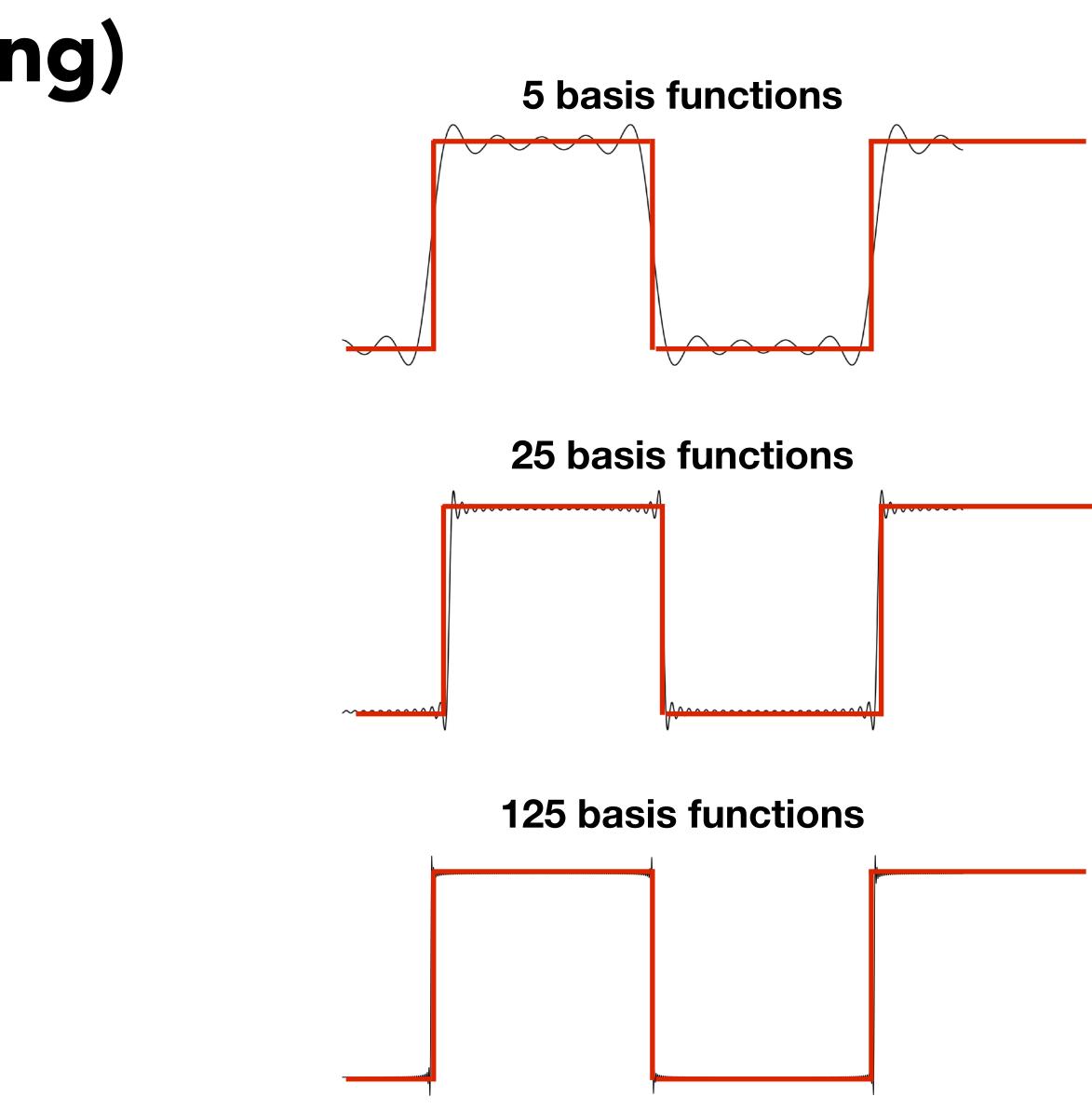
$$(3x) + \frac{4}{(5\pi)^2}\cos(5x) + \frac{4}{(7\pi)^2}\cos(7x) + \dots$$

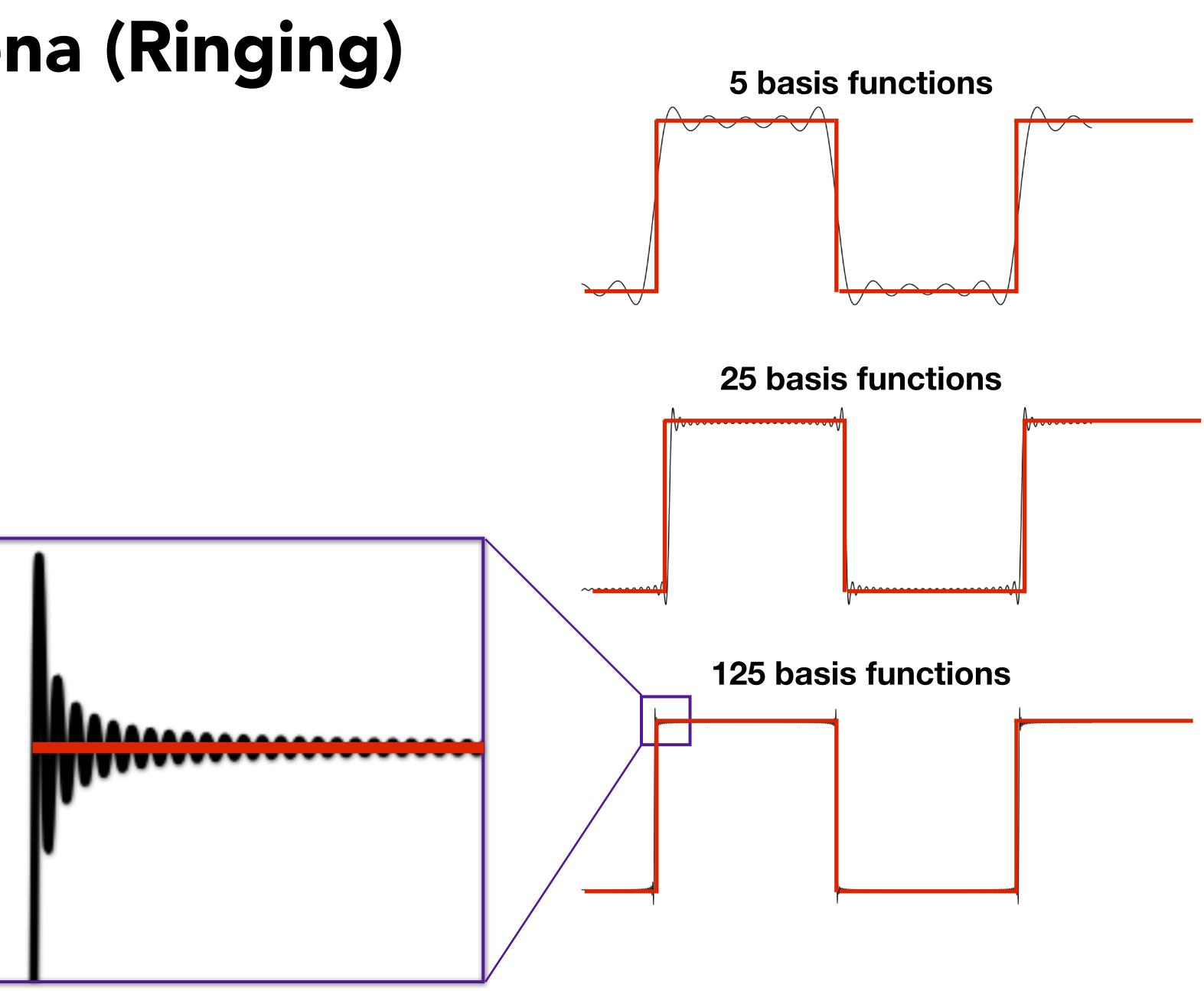
 π

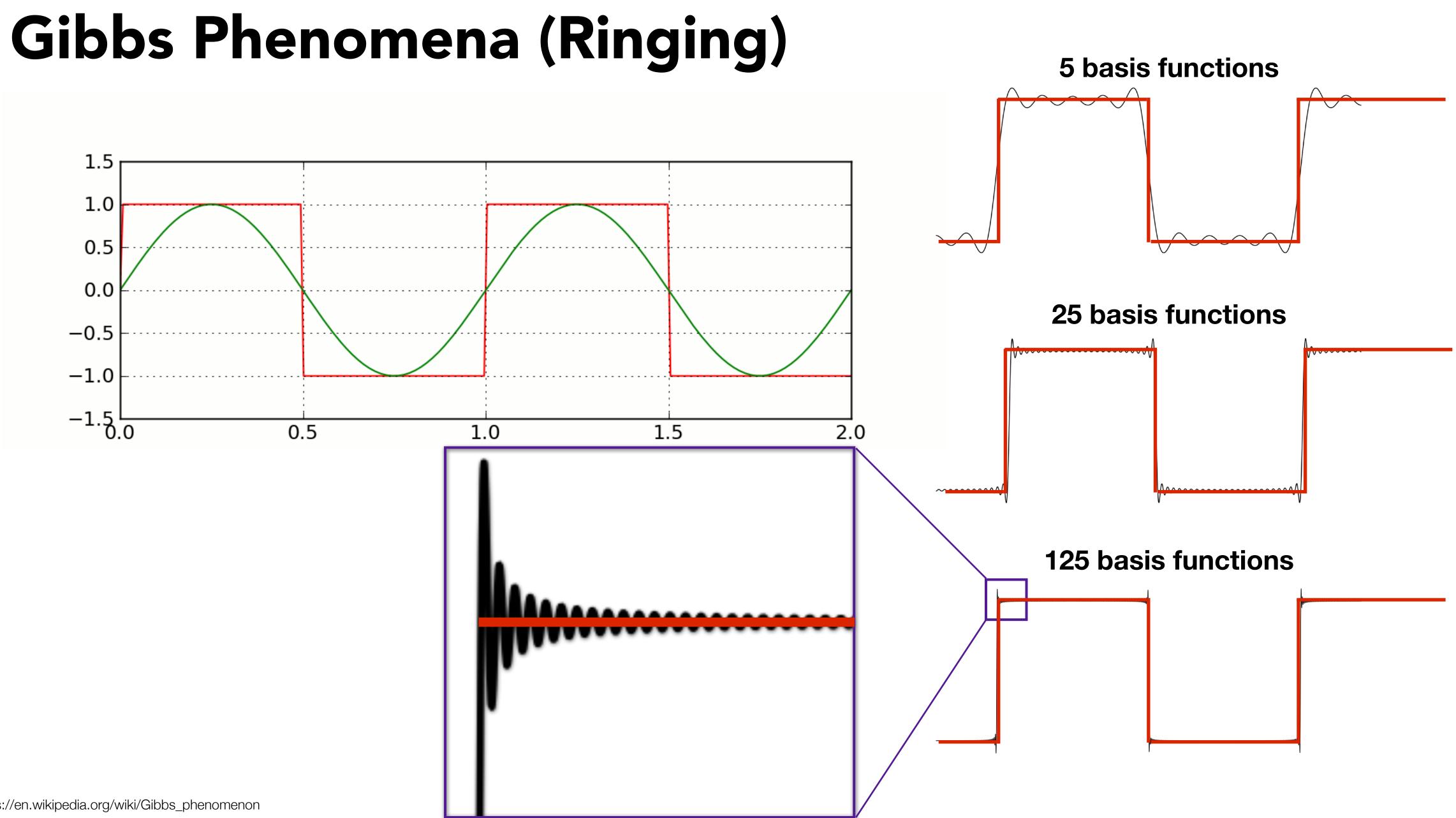


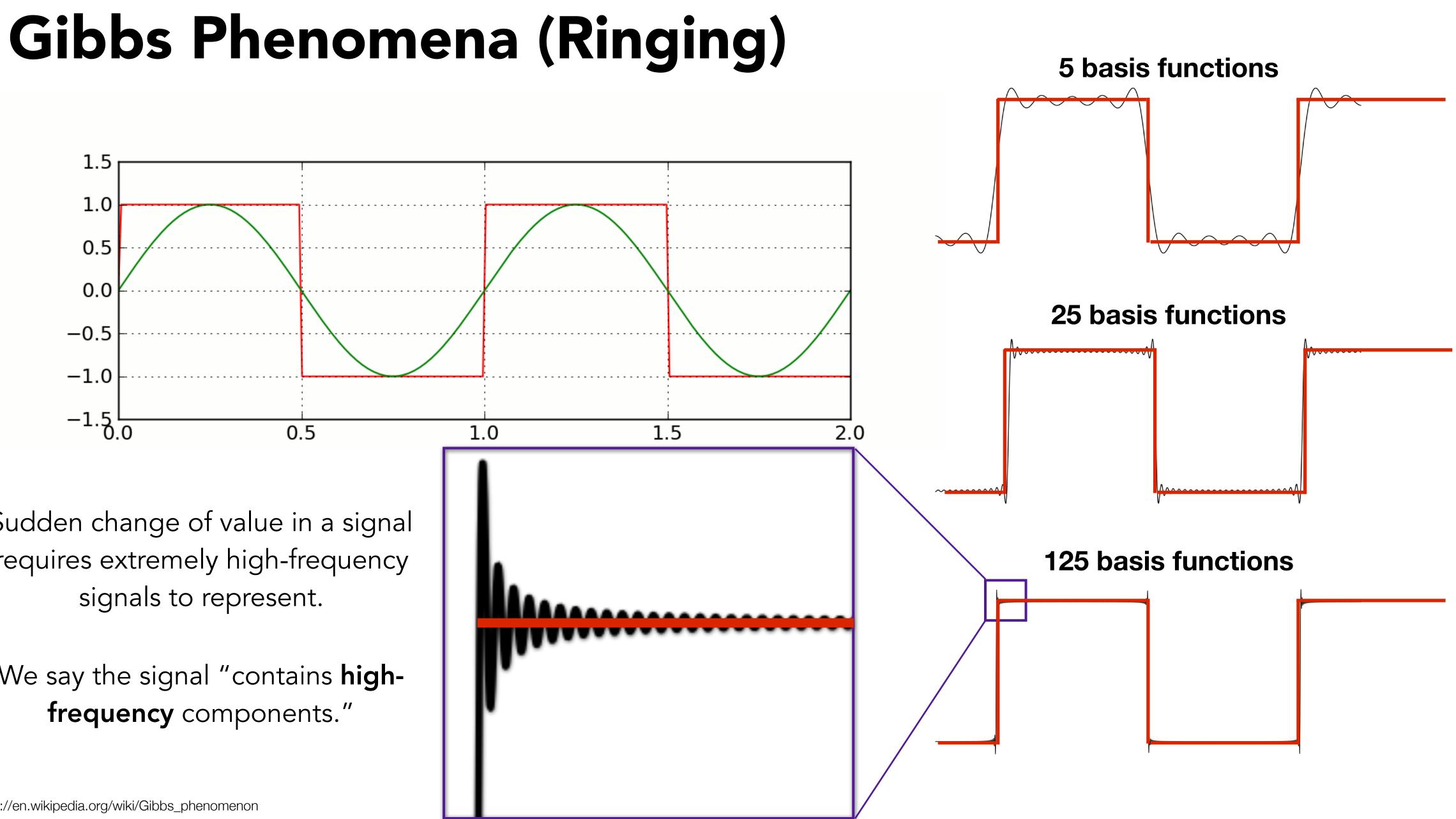






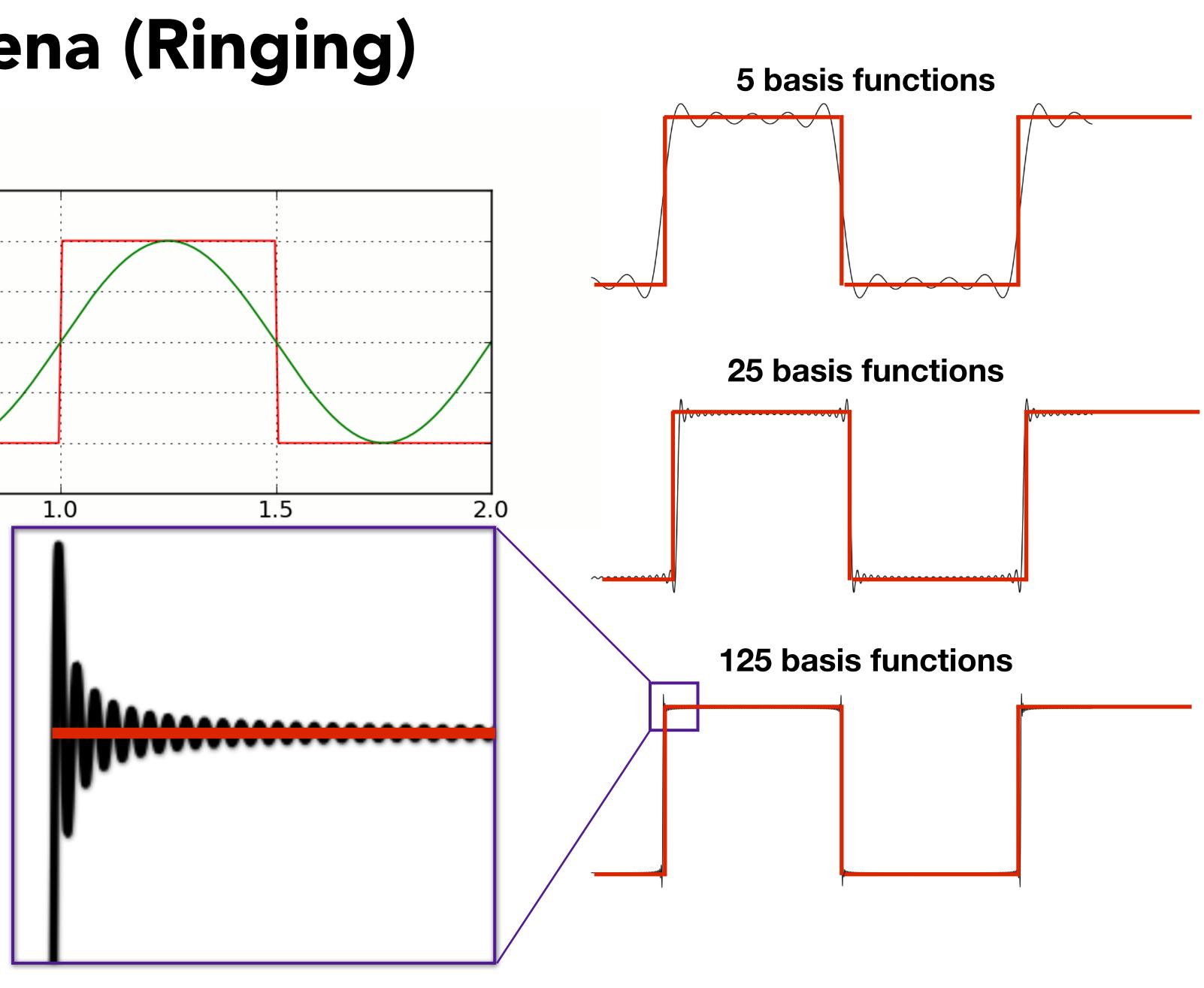






Sudden change of value in a signal requires extremely high-frequency

We say the signal "contains highfrequency components."



Complex Basis Functions

Complex Basis Functions

Complex Basis Functions

$$\left\{e^{\frac{ik\pi x}{L}}\right\}_{k=-\infty}^{k=\infty}, x \in [-L, L), k \in \mathbb{Z}$$

 $\phi_k = e^{\frac{ik\pi x}{L}}$

 $\left\{\ldots, e^{\frac{-2i\pi x}{L}}, e^{\frac{-i\pi x}{L}}, e^{\frac{i0\pi x}{L}}, e^{\frac{i1\pi x}{L}}, \ldots\right\}$

Complex Basis Functions

$$\left\{ e^{\frac{ik\pi x}{L}} \right\}_{k=-\infty}^{k=\infty}, x \in [-L, L), k \in \mathbb{Z}$$

$$\phi_k = e^{\frac{ik\pi x}{L}} \qquad \phi_i \cdot \phi_j = \begin{cases} 0, & \text{if} \\ 2L, & \text{if} \end{cases}$$

$\left\{\ldots, e^{\frac{-2i\pi x}{L}}, e^{\frac{-i\pi x}{L}}, e^{\frac{i0\pi x}{L}}, e^{\frac{i1\pi x}{L}}, \ldots\right\}$

if $i \neq j$, Mutually orthogonal vectors over [if i = j. L, L) with a norm of sqrt(2L)

$$\phi_k = e^{\frac{ik\pi x}{L}}$$

$$f(x) = \sum_{k=-\infty}^{\infty} c_k \phi_k$$

$$\phi_k = e^{\frac{ik\pi x}{L}}$$

$$f(x) = \sum_{k=-\infty}^{\infty} c_k \phi_k$$

$$c_k = \frac{f(x) \cdot \phi_k}{\|\phi_k\|^2} = \frac{1}{2L} \int_{-L}^{L} f(x) \bar{\phi}_k dx$$

 $=\frac{1}{2L}\int_{-L}^{L}f(x)e^{\frac{-ik\pi x}{L}}dx$

Can prove equivalence using Euler's formula: e^{ikx} =cos(kx)+ i sin(kx)

$$\phi_k = e^{\frac{ik\pi x}{L}}$$

$$f(x) = \sum_{k=-\infty}^{\infty} c_k \phi_k = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos\left(\frac{k\pi x}{L}\right) + b_k \sin\left(\frac{k\pi x}{L}\right) \right] x \in [-L, L)$$

$$c_k = \frac{f(x) \cdot \phi_k}{\|\phi_k\|^2} = \frac{1}{2L} \int_{-L}^{L} f(x) \bar{\phi}_k dx$$

$$=\frac{1}{2L}\int_{-L}^{L}f(x)e^{\frac{-ik\pi x}{L}}dx$$

- Can prove equivalence using Euler's formula: e^{ikx} =cos(kx)+ i sin(kx)
- More general and concise

