
Answering Visual Questions

with Conversational Crowd Assistants

Walter S. Lasecki1, Phyo Thiha1, Yu Zhong1, Erin Brady1, and Jeffrey P. Bigham1,2

Computer Science, ROC HCI1

University of Rochester

{wlasecki,pthiha,zyu,brady}@cs.rochester.edu

ABSTRACT
Blind people face a range of accessibility challenges in their
everyday lives, from reading the text on a package of food to
traveling independently in a new place. Answering general
questions about one’s visual surroundings remains well be
yond the capabilities of fully automated systems, but recent
systems are showing the potential of engaging on-demand hu
man workers (the crowd) to answer visual questions. The in
put to such systems has generally been a single image, which
can limit the interaction with a worker to one question; or
video streams where systems have paired the end user with
a single worker, limiting the benefits of the crowd. In this
paper, we introduce Chorus:View, a system that assists users
over the course of longer interactions by engaging workers in
a continuous conversation with the user about a video stream
from the user’s mobile device. We demonstrate the benefit of
using multiple crowd workers instead of just one in terms of
both latency and accuracy, then conduct a study with 10 blind
users that shows Chorus:View answers common visual ques
tions more quickly and accurately than existing approaches.
We conclude with a discussion of users’ feedback and poten
tial future work on interactive crowd support of blind users.

Author Keywords
Assistive Technology, Crowdsourcing, Human Computation
ACM Classification Keywords
H.5.m. Information Interfaces and Presentation: Misc.
General Terms
Human Factors; Design; Measurement

INTRODUCTION
Blind people face a wide range of accessibility challenges in
their daily lives, from reading the text on food packaging and
signs, to navigating through a new place. Automatically an
swering general questions about users’ visual surroundings
requires not only effective machine vision and natural lan
guage processing, but also deep understanding of the connec
tion between the two sources of information as well as the in
tent of the user. Each of these problems is a grand challenge

Human-Computer Interaction Institute2

Carnegie Mellon University
jbigham@cmu.edu

Do you see picnic tables
across the parking lot?

What temperature is my
oven set to?

Can you please tell me
what this can is?

1. no

2. no
1. it looks like 425

degrees but the image

is difficult to see.

2. 400

3. 450

1. chickpeas.

2. beans

3. Goya Beans

Figure 1. An set of questions asked by the pilot users of VizWiz.

of artificial intelligence (AI) individually, thus the combina
tion remains well outside the scope of what fully automated
systems are able to handle today or in the near future.

In contrast, recent crowd-powered systems such as VizWiz
[2] have shown the ability of on-demand human computation
to handle many common problems that blind users encounter.
Despite its usefulness, blind users input images to VizWiz one
at a time, making it difficult to support users over the course
of an entire interaction. In VizWiz, images are used because
they represent small, atomic jobs that can be sent to multi
ple crowd workers for reliability of answers received. This
model of question asking is largely ineffective for questions
that span a series of sequential queries, which compose as
much as 18% of questions asked to VizWiz. This difficulty
is due to different workers answering each question, resulting
in a loss of context and long completion times.

In this paper, we introduce Chorus:View, a system that is ca
pable of answering sequential questions quickly and effec
tively. Chorus:View achieves this by enabling the crowd to
have a consistent, reliable conversation with the user about a
video stream from the user’s phone. This speeds up the inter
action by retaining workers instead of re-recruiting them, and
by allowing workers to maintain context.

By keeping workers continuously connected to the task, we
demonstrate that not only can Chorus:View handle problems
for which single-image approaches are not designed to han
dle, but can complete tasks more efficiently than existing
crowd-powered methods. We then discuss users’ feedback
and conclude with potential future work on supporting blind
users in a variety of situations using the crowd.

1

mailto:jbigham@cmu.edu
mailto:wlasecki,pthiha,zyu,brady}@cs.rochester.edu

We can see a box on the desk.

Figure 2. Chorus:View system architecture. The mobile app streams video captured by the user’s phone using OpenTok, along with an audio message
recorded by the user, to crowd workers. Workers