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ABSTRACT
Training intelligent systems is a time-consuming and costly
process that often limits real-world applications. Prior work
has attempted to compensate for this challenge by generat-
ing sets of labeled training data for machine learning algo-
rithms using affordable human contributors. In this paper,
we present ARchitect, a system that uses the crowd to ex-
tract context-dependent relational structure. We focus on
activity recognition because of its broad applicability, high
level of variation, and difficulty of training systems a priori.
We demonstrate that using our approach, the crowd can
accurately and consistently identify relationships between
actions even over sessions containing different workers and
varied executions of an activity. This results in the abil-
ity to identify multiple valid execution paths from a single
observation, suggesting that one-off learning can be facili-
tated by using the crowd as an on-demand source of human
intelligence in the knowledge acquisition process.
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1. BACKGROUND
Crowdsourcing is a type of human computation, which has

been shown to be useful in many areas that automated sys-
tems find challenging, including: writing and editing [2], im-
age description and interpretation [3, 7], and protein folding.
Crowdsourcing leverages human“workers”(usually recruited
off a marketplace such as Amazon’s Mechanical Turk) who
each contribute small pieces of work which typically require
only basic skills, resulting in a dynamic, often unreliable
source of answers. However, the benefits of this workforce’s
dynamic nature is that workers can be recruited at any time
within seconds [3, 1], allowing ARchitect to work in nearly
real-time. Most abstractions obtain quality work by intro-
ducing redundant work into tasks so that results are verified
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Figure 1: Dependency graph output for the 3 trials
we ran. An average of 22.3 workers were asked each
question. A threshold of 50% was used on the first
two trials, while the last used 40%.

at each stage.To reduce the cost of crowd-powered systems,
we want to use the crowd to train an automated system,
which can then be used in place of the crowd.

Legion:AR [6] uses the crowd to support and train an
activity recognition (AR) system in real-time. Workers gen-
erate labels for a video stream, and these labels are used to
train a Hidden Markov Model-based AR system. This pa-
per extends the idea of learning from the crowd to include
relational knowledge. Extracting generalized knowledge has
been looked at by CrowdQ [5], which uses data mining and
natural language processing, in addition to the crowd, to ex-
tract query semantics and generate templates. Cascade [4]
looked at creating taxonomies from posts on Quora. It can
extract hierarchies from responses by asking users similarity
questions to find subset relationships.

2. SYSTEM
ARchitect begins by dividing the source activity video

into smaller segments that contain one action each using
Legion:AR [6]. To find the structure of the dependencies
between actions, we ask workers to answer a set of questions
for each video segment. These questions are automatically
generated from the existing labels the system has observed.
Workers simply have to answer ‘Yes’ or ‘No’ to one or more
questions. We found that asking workers ‘Is it possible to do
[action in video] before [action in question] when doing
[high level activity]?’, resulted in a balance between the
scope of the question and adding of new constraints.



The labels generated using Legion:AR are consistent be-
tween multiple executions of different tasks. We present
the workers with video of the activity to encourage results
that are specific to the instance of an action being observed,
which helps to avoid missing details that cause some actions
to be prerequisites of others only under in certain cases.

Using the information collected from workers, we can cre-
ate a directed acyclic graph to represent the relational struc-
ture of the actions. For each ‘Yes’ response, we add 1 to the
weight of the directed edge going from the prerequisite ac-
tion to the given action. The resulting graph captures all
of the pairwise constraints between actions. To increase re-
liability, we use a filtering threshold which removes edges
with low agreement. This graph can be used to extract in-
formation for an activity recognition system. To calculate
the number of valid possible execution paths, we generate
a list of all action orderings that do not contain a depen-
dent action as a parent of it’s prerequisite. This path count
provides a way to measure the potential learning difference
between crowd labeling systems and ARchitect.

3. EXPERIMENTS
To test ARchitect, we looked at a common activity recog-

nition domain: household monitoring. The goal of activity
recognition in the home is to provide timely, task-relevant
information and support to those who need it. For example,
prompting systems that keep people with cognitive disabil-
ities on track, or smart homes that detect when to summon
help so that older adults can safely live independently longer.
These examples require recognizing a whole range of house-
hold tasks. In this paper, we observe people making tea in a
home kitchen environment (described in more detail below).

In our tests, we use a tea making dataset in which partic-
ipants were asked to prepare a cup of tea in our kitchen lab.
We recruited 3 participants to record a video of them step-
ping through the process of making tea. Participants were
not asked to take a particular course of action. There were
6 distinct actions observed in our ‘Make Tea’ domain: Fil-

lKettle, GetIngredients, PrepareTeabag, ReturnIngre-

dients, PourHotWater, SteepTea, and ThrowOutTeabag.

4. RESULTS
To validate ARchitect, we are interested in testing two

aspects: (i) the crowd’s ability to identify dependencies in
observed action orderings, and (ii) the accuracy and valid-
ity of the resulting activity execution paths identified using
this approach. The latter allows us to better understand the
tradeoff in accuracy versus the cost savings of requiring fewer
observations of a given activity to reliably identify it later.
We ran 3 sets of trials using the videos of the tea making
activity performed by 3 different individuals, collecting be-
tween 1 and 5 responses each from 288 unique crowd workers
in all. In order to help workers better understand the task
that they were being asked to perform, we first asked each
worker to do a quick 2-question tutorial in which they re-
ceived feedback on each of their answers (why it was correct
or incorrect). During ours tests, we paid workers between
$0.05 and $0.20 per task, with an average of $0.15.

Crowd workers may misunderstand the task, not be able
to infer the effects of prior actions, or not be willing to com-
plete the task with high accuracy for the offered price. Thus,
we begin by testing how accurately ARchitect can extract

individual relationships from a video of a given activity.
Handling noisy data is a necessary step when collecting

data from the crowd. In order to use only the action de-
pendencies which we have high confidence in, we filter the
data so that a link between two nodes is only included if
multiple workers agreed on it. We found that at around
40% agreement we had over 75% in both precision and re-
call. In addition, we found that at above 50% agreement all
identified valid paths were correct.

Due to the question format that we used, the input from
workers tended towards not adding links in order to prevent
over-constraining the possible solutions. This means that
erroneous edges from reliable workers who were uncertain
about a particular answer are more rare, but we still need
to handle lazy or malicious workers who provide potentially
incorrect answers regardless of the understandability of the
task. The maximum number of possible valid paths increases
exponentially as fewer constraints are included. For Video
#1 there were at most 120 distinct paths, for Video #2
there were 720, and for Video #3 there were 120. We found
an average of 10.7 possible paths for each of our videos,
compared to only 1 without our approach.

5. CONCLUSION
We have presented ARchitect, an activity recognition sys-

tem training tool that is capable of extracting structural
information from video using the crowd by asking workers
to identify dependency relationships between actions. Our
experiments demonstrate the feasibility of this approach.
More generally, ARchitect takes a first step towards us-
ing the crowd to provide on-demand human intelligence in
the knowledge acquisition process and suggests the this ap-
proach could be used to train automated systems from one-
off examples. Human intelligence is well-suited to these
types of tasks because people can easily apply common sense
reasoning to problems that even the current most sophisti-
cated automated systems would struggle with. Our goal in
future work is to extract even more detailed semantic infor-
mation from the crowd.
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