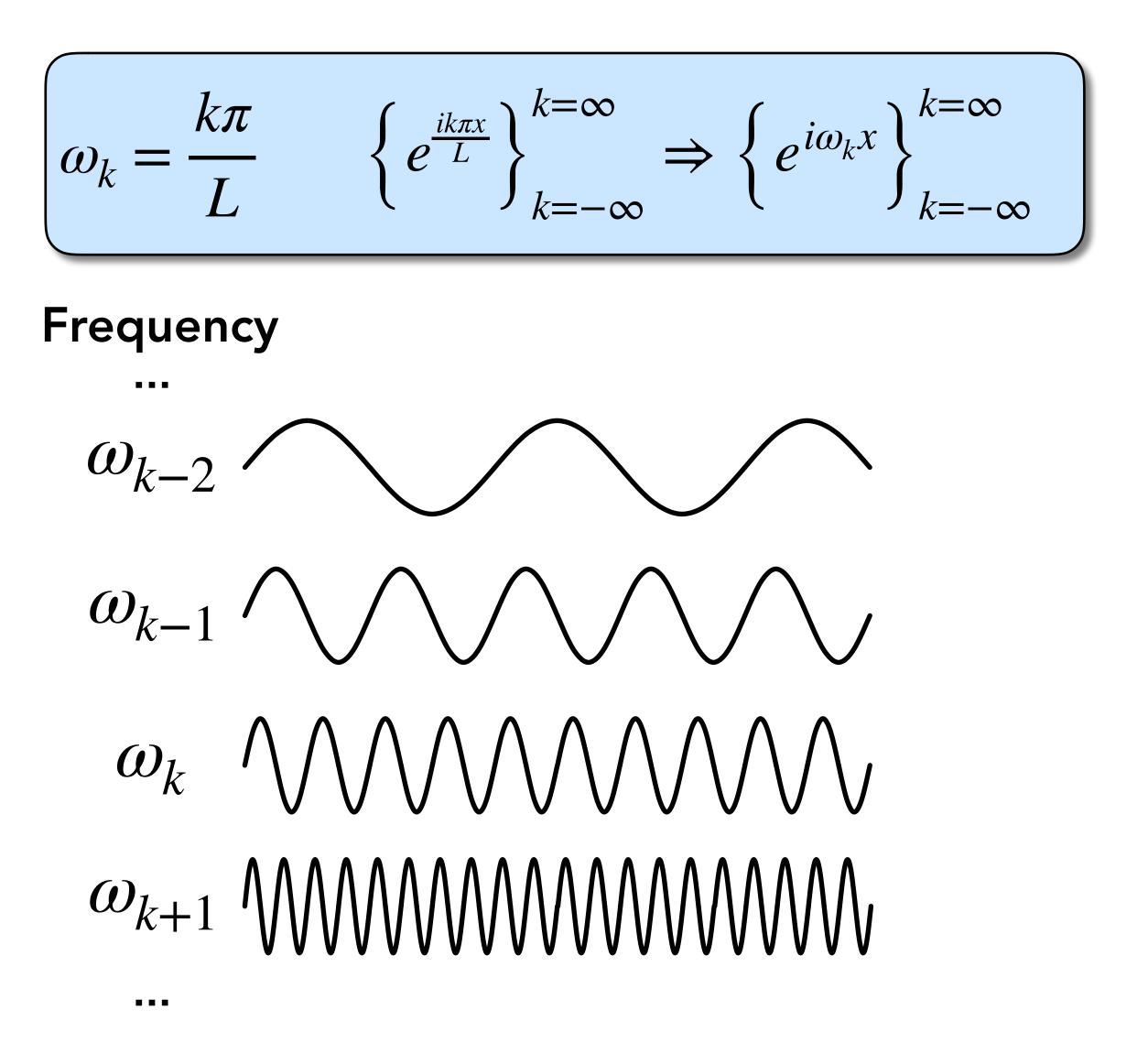
$$\phi_k = e^{\frac{ik\pi x}{L}}$$

$$f(x) = \sum_{k=-\infty}^{\infty} c_k \ \phi_k = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos\left(\frac{k\pi x}{L}\right) + b_k \sin\left(\frac{k\pi x}{L}\right) \right] \ x \in [-L, L]$$

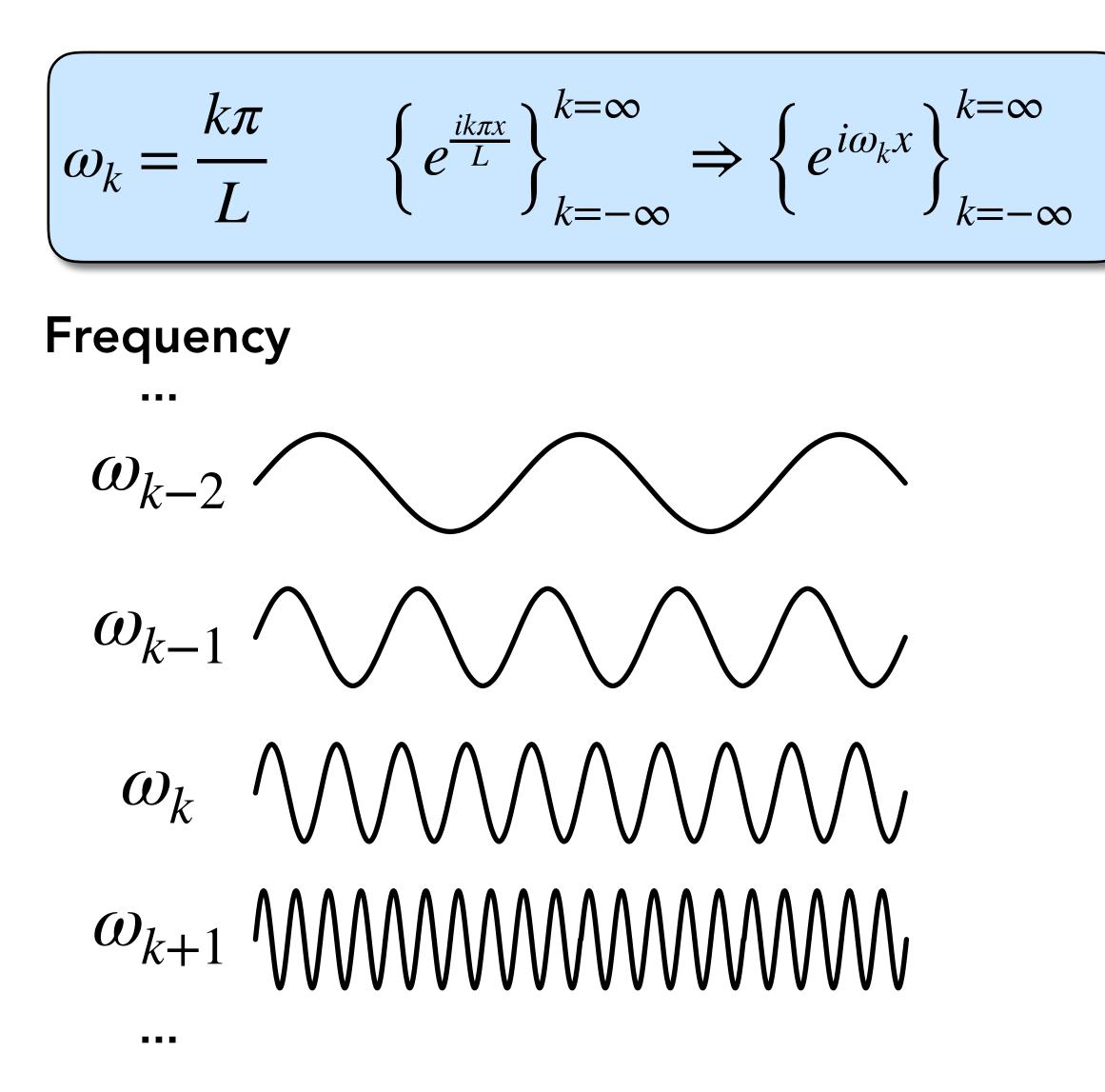
$$c_k = \frac{f(x) \cdot \phi_k}{\|\phi_k\|^2} = \frac{1}{2L} \int_{-L}^{L} f(x) \bar{\phi}_k dx$$

$$=\frac{1}{2L}\int_{-L}^{L}f(x)e^{\frac{-ik\pi x}{L}}dx$$

Basis Functions of Complex Fourier Series

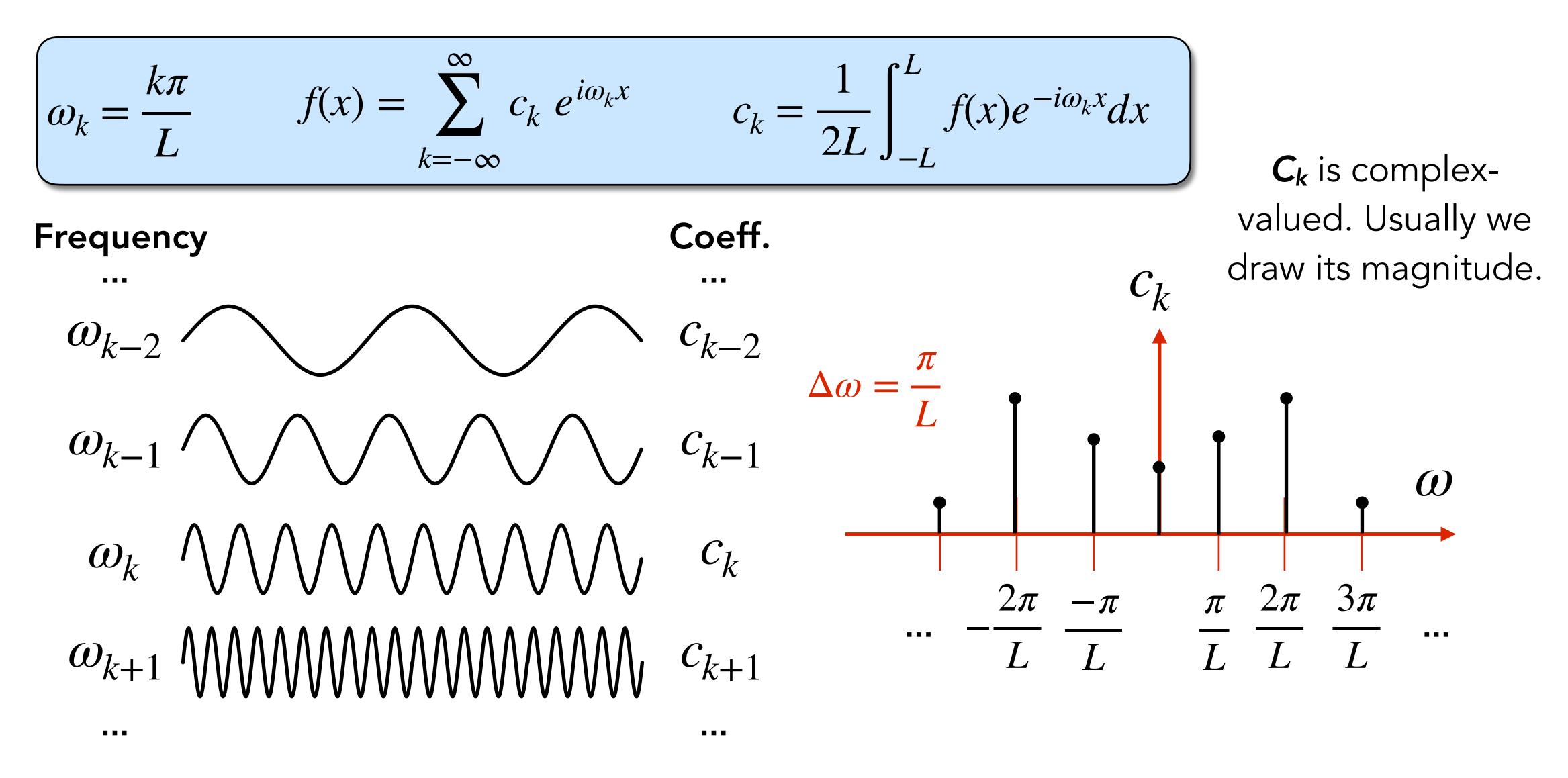


Basis Functions of Complex Fourier Series



As **k** increases, ω_k increase, i.e., the **frequency** of the basis functions increase, at a uniform interval of π/L .

Coefficients of Complex Fourier Series



Geometric Interpretation

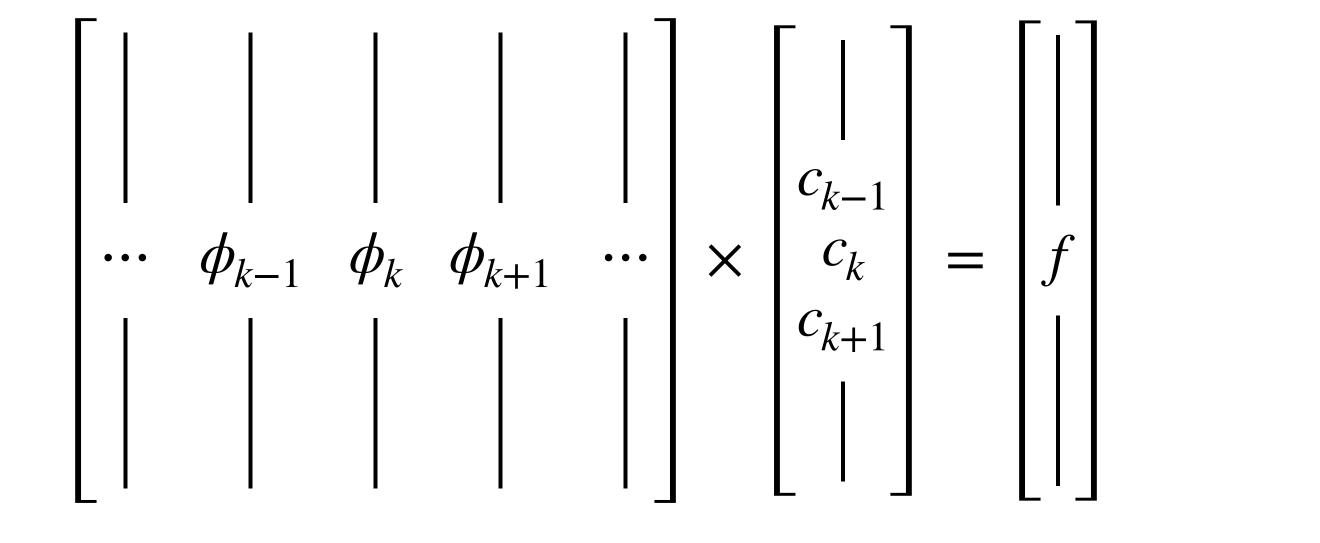
$$\phi_k = e^{\frac{ik\pi x}{L}}$$

$$f(x) = \sum_{k=-\infty}^{\infty} c_k \phi_k$$

Geometric Interpretation

$$\phi_k = e^{\frac{ik\pi x}{L}}$$

$$f(x) = \sum_{k=-\infty}^{\infty} c_k \phi_k$$



n

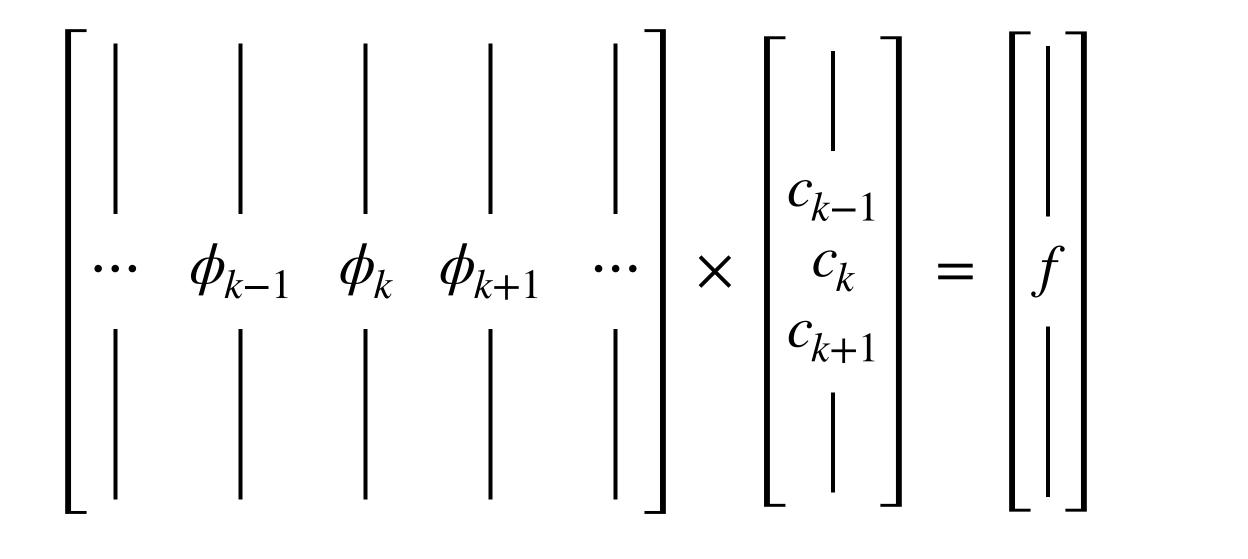
Geometric Interpretation

{c_k} is a Hilbert-space vector trans vector.

$$\phi_k = e^{\frac{ik\pi x}{L}}$$

$$f(x) = \sum_{k=-\infty}^{\infty} c_k \phi_k$$

• {c_k} is a Hilbert-space vector transformed from f, another Hilbert-space



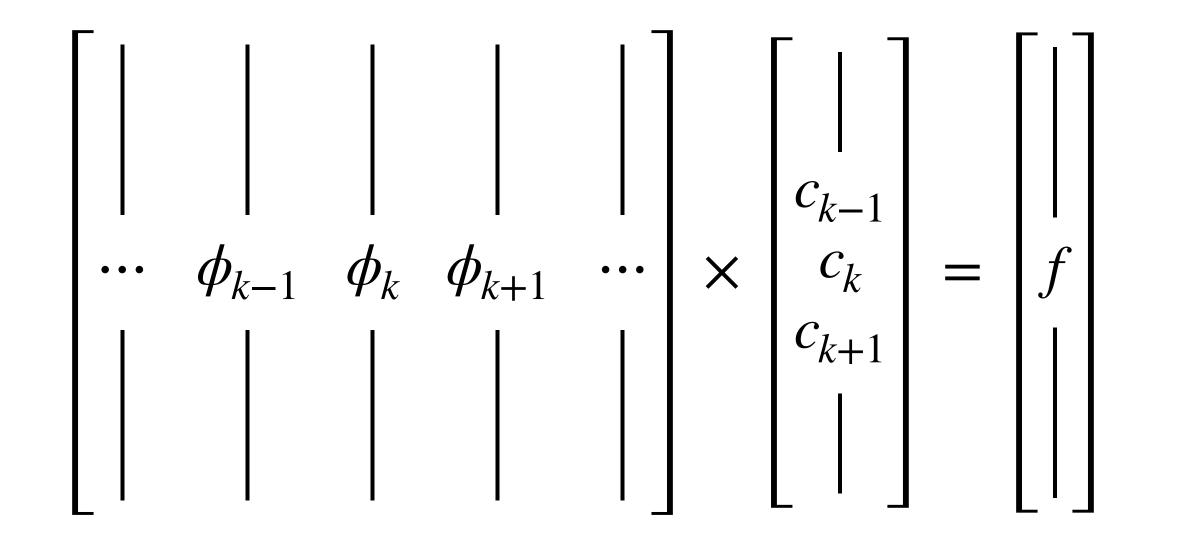
Geometric Interpretation

- vector.
- What kind of transform is this? Homework!

$$\phi_k = e^{\frac{ik\pi x}{L}}$$

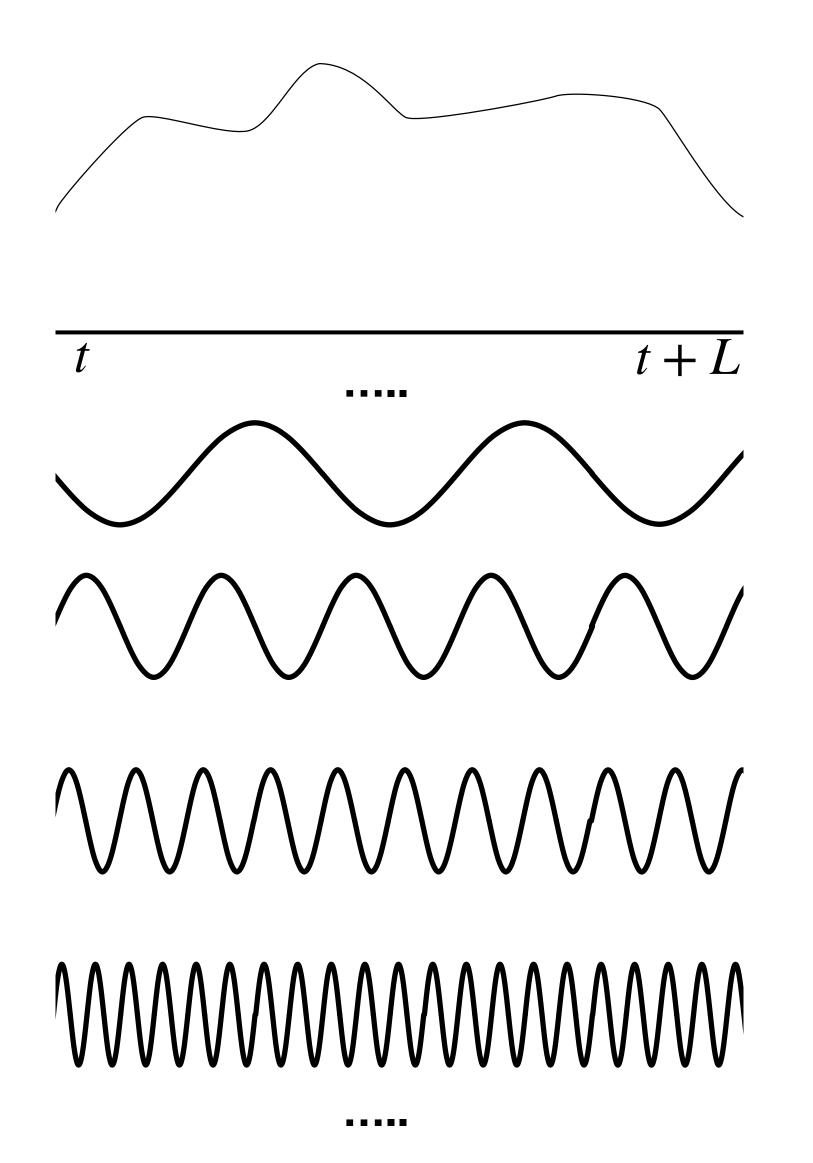
$$f(x) = \sum_{k=-\infty}^{\infty} c_k \phi_k$$

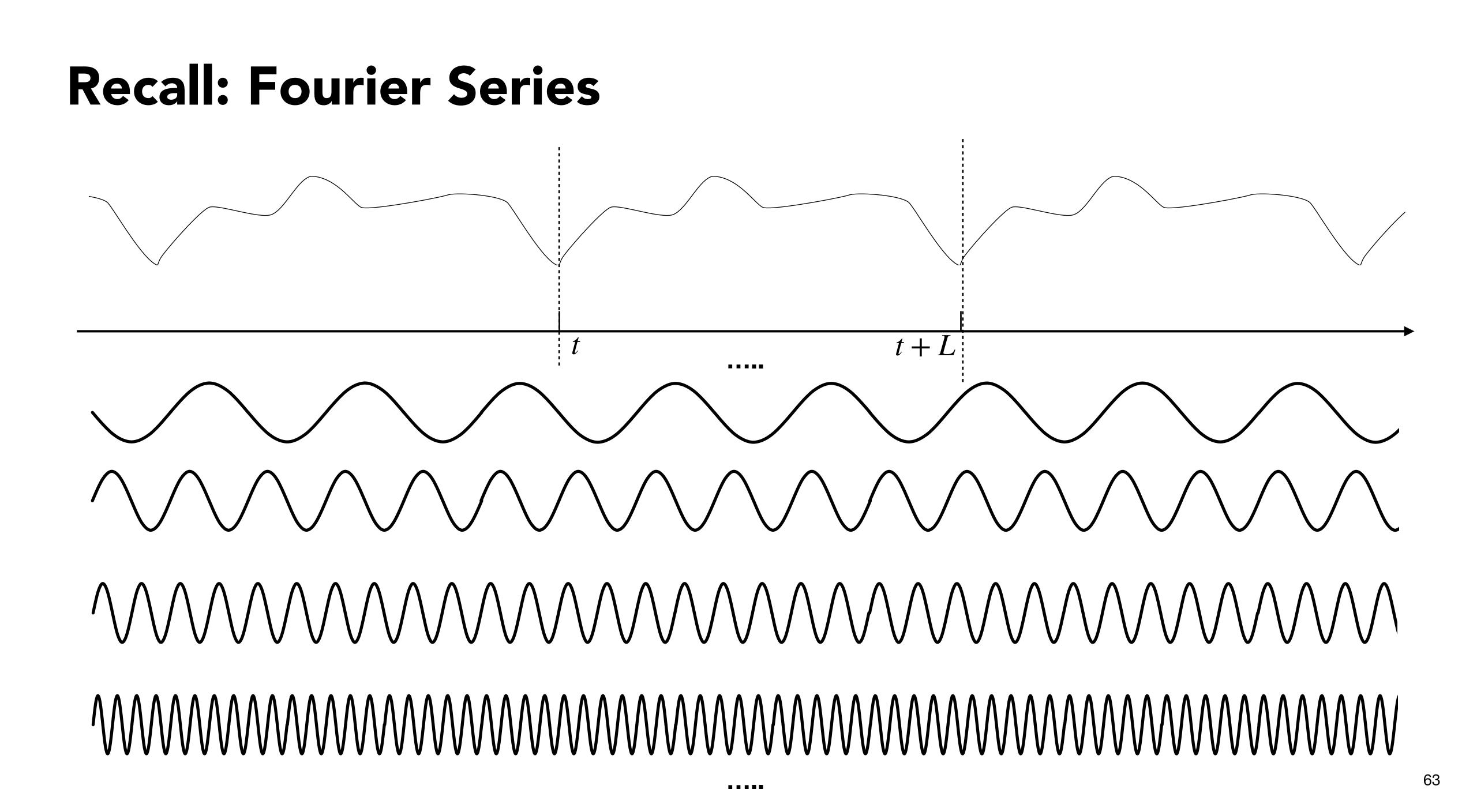
• {c_k} is a Hilbert-space vector transformed from f, another Hilbert-space

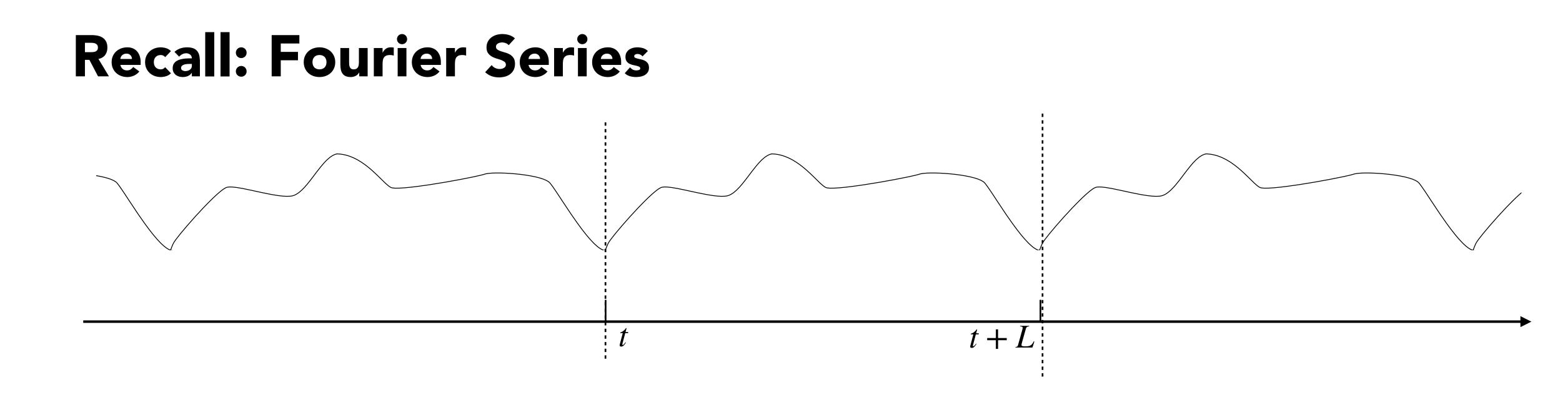


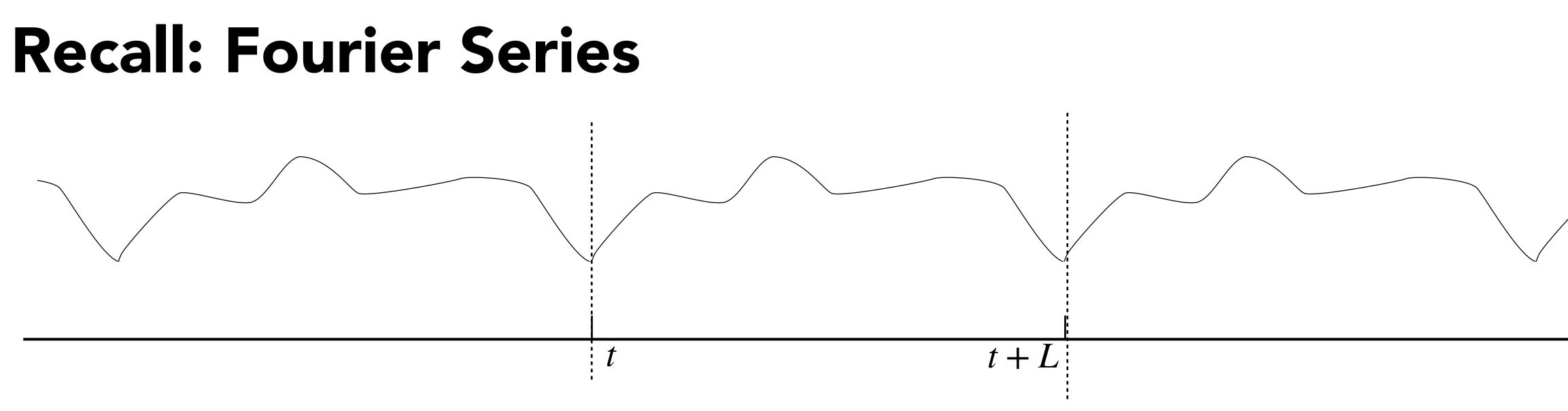
Discrete Fourier Transform (DFT)

Recall: Fourier Series

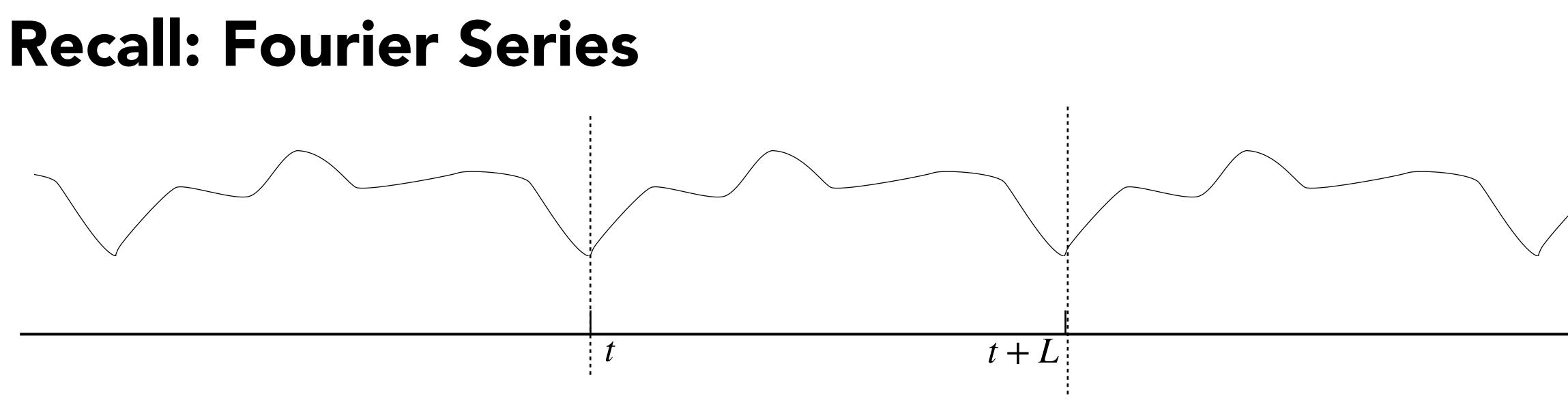




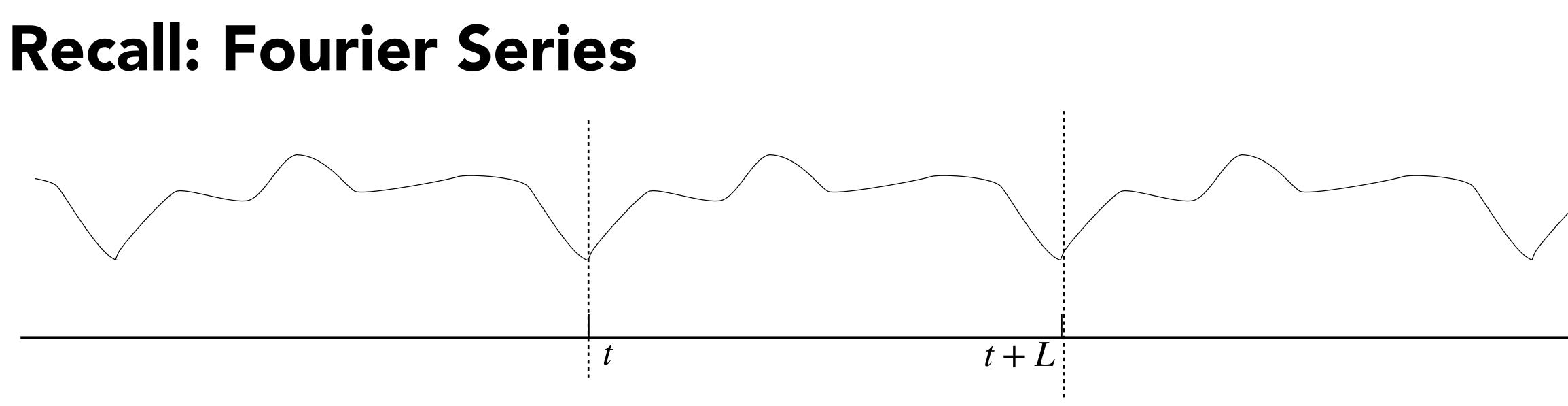




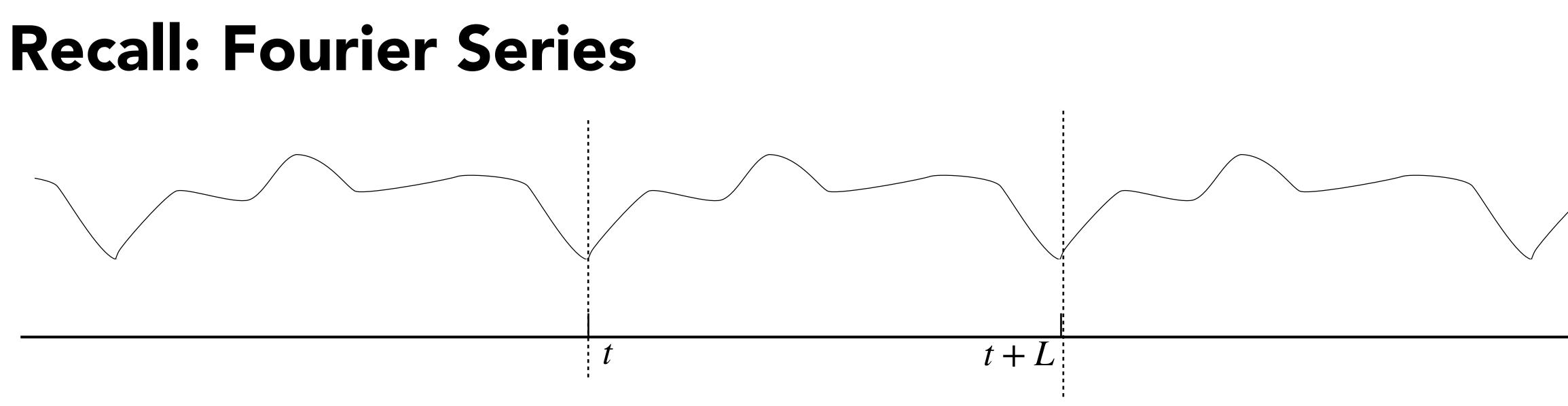
• Fourier series applies to:



- Fourier series applies to:
 - Finite interval (say L) + Continuous function

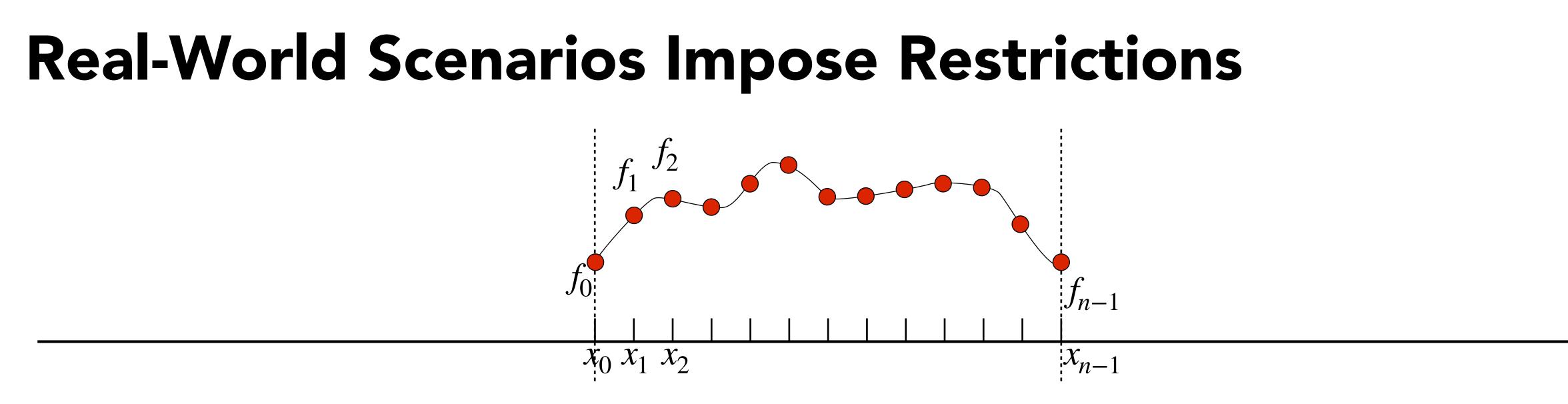


- Fourier series applies to:
 - Finite interval (say L) + Continuous function
 - Or equivalently: an L-periodic function with an infinite span



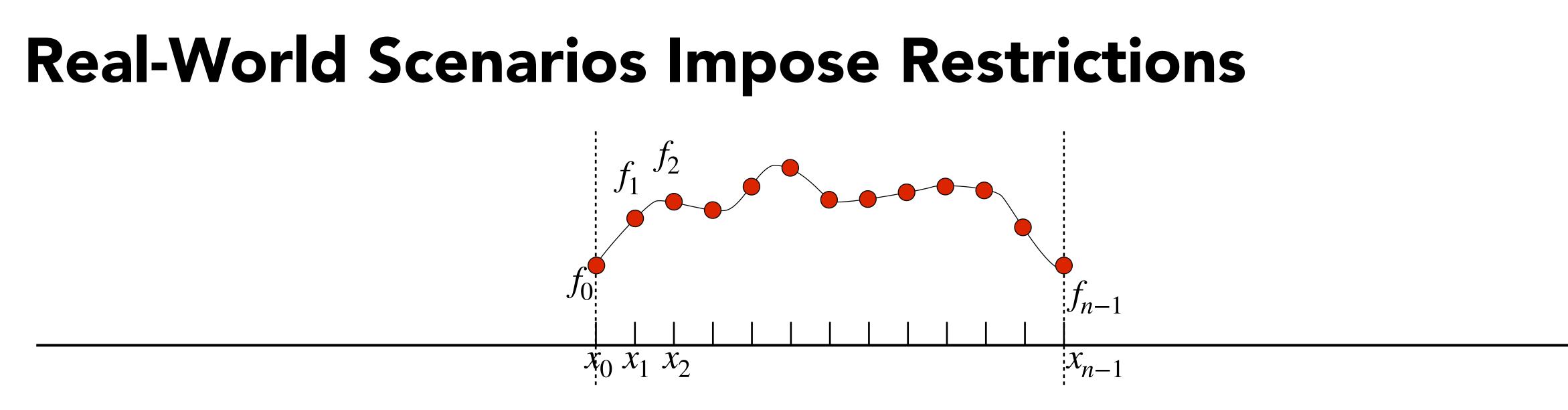
- Fourier series applies to:
 - Finite interval (say L) + Continuous function
 - Or equivalently: an L-periodic function with an infinite span
- infinitely-dimensional vector

• We need infinitely many basis functions, since a continuous function is an

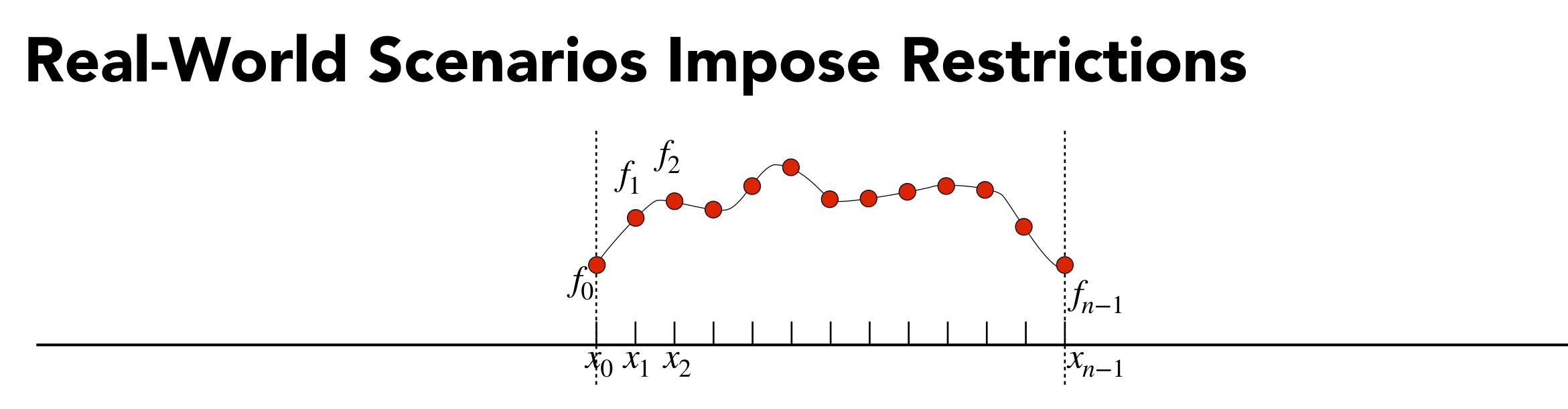


 In engineering/real-world applicat samples over a finite interval

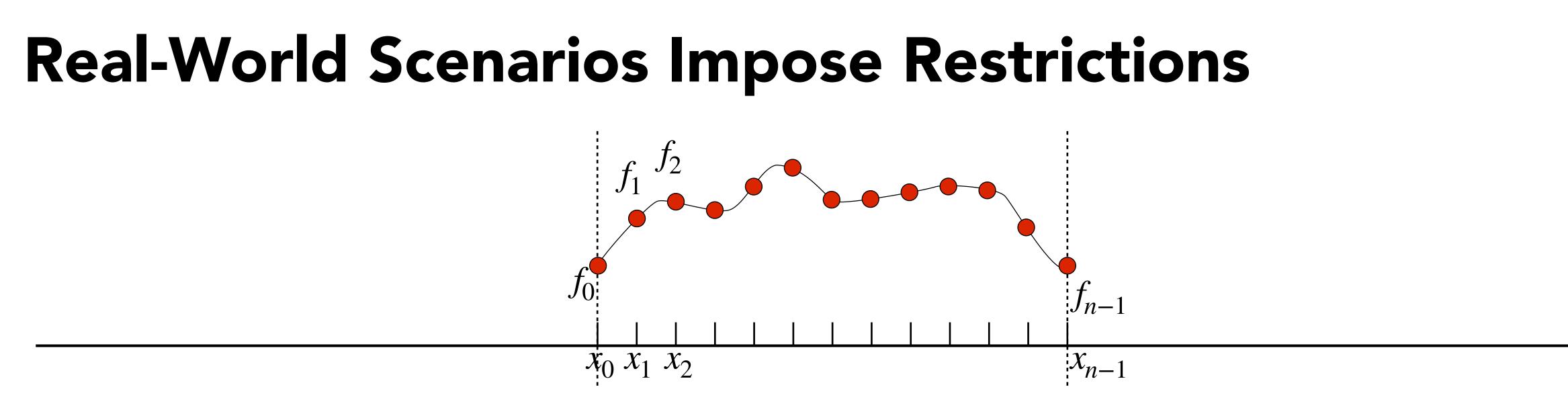
• In engineering/real-world applications, the signals we obtain are discrete



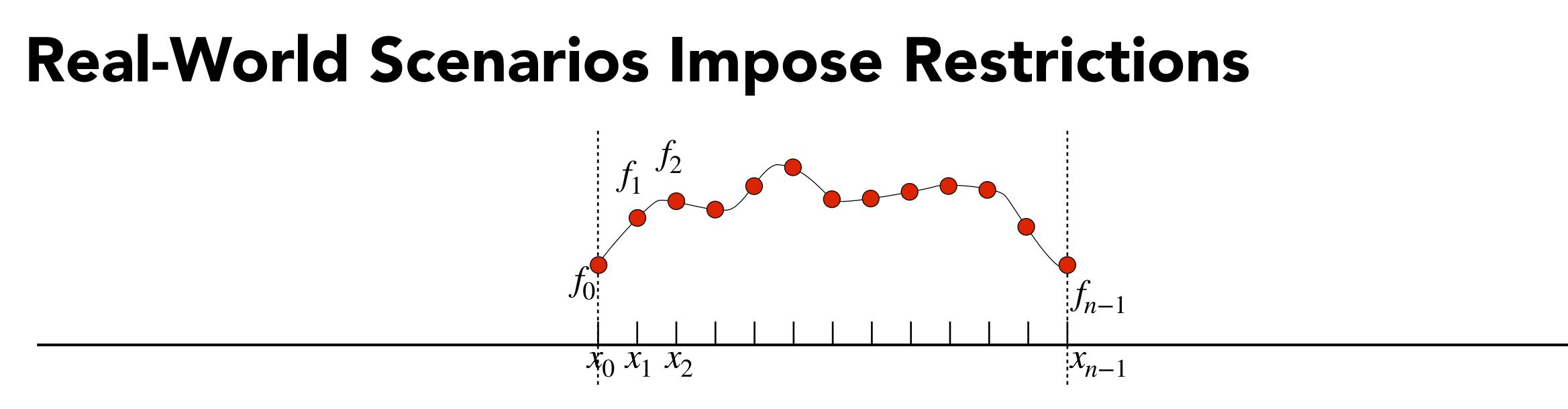
- In engineering/real-world applications, the signals we obtain are discrete samples over a finite interval
 - For instance, audio files are usually 44.1 kHz, i.e., 44,100 samples per second



- In engineering/real-world applications, the signals we obtain are discrete samples over a finite interval
- For instance, audio files are usually 44.1 kHz, i.e., 44,100 samples per second • We need a discrete form of Fourier series



- In engineering/real-world applications, the signals we obtain are discrete samples over a finite interval
 - For instance, audio files are usually 44.1 kHz, i.e., 44,100 samples per second
- We need a discrete form of Fourier series
- Given a sequence of *n* points, express it as a sum of other sequences



- In engineering/real-world applications, the signals we obtain are discrete samples over a finite interval
 - For instance, audio files are usually 44.1 kHz, i.e., 44,100 samples per second
- We need a discrete form of Fourier series
- Given a sequence of *n* points, express it as a sum of other sequences
 - This time, we need **n** other sequences

Discrete Complex Basis Functions

$$\left\{e^{\frac{i2\pi jk}{n}}\right\}, \quad j \in [0, 1, ..., n-1]$$

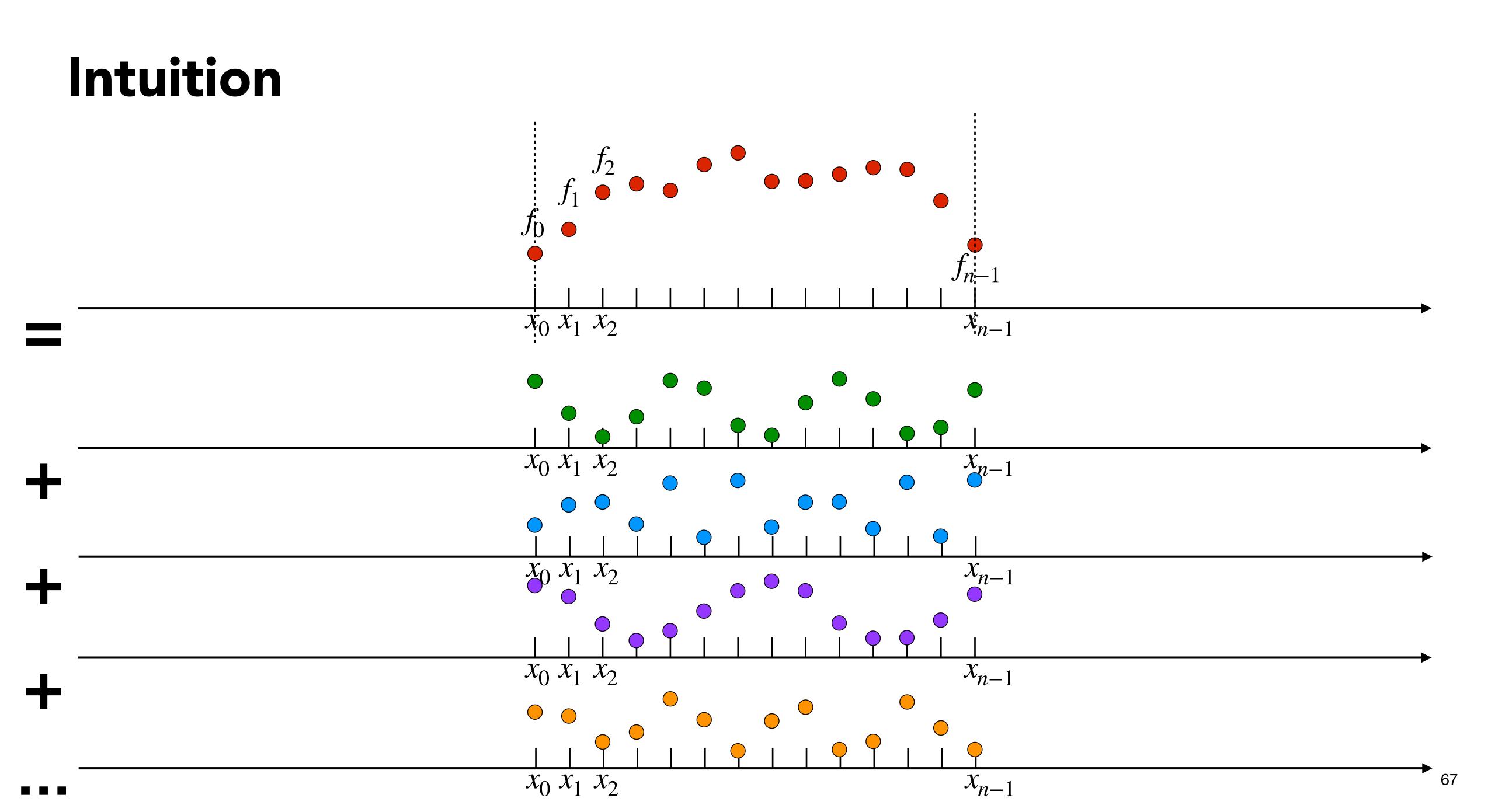
$$\left\{\ldots, e^{\frac{i0k}{n}}, e^{\frac{i2\pi k}{n}}, e^{\frac{i4\pi k}{n}}, e^{\frac{i6\pi k}{n}}, \ldots\right\}$$

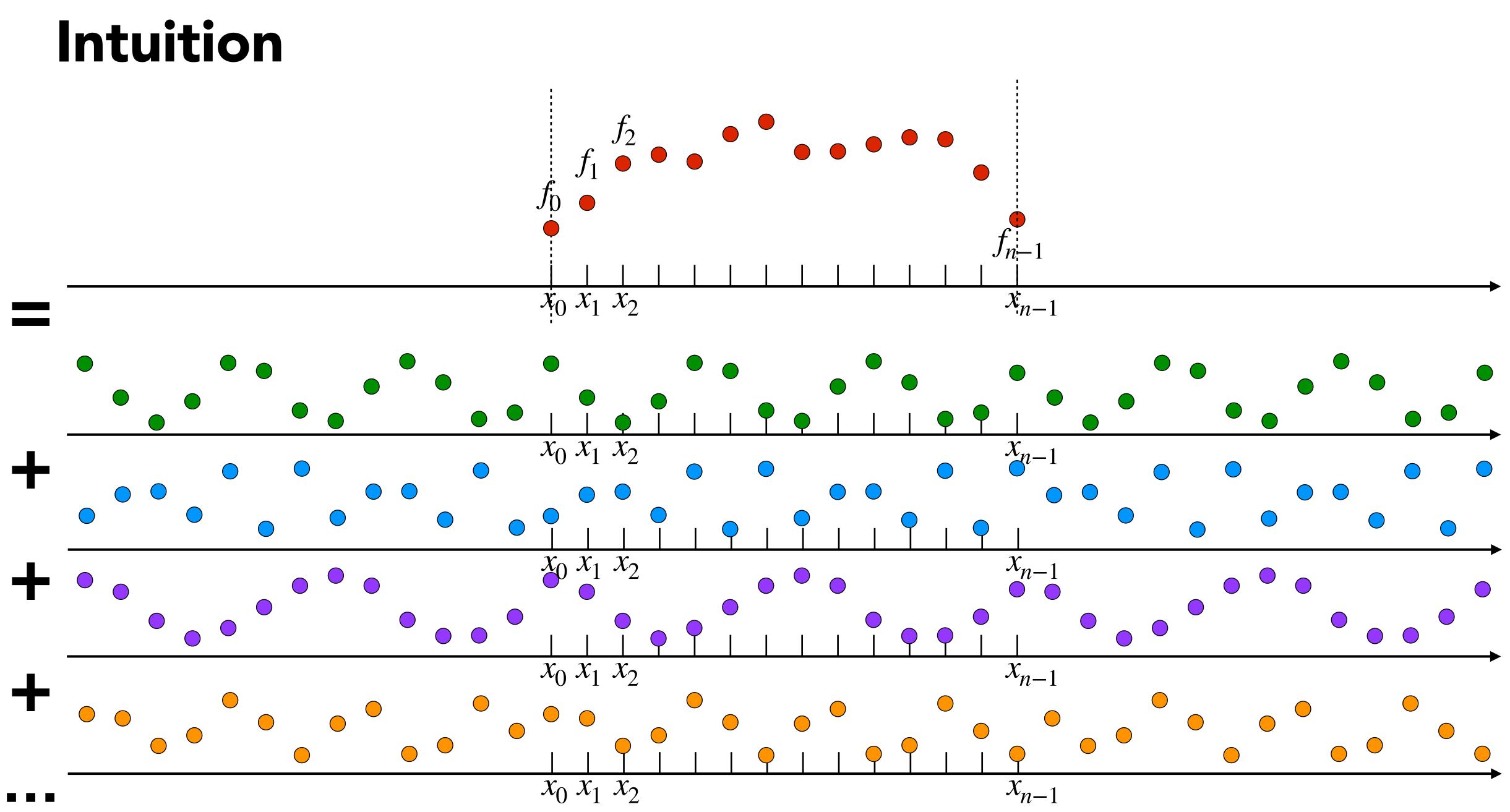
For instance:

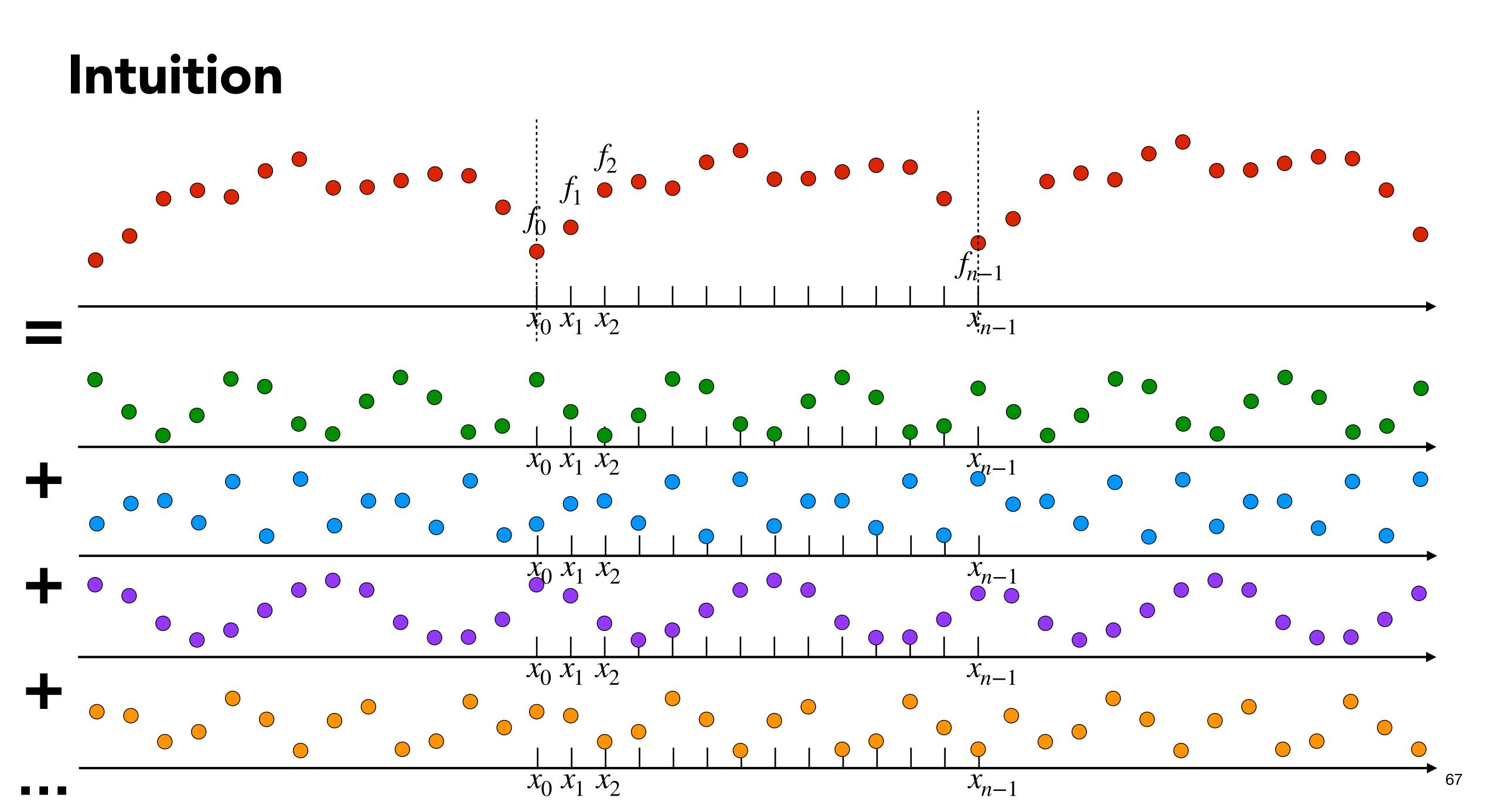
$$\sum_{k=0}^{n-1} e^{\frac{i2\pi k}{n}} e^{\frac{i4\pi k}{n}} = 0$$

are **n** mutually orthogonal **n-dimensional** vectors

$k \in [0, 1, ..., n - 1]$





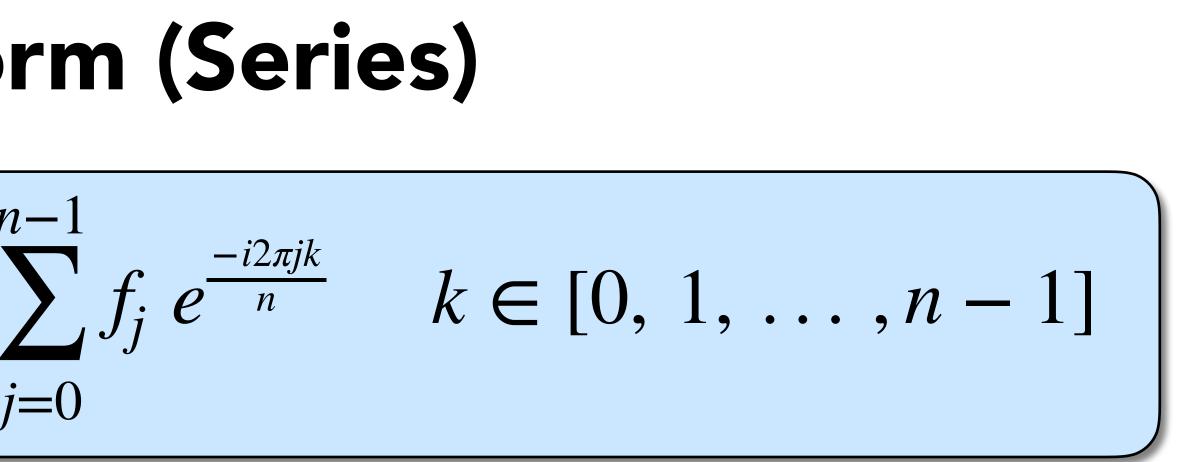


Discrete Fourier Transform (Series)

$$f_{k} = \frac{1}{n} \sum_{j=0}^{n-1} \hat{f}_{k} e^{\frac{i2\pi jk}{n}} \qquad \hat{f}_{k} = \sum_{j=0}^{n} \hat{f}_{k}$$

• This is called Discrete Fourier Transform

- But it's a misnomer; should really be called Discrete Fourier Series
- Fast Fourier Transform (FFT) is a fast way to calculate DFT
- Project to the basis vectors and calculate the DFT coefficients
- Note that these basis functions are not a subset of the those used in the continuous case!

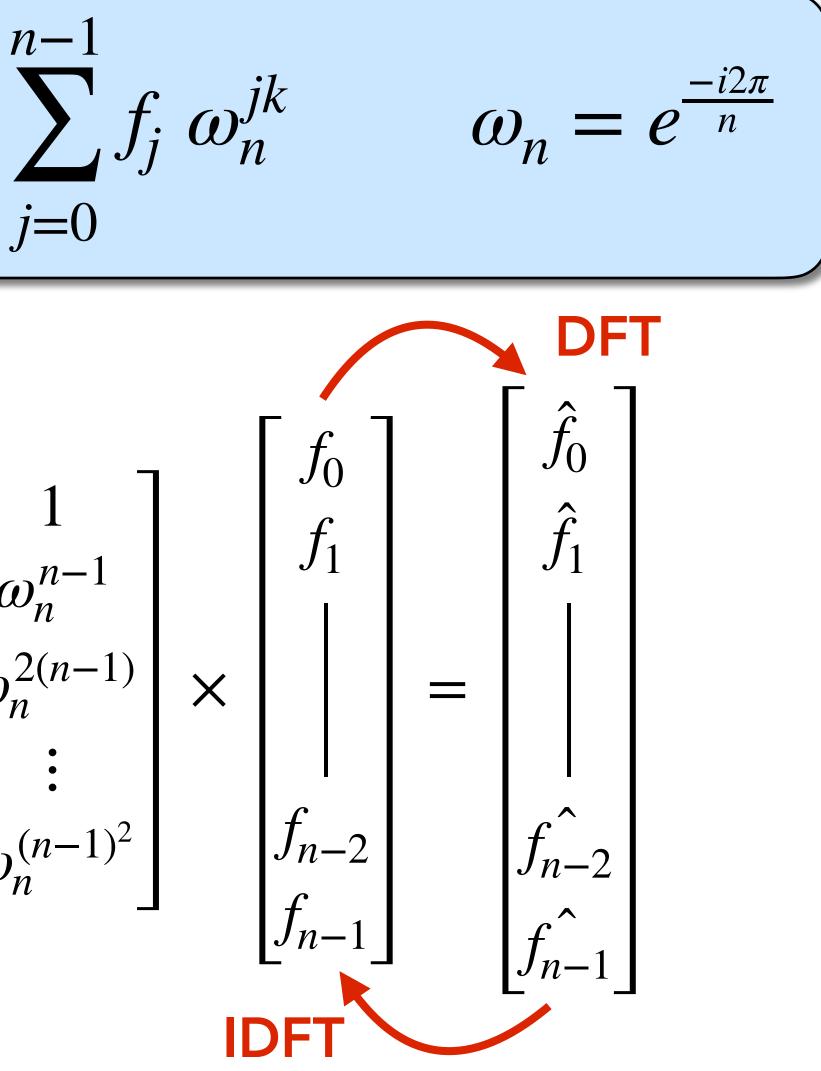


DFT Matrix

 $f_k = \frac{1}{n} \sum_{j=0}^{n-1} \hat{f}_k \ \omega_n^{-jk} \qquad \hat{f}_k = \sum_{j=0}^{n-1} f_j \ \omega_n^{jk}$

The DFT Matrix

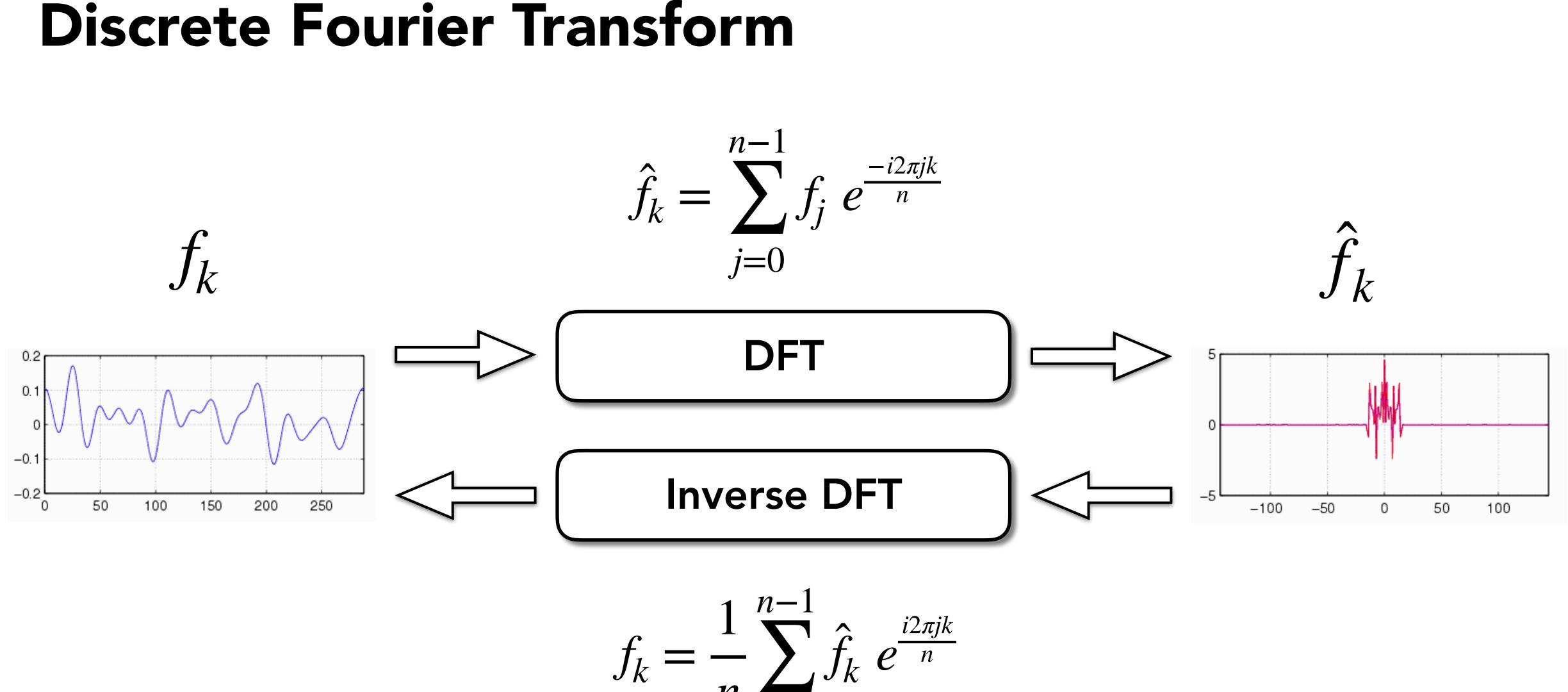
$$\begin{bmatrix} 1 & 1 & 1 & \cdots \\ 1 & \omega_n & \omega_n^2 & \cdots & \omega_n^2 \\ 1 & \omega_n^2 & \omega_n^4 & \cdots & \omega_n^2 \\ \vdots & \vdots & \vdots & \ddots \\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \cdots & \omega_n^2 \end{bmatrix}$$



DFT Interpretation

- mutually orthogonal vectors.
- DFT transforms a N-dimensional vector to another N-D vector.

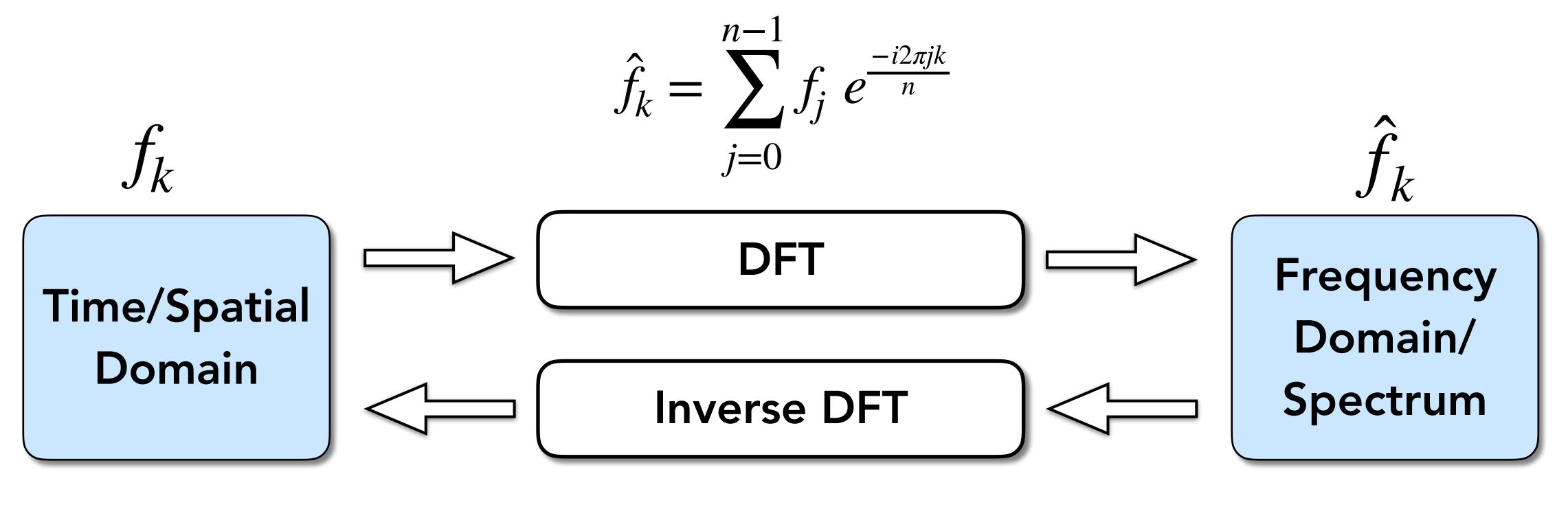
f now is a N-dimensional vector; it can be represented by projecting to N



JJK

n = 0

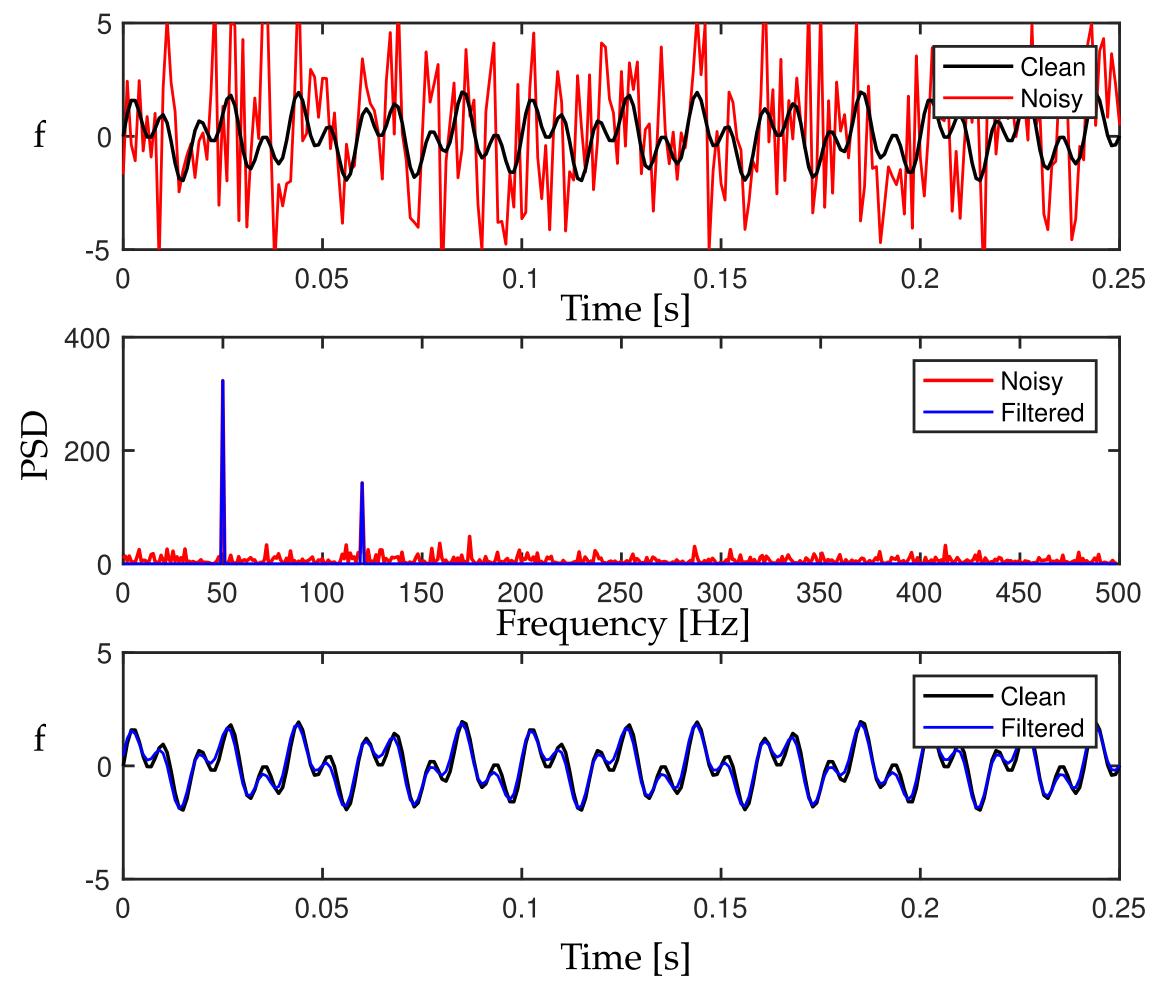
Discrete Fourier Transform



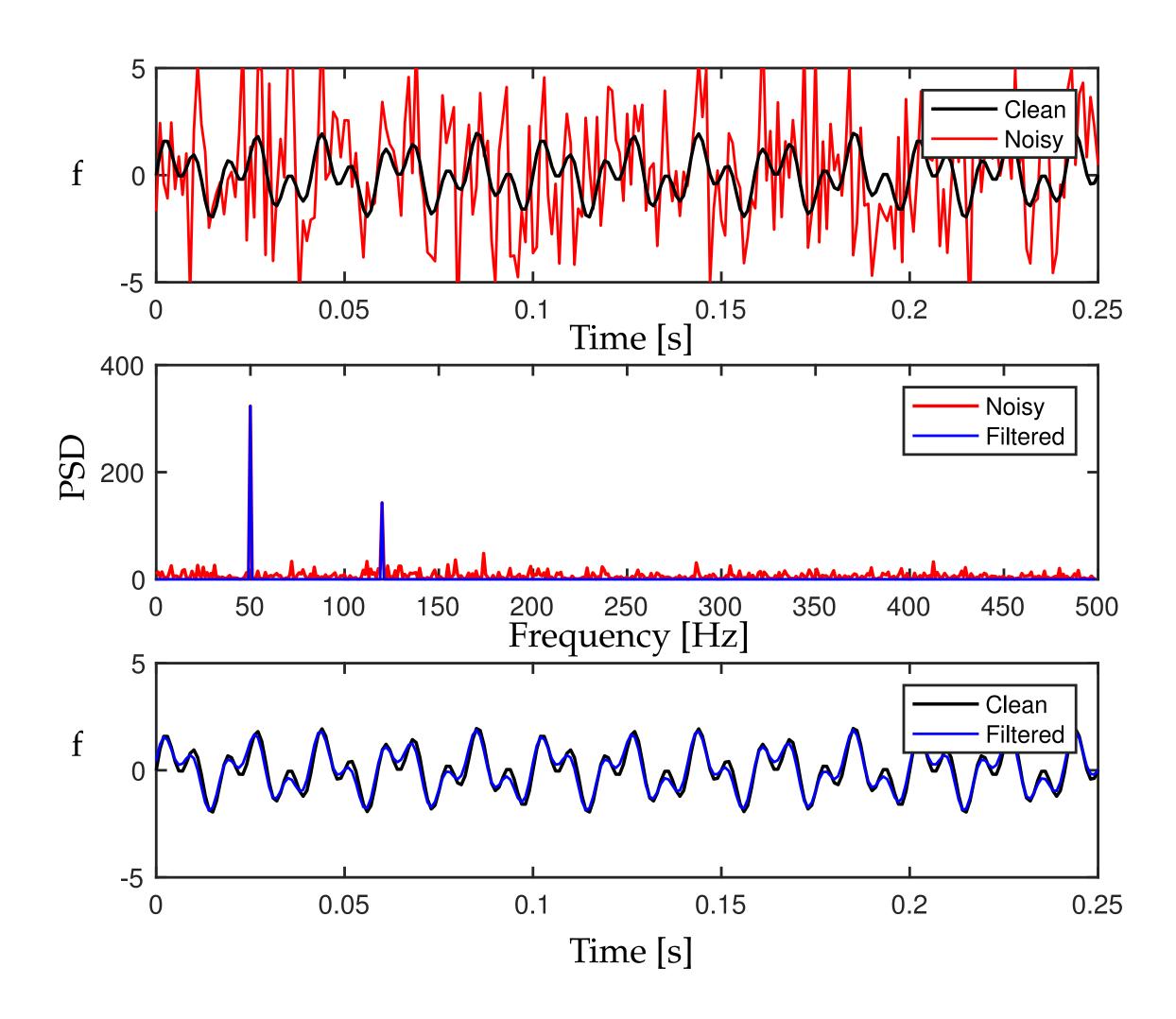
N

$$-\sum_{j=0}^{n-1} \hat{f}_k e^{\frac{i2\pi jk}{n}}$$

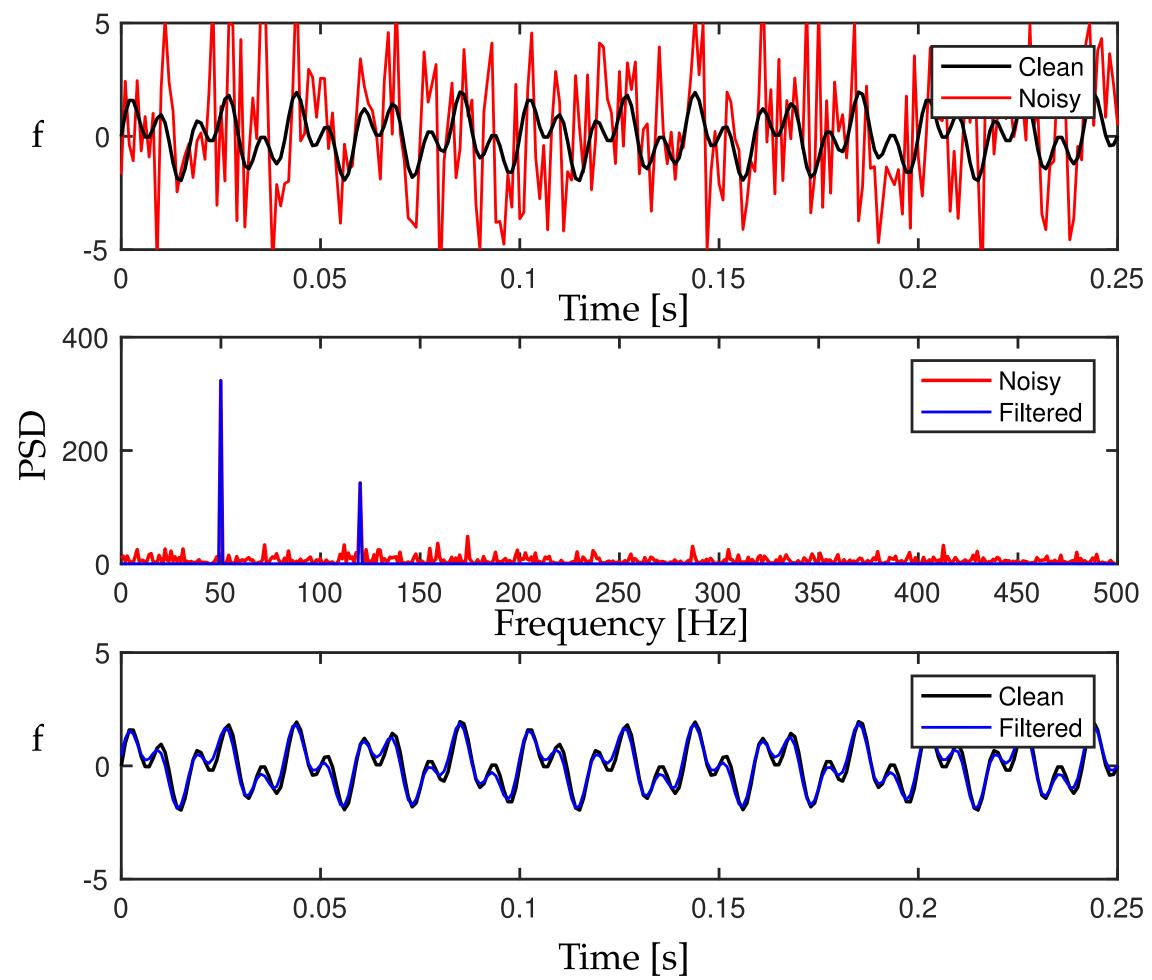
https://www.math.ucdavis.edu/~strohmer/research/sampling/irsampl.html 71



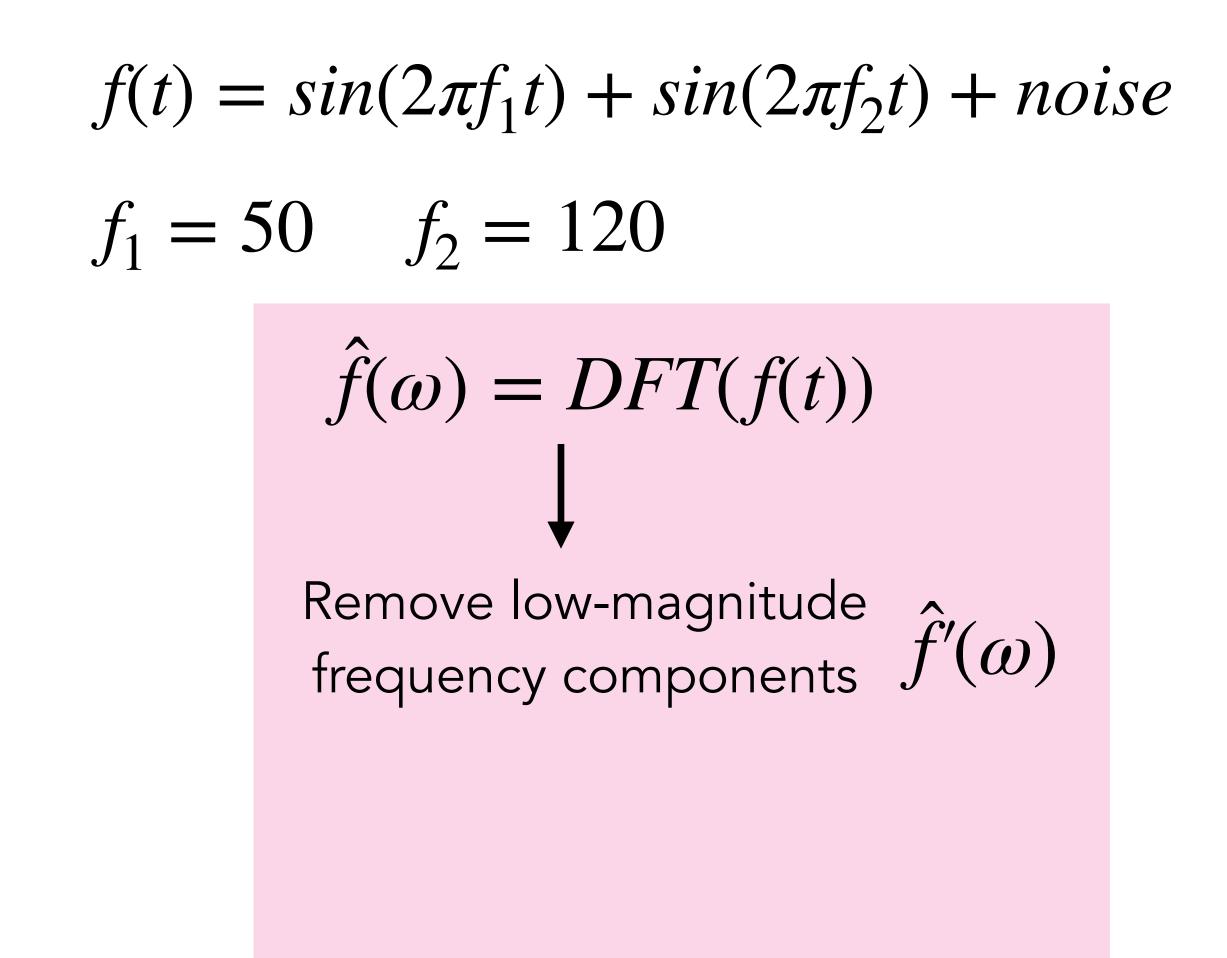
$f(t) = sin(2\pi f_1 t) + sin(2\pi f_2 t) + noise$ $f_1 = 50$ $f_2 = 120$

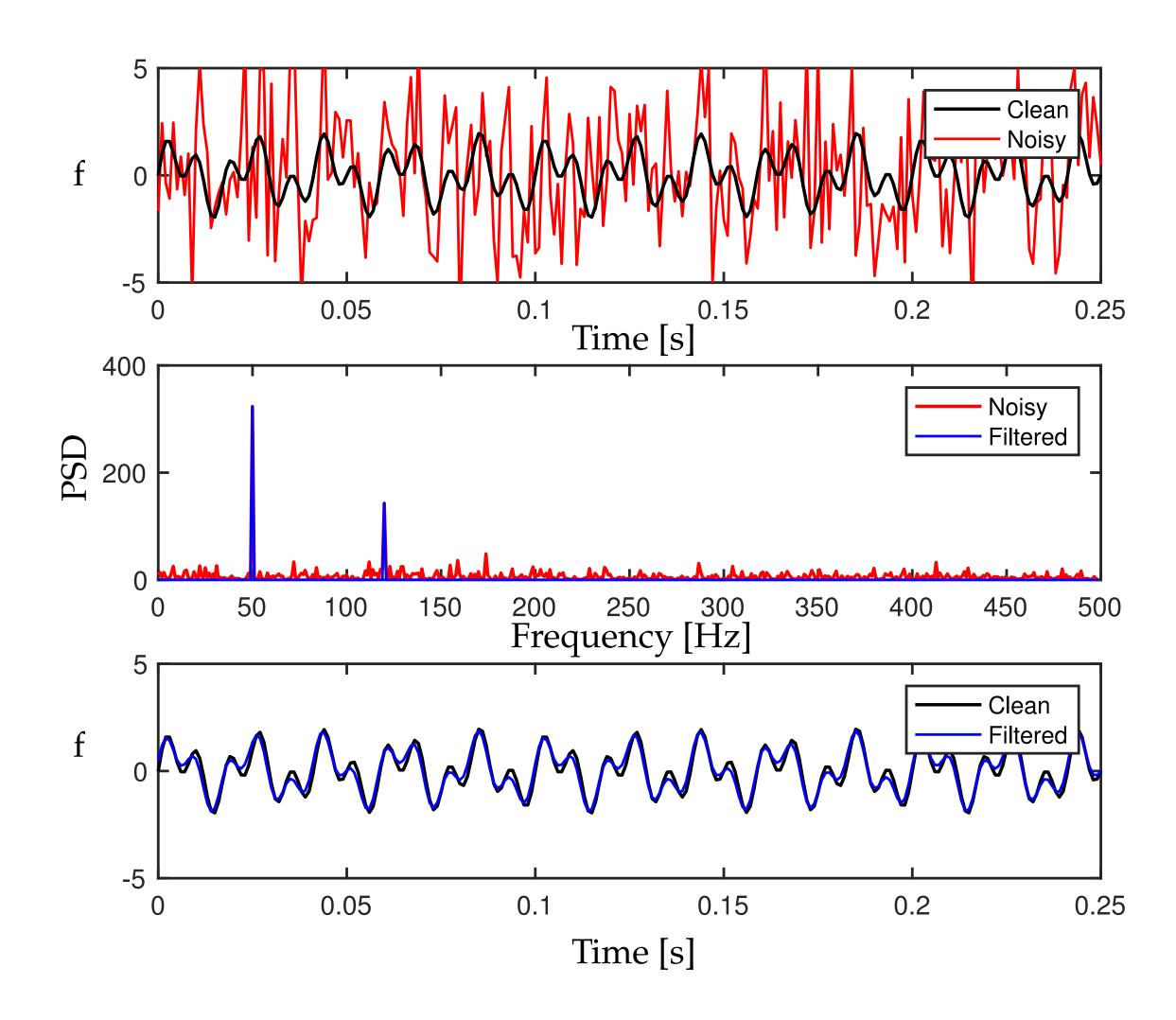


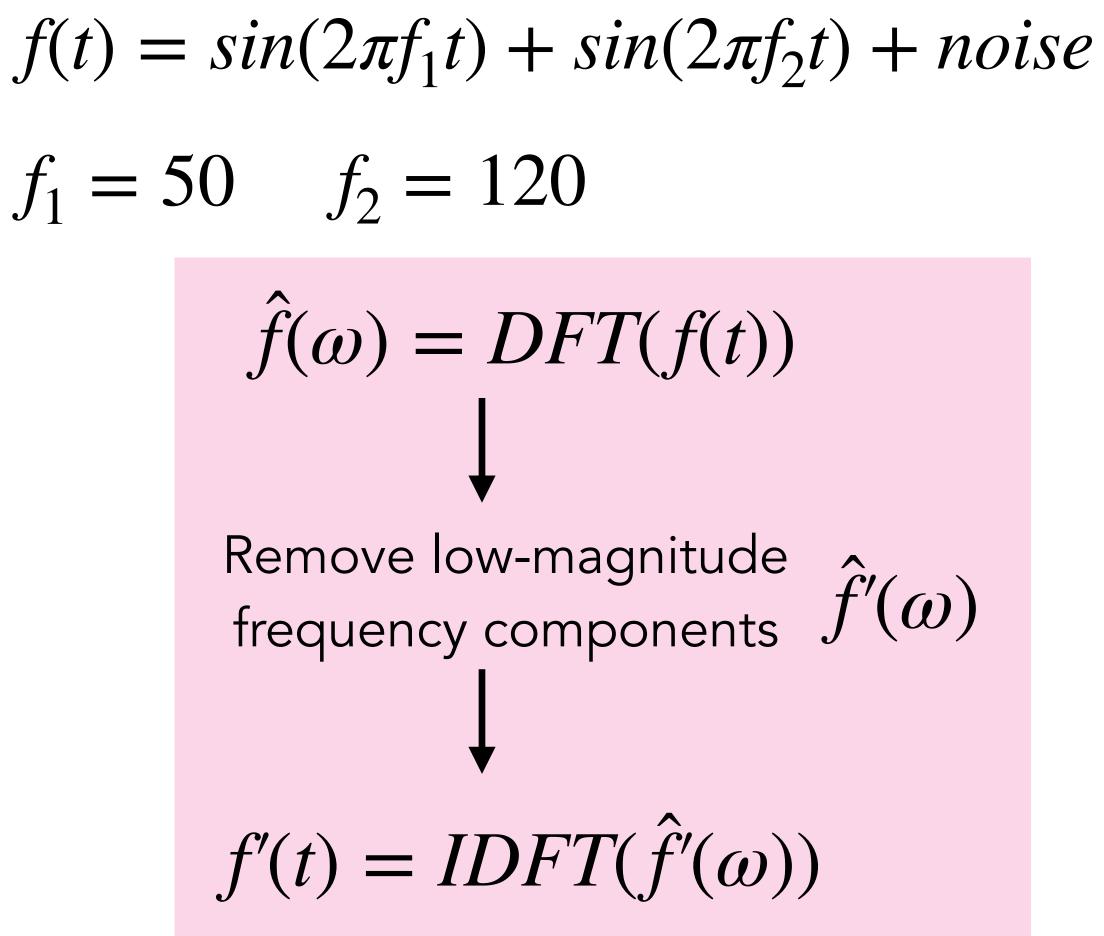
$f(t) = sin(2\pi f_1 t) + sin(2\pi f_2 t) + noise$ $f_1 = 50$ $f_2 = 120$ $\hat{f}(\omega) = DFT(f(t))$



	Λ.
ean	
oisy	
N	Ğ







2D DFT

2D Basis Functions

Real Bases

 $\left\{\sin(ux+vy),\ \cos(ux+vy)\right\},\ (u,v)\in\mathbb{Z}$

Complex Bases

 $e^{i(ux+vy)}, (u,v) \in \mathbb{Z}$

2D Basis Functions

Real Bases

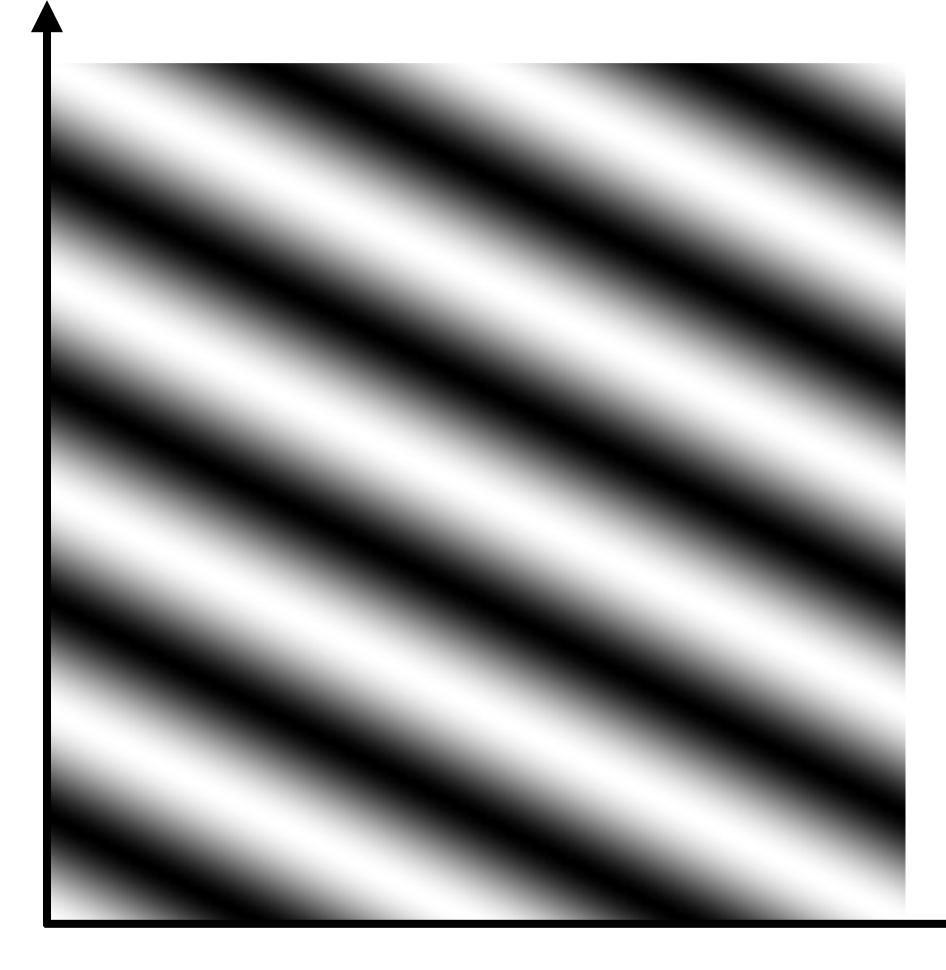
 $\left\{\sin(ux+vy), \ \cos(ux+vy)\right\}, \ (u,v) \in \mathbb{Z}$

Complex Bases

 $e^{i(ux+vy)}, (u,v) \in \mathbb{Z}$

"image" of cos(x + 2y)

У



2D Basis Functions

Real Bases

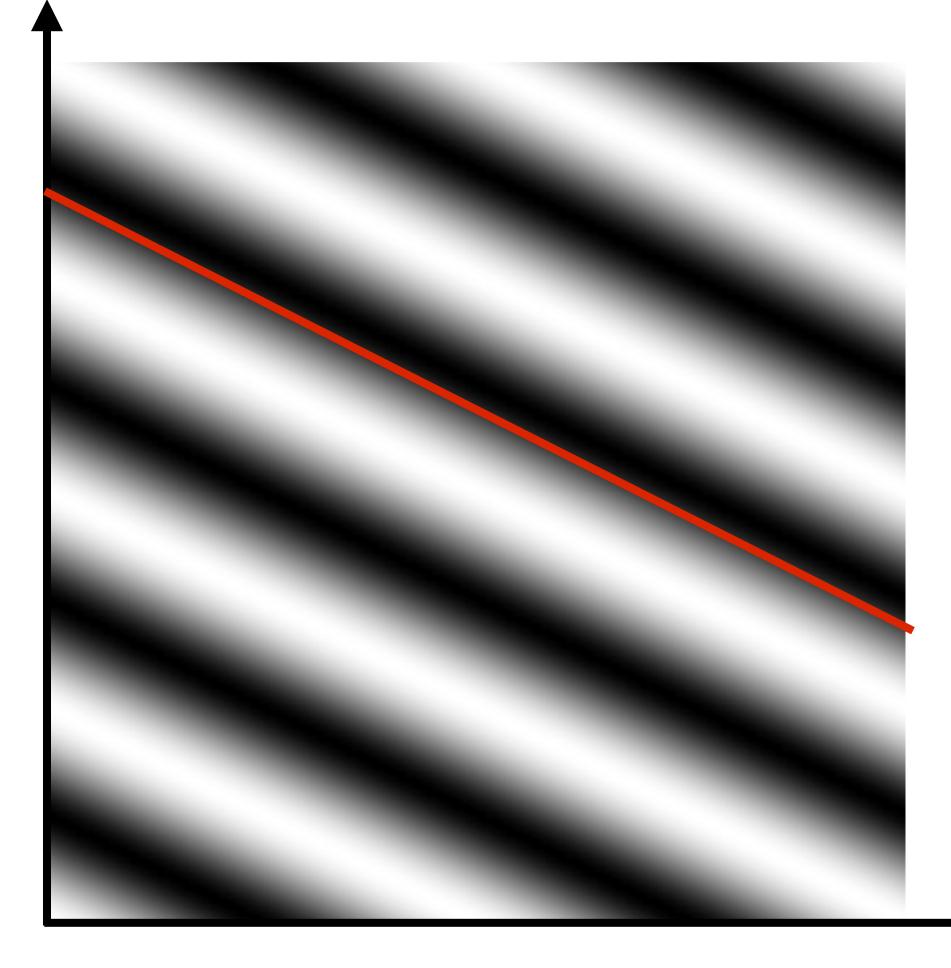
 $\left\{\sin(ux+vy), \ \cos(ux+vy)\right\}, \ (u,v) \in \mathbb{Z}$

Complex Bases

 $e^{i(ux+vy)}, (u,v) \in \mathbb{Z}$

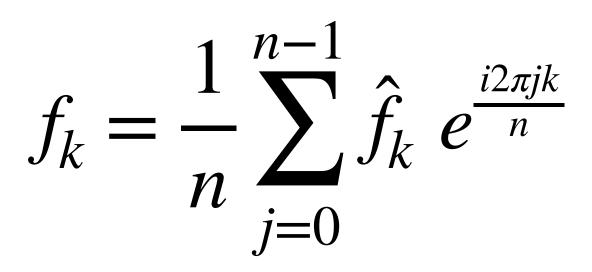
Function value is constant where x+2y is constant "image" of cos(x + 2y)

У



2D Discrete Fourier Transform

1D DFT

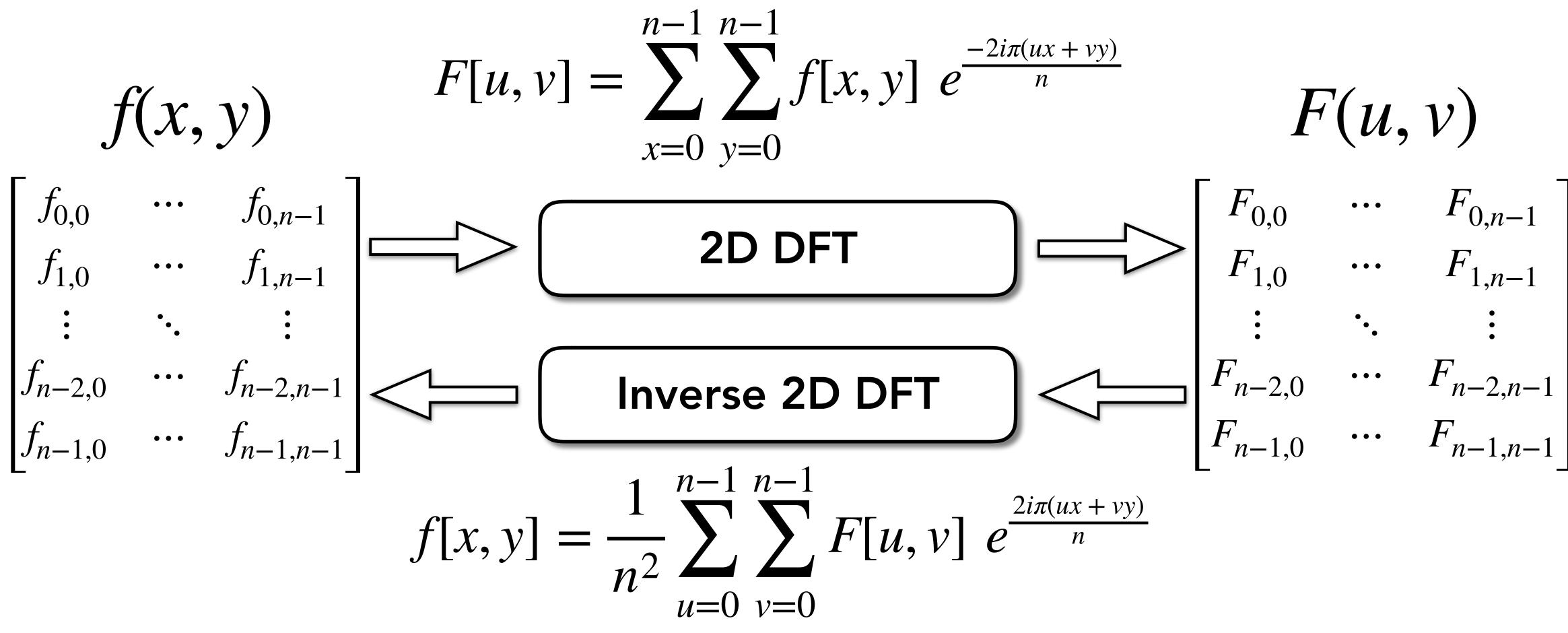


$$\hat{f}_k = \sum_{j=0}^{n-1} f_j e^{\frac{-i2\pi jk}{n}}$$

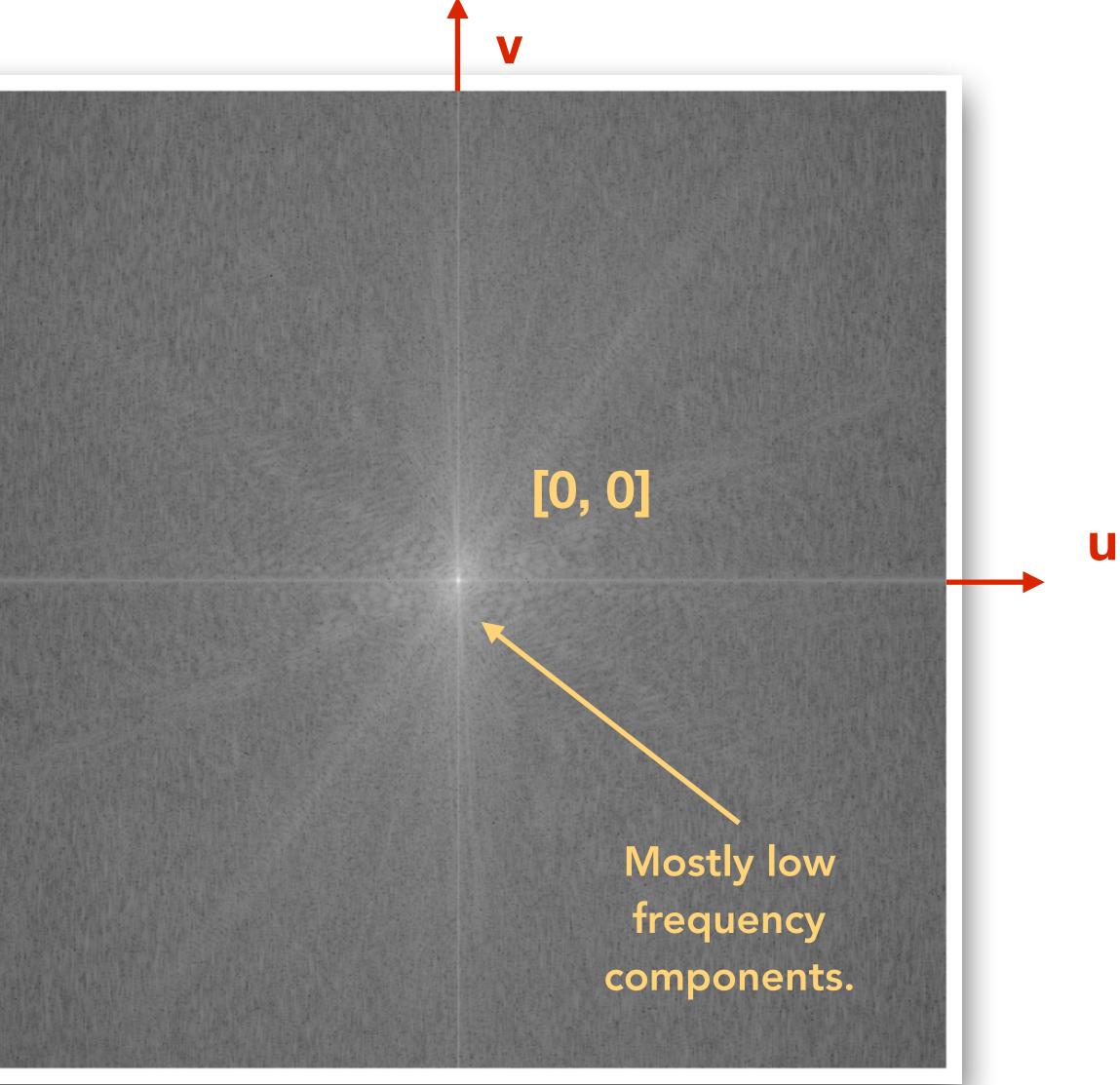
2D DFT $f_k = \frac{1}{n} \sum_{j=0}^{n-1} \hat{f}_k \ e^{\frac{i2\pi jk}{n}} \qquad f[x, y] = \frac{1}{n^2} \sum_{u=0}^{n-1} \sum_{v=0}^{n-1} F[u, v] \ e^{\frac{2i\pi(ux+vy)}{n}}$

$$F[u,v] = \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} f[x,y] e^{\frac{-2i\pi(ux+vy)}{n}}$$

2D DFT

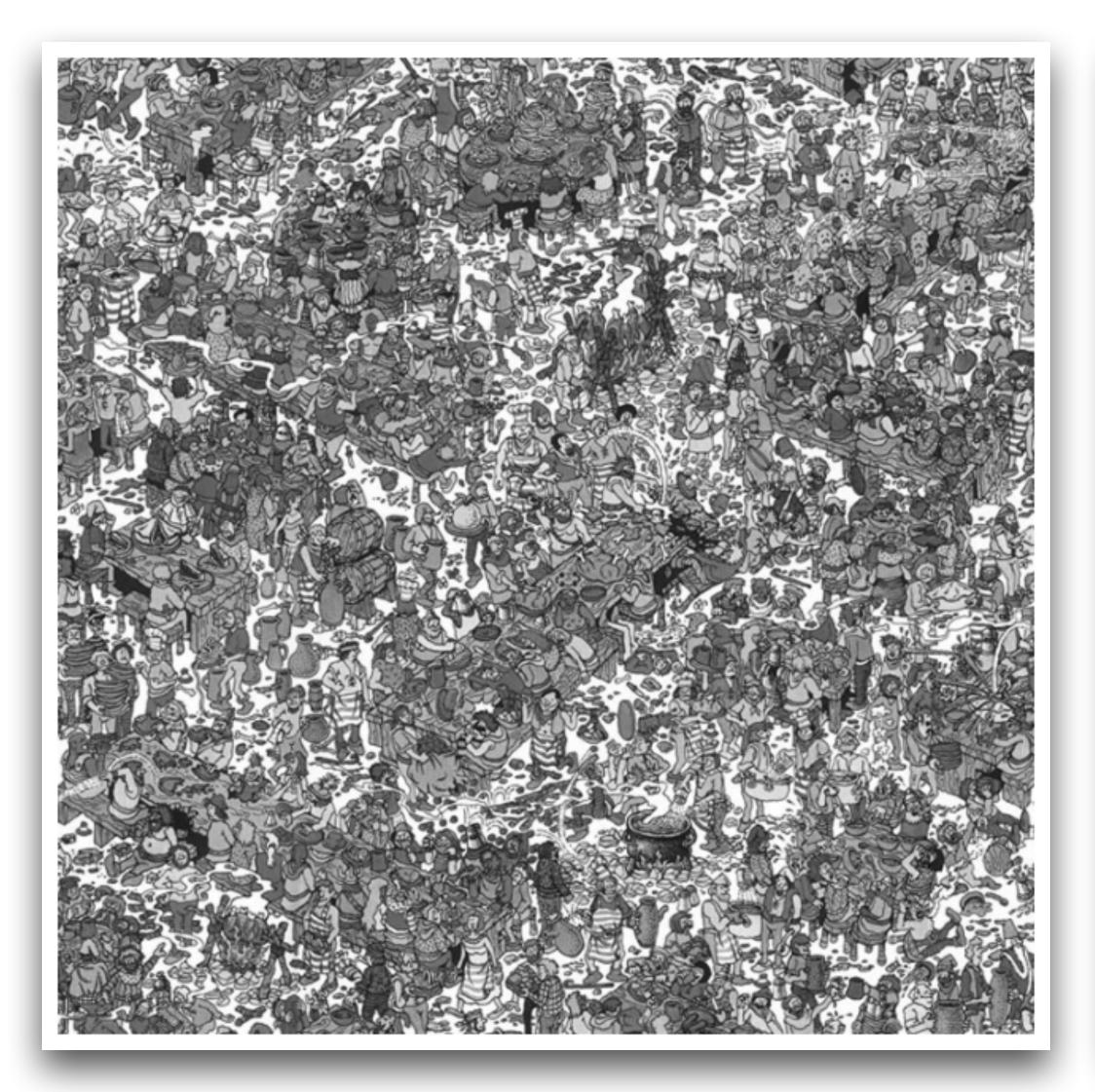


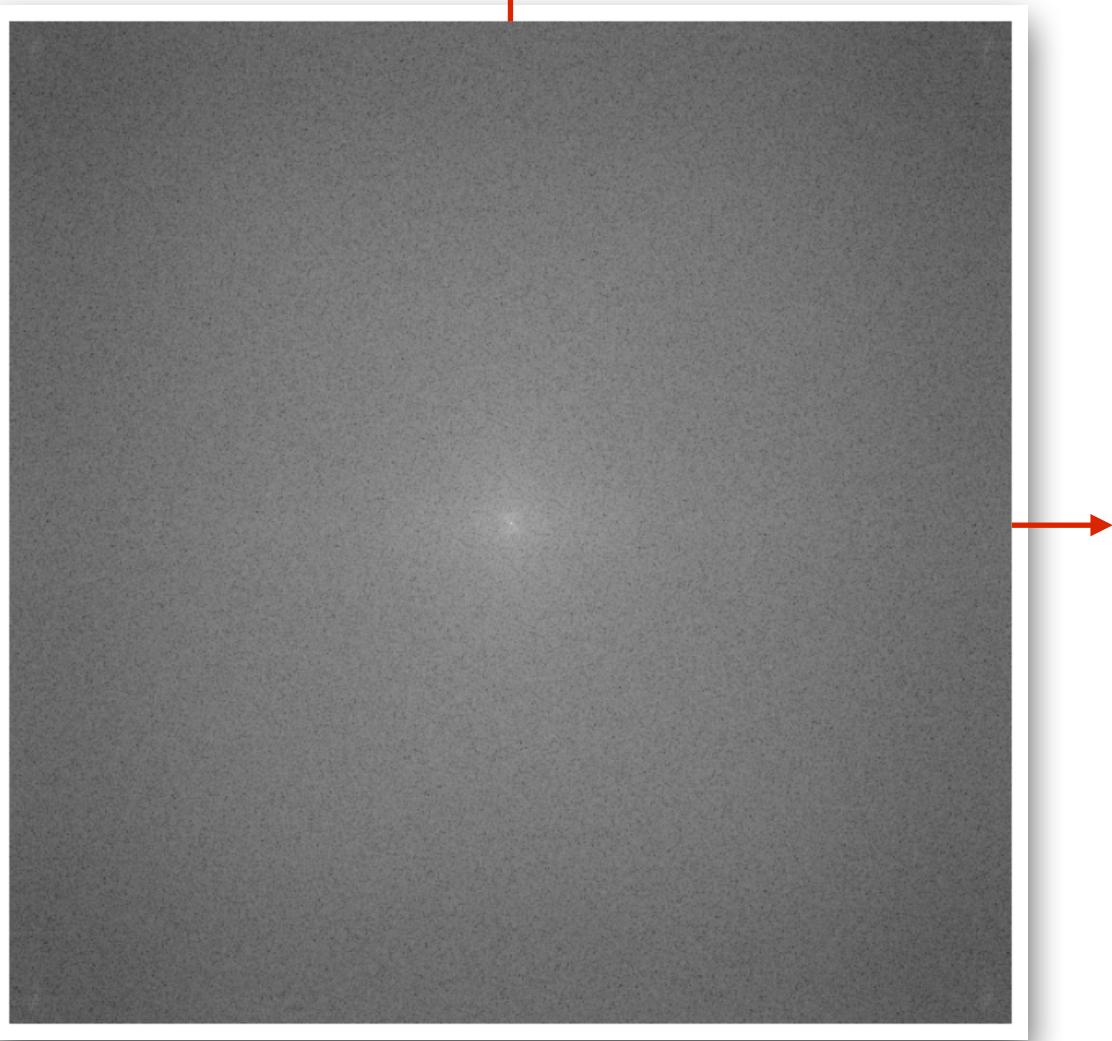
A Typical Photo



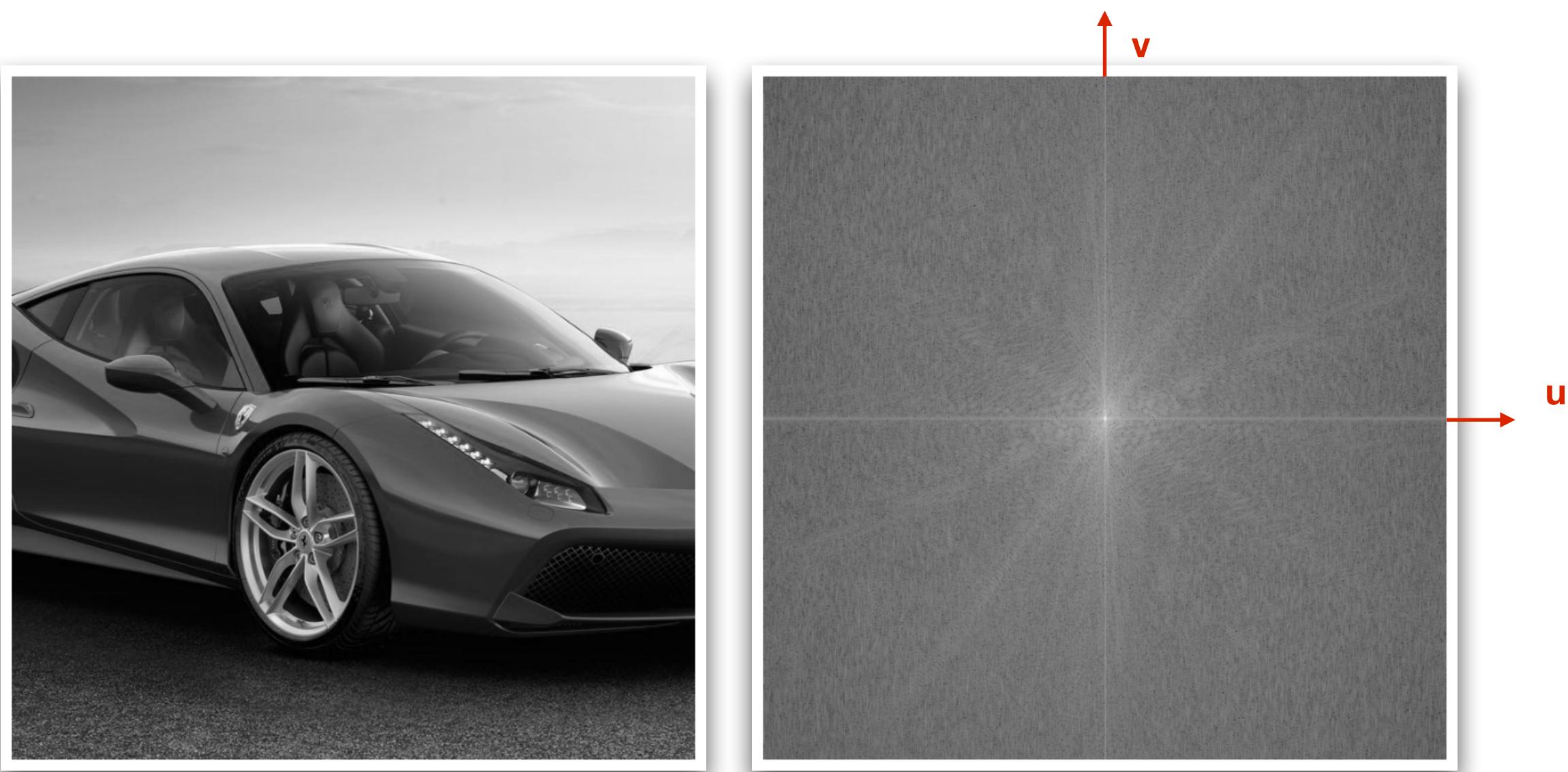
https://www.theverge.com/2016/8/2/12351210/ferrari-488-spider-supercar-test-drive

A Photo With Many High-Frequency Components

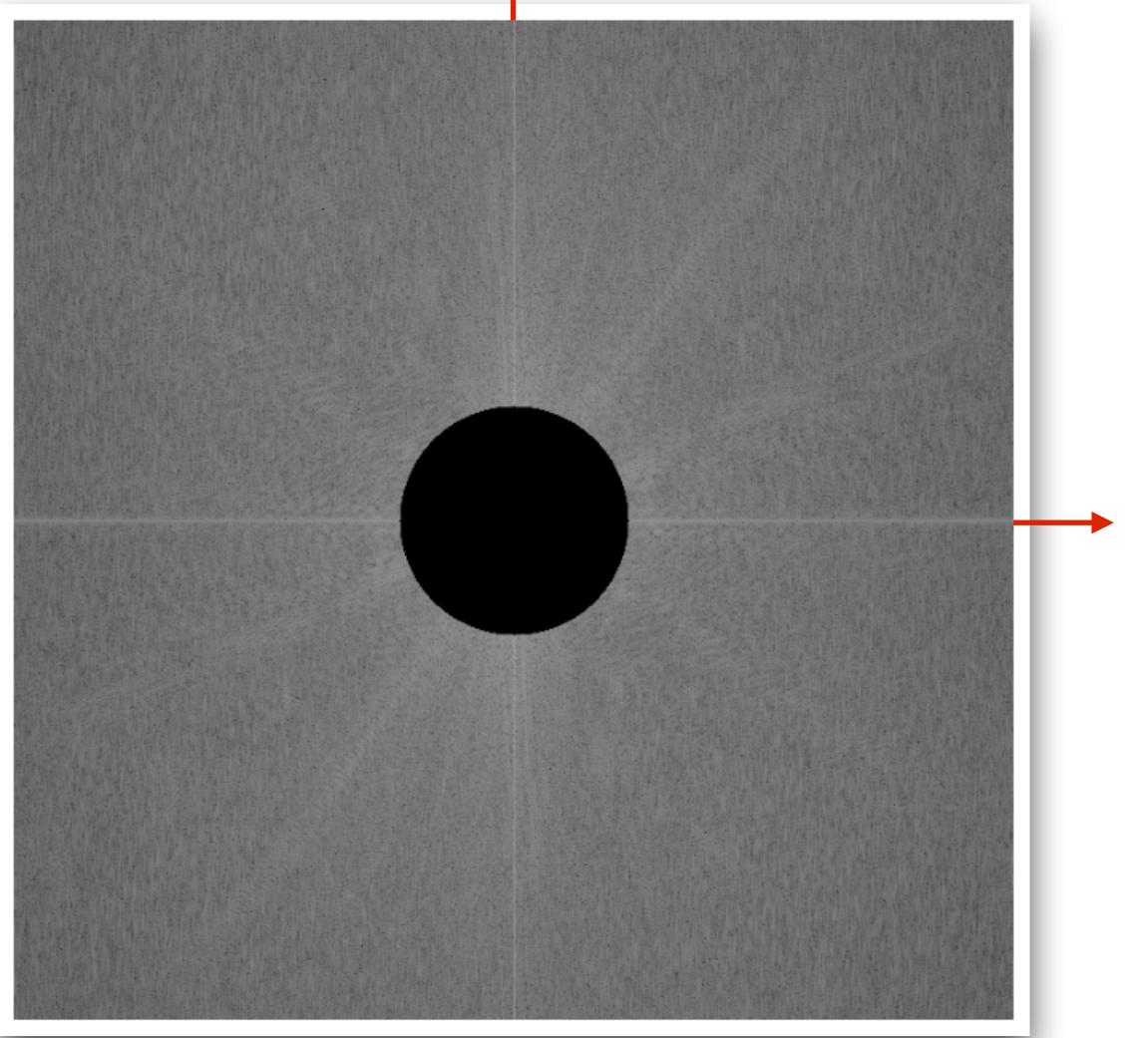




Original Photo

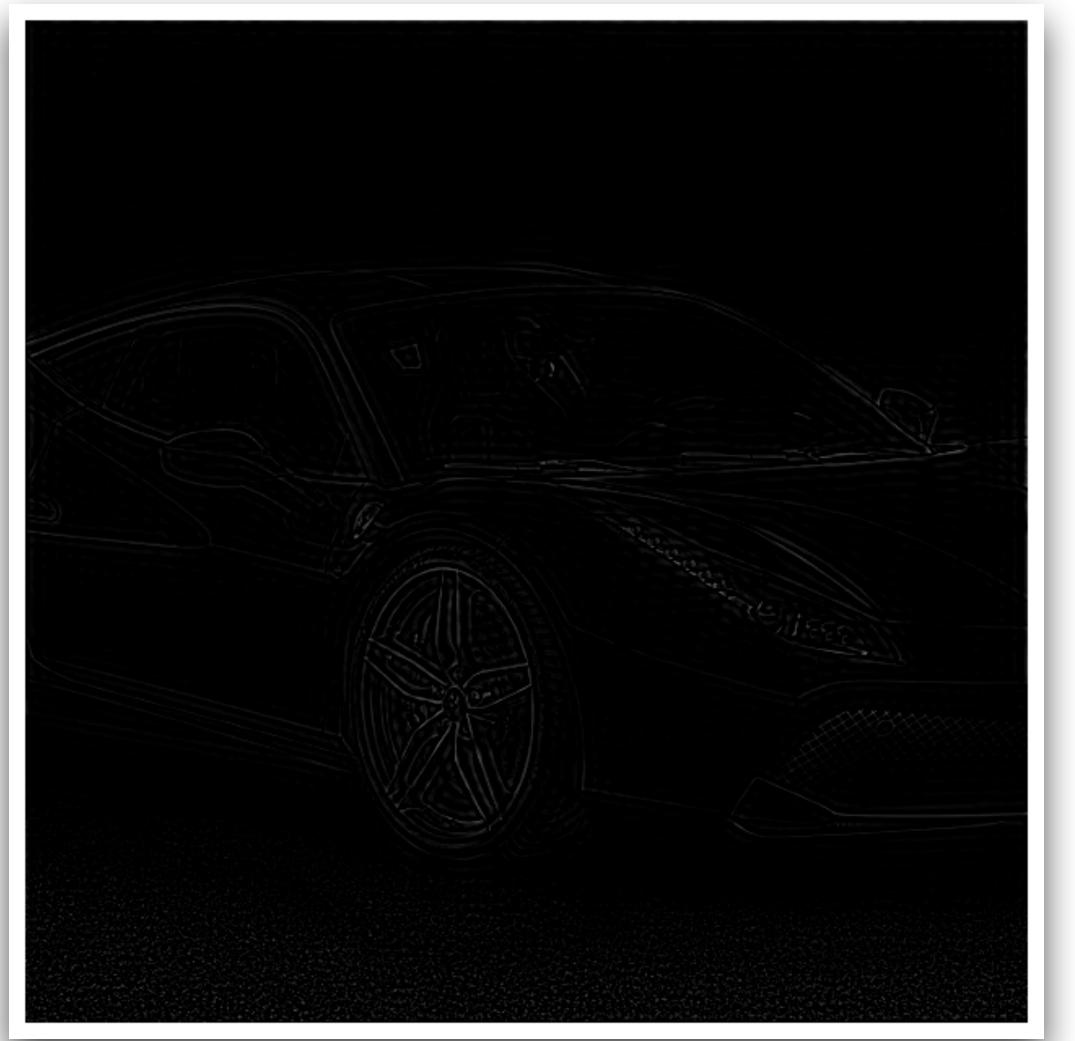


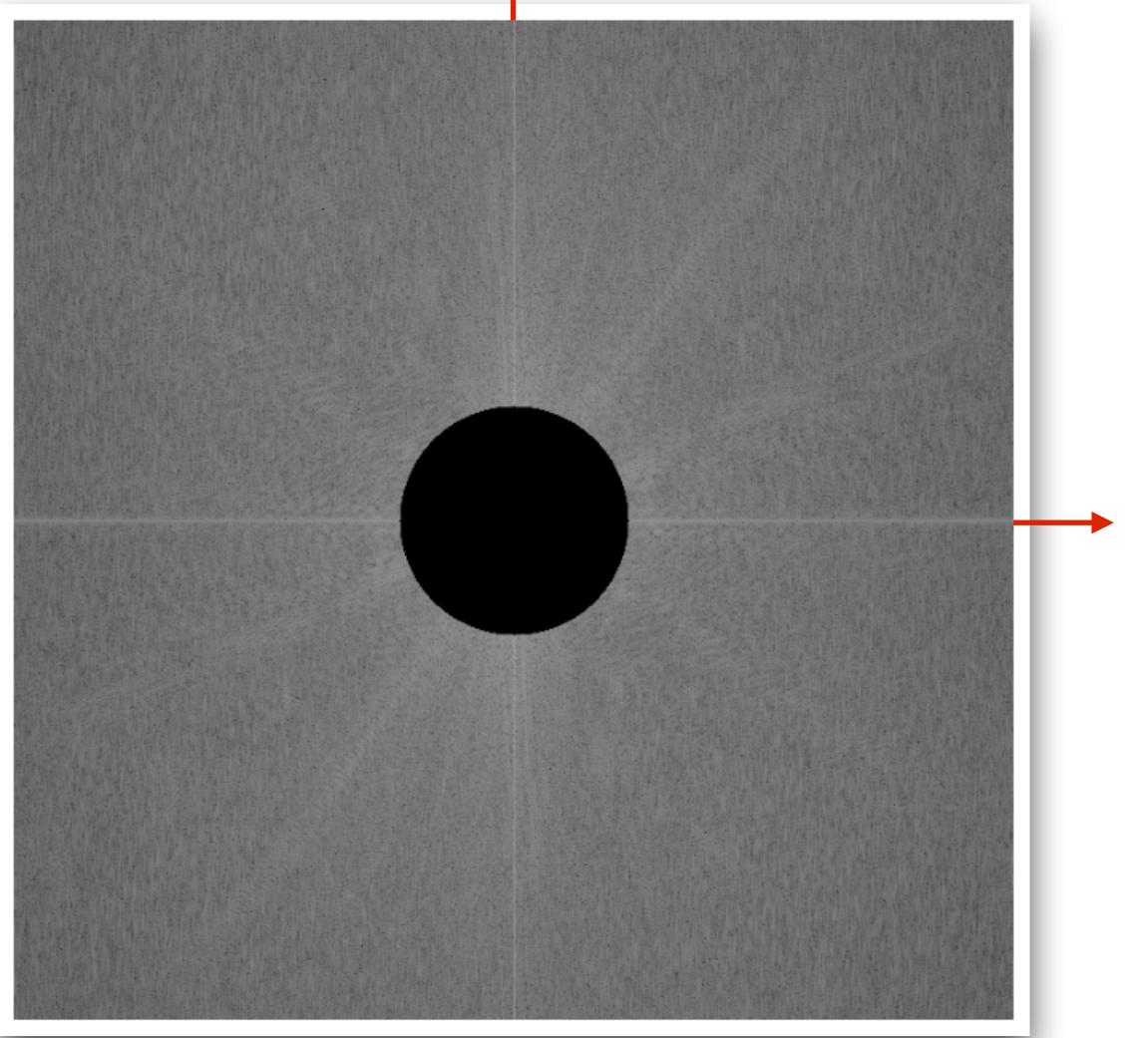
High-Pass Filter (Removing Low-Freq Components)



U

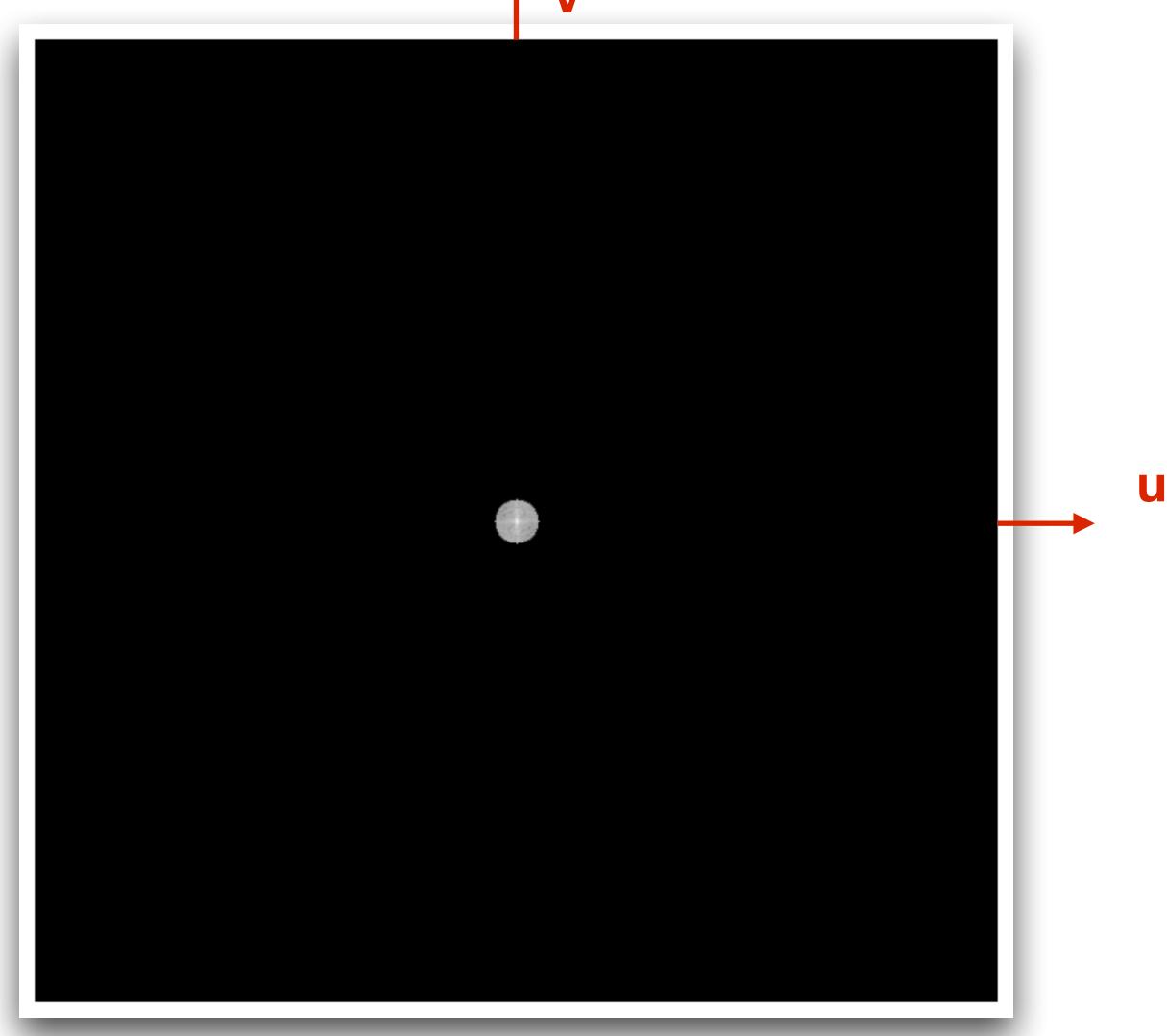
High-Pass Filter (Removing Low-Freq Components)





U

Low-Pass Filter (Removing High-Freq Components)



Low-Pass Filter (Removing High-Freq Components)

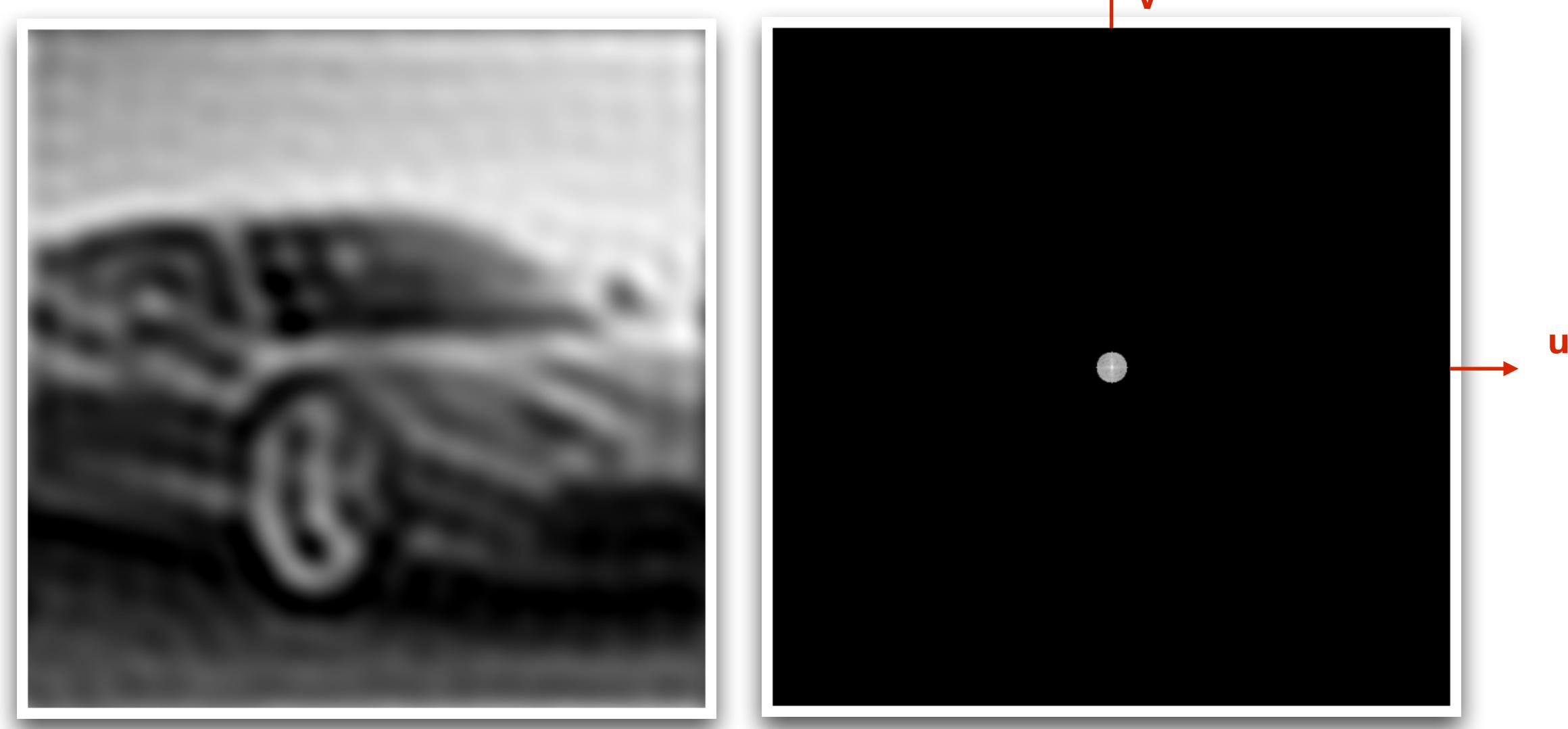


Image Compression with 2D DFT

- A precise DFT would turn an MxN image into another MxN image (each pixel represents a Fourier coefficient).
- Zero-out small Fourier coefficients to compress image.
 - Uncompress through inverse DFT
- JPEG uses something very similar.

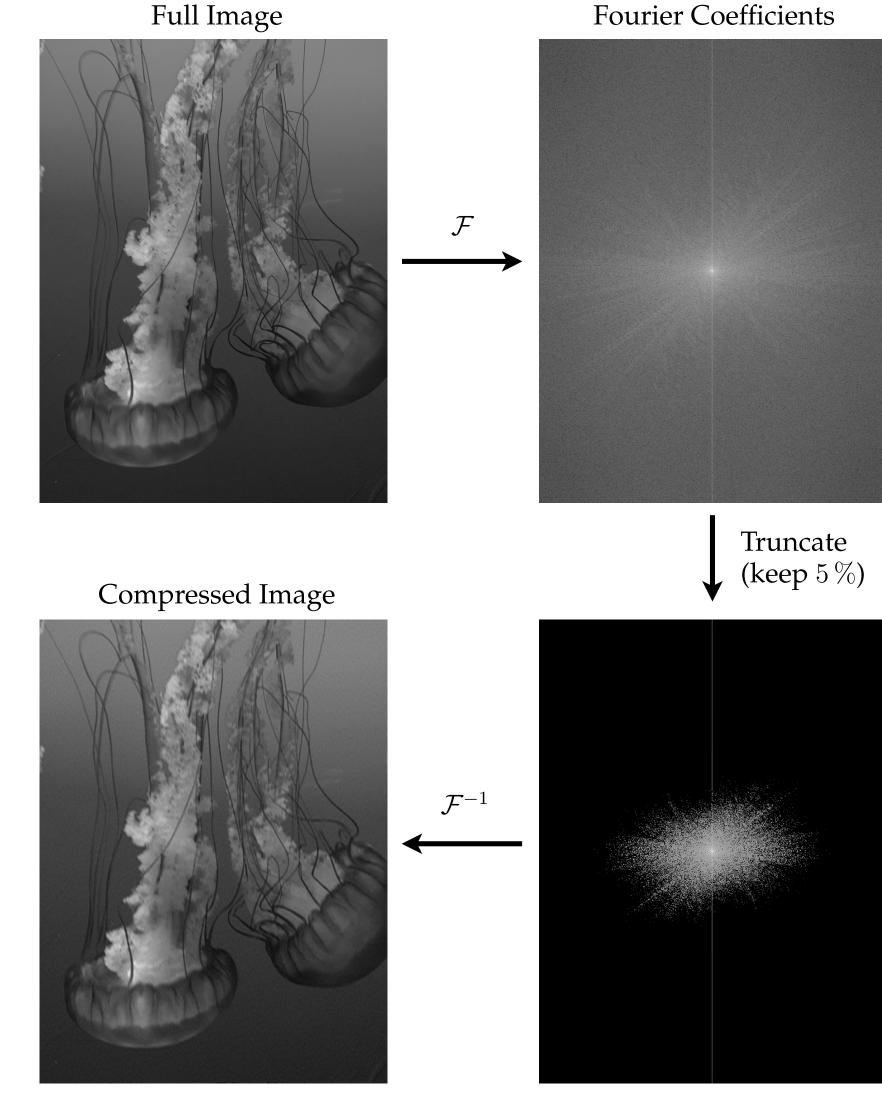
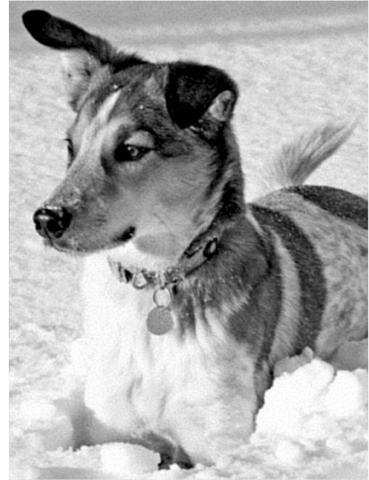


Image Compression with 2D DFT

- A precise DFT would turn an MxN image into another MxN image (each pixel represents a Fourier coefficient).
- Zero-out small Fourier coefficients to compress image.
 - Uncompress through inverse DFT
- JPEG uses something very similar.

Full image

1.0% of FFT



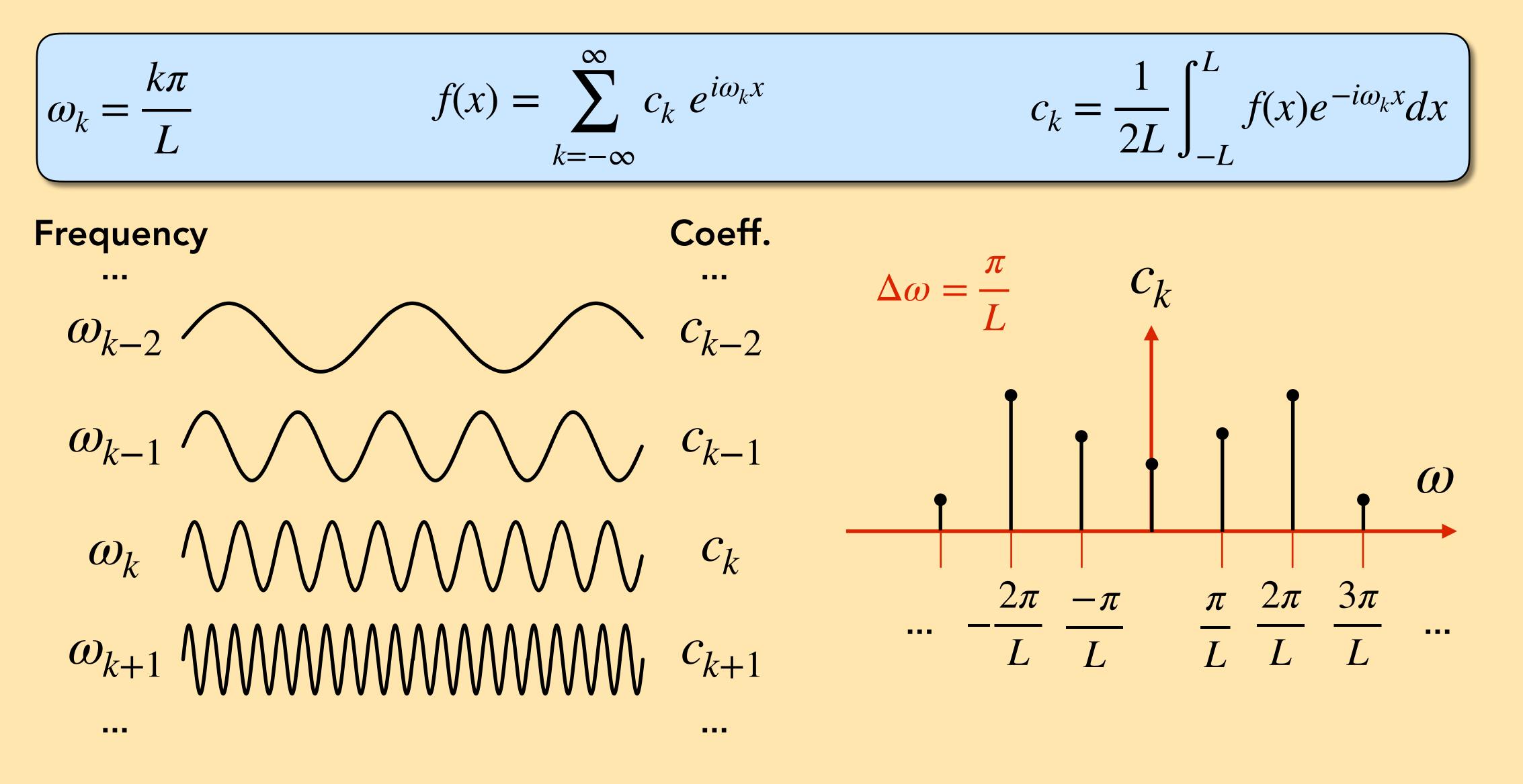
5.0% of FFT

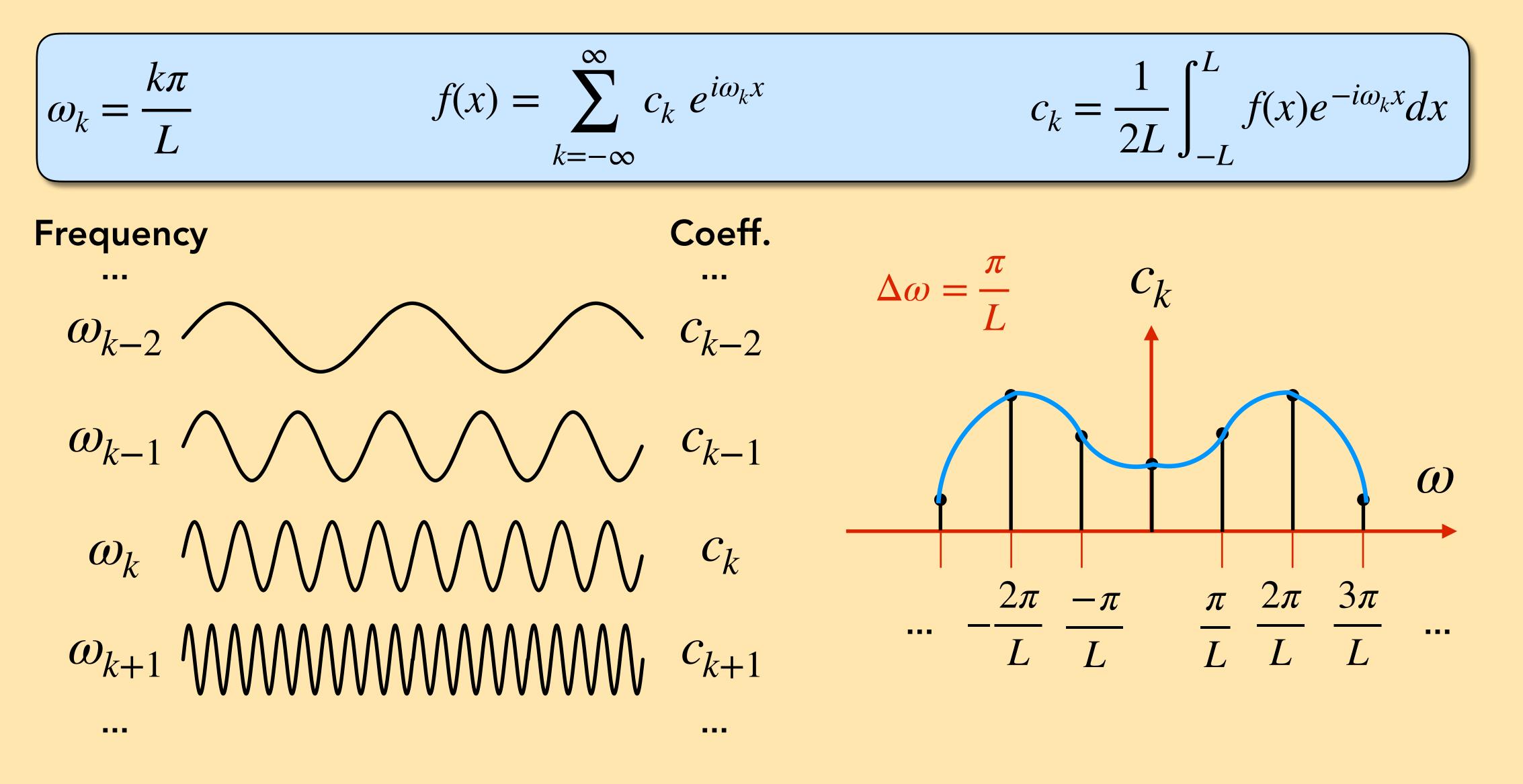
0.2% of FFT

Fourier Transform

What About Non-Periodic Functions?

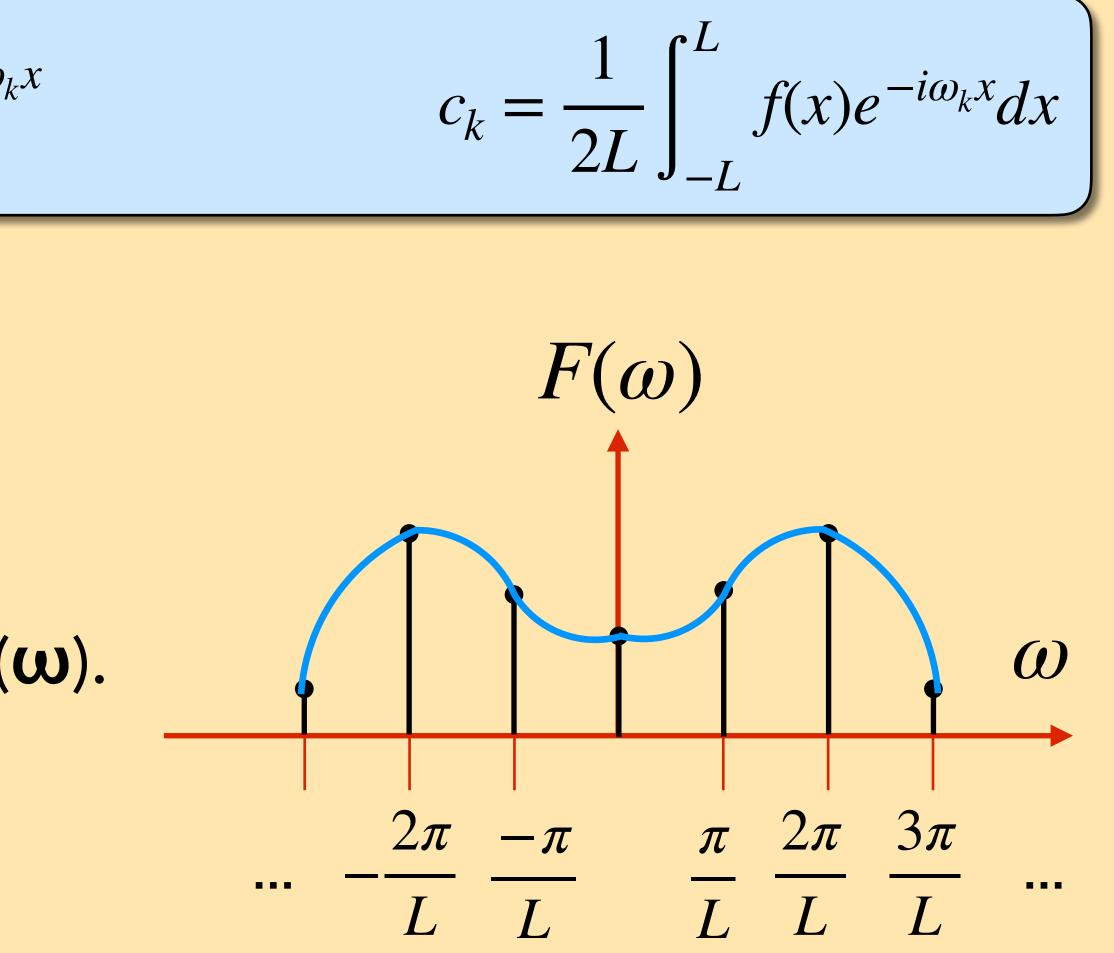
- Fourier series is concerned with L-periodic functions.
- What about a general, potentially non-periodic function? Does the Fourier theory still apply to it?
- Idea: let L approach infinity and see how the Fourier series change!

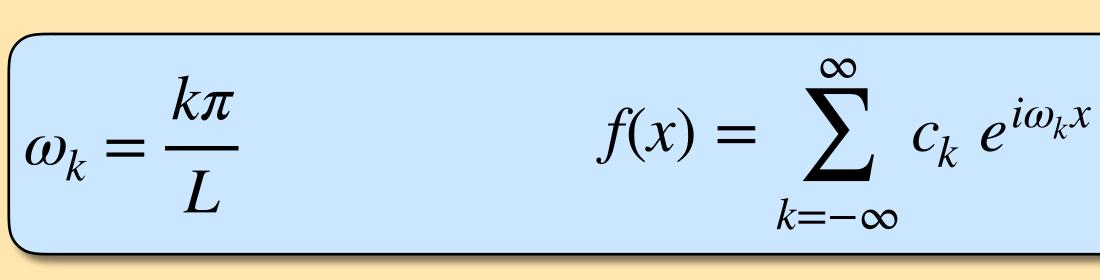




$$\omega_k = \frac{k\pi}{L} \qquad \qquad f(x) = \sum_{k=-\infty}^{\infty} c_k \ e^{i\omega_k}$$

 As L approaches ∞, the infinite sequence of Fourier coefficients becomes a continuous function F(ω).



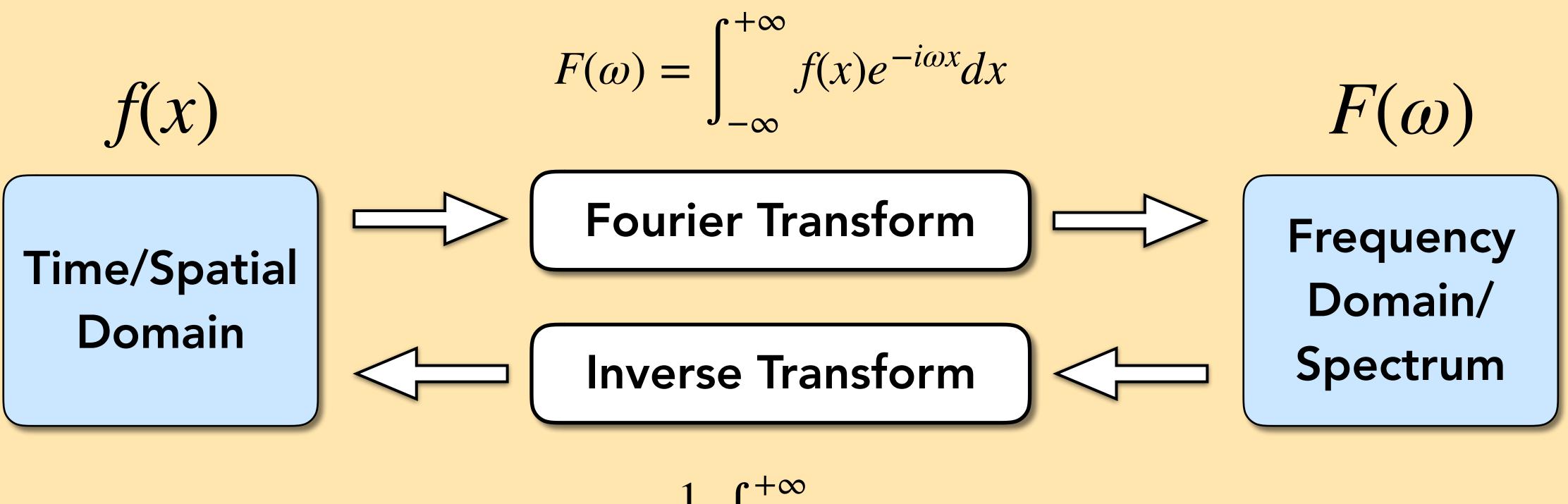


$$c_k = \frac{1}{2L} \int_{-L}^{L} f(x)e^{-i\omega_k x} dx$$
$$\int_{L \to \infty} \lim_{L \to \infty} F(\omega) = \int_{-\infty}^{+\infty} f(x)e^{-i\omega x} dx$$

As L Approaches Infinity $f(x) = \sum_{k=-\infty}^{\infty} c_k \ e^{i\omega_k x}$ $\omega_k = \frac{k\pi}{L}$ $\int \lim_{L \to \infty} L \to \infty$ $\int_{-\infty}^{L \to \infty} f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) d\omega$

$$c_{k} = \frac{1}{2L} \int_{-L}^{L} f(x)e^{-i\omega_{k}x} dx$$
$$\int_{L \to \infty}^{L \to \infty} \lim_{L \to \infty} F(\omega) = \int_{-\infty}^{+\infty} f(x)e^{-i\omega x} dx$$

Fourier Transform



$$\int_{-\infty}^{+\infty} F(\omega) e^{i\omega x} d\omega$$

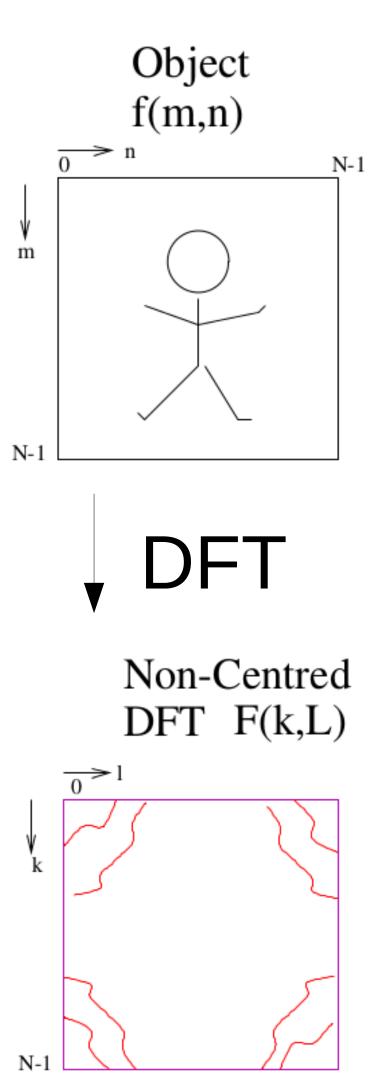
https://www.math.ucdavis.edu/~strohmer/research/sampling/irsampl.html 89

Key Things to Take Away

- Signals
 - Audio waves are discrete 1D signals (in the time domain)
 - Images are discrete 2D signals (in the spatial domain)
- Any time/spatial domain signals can be converted to frequency domain • Frequency domain representation of signal is called **spectrum**
- Fourier series applies to continuous L-period signals
- Discrete Fourier transform applies to discrete L-period signals
- Fourier transform applies to non-periodic continuous signals

Key Things to Take Away

- How to tell frequency from images?
 - "Busy" areas or sudden changes (e.g., edge) correspond to high frequency components
 - Smooth areas are generally of lower frequency
- Removing low/high frequency components from the spectrum corresponds to sharpening/blurring images in spatial domain



Centering: Looking at DFTs

Extended DFT Calculated at all k,l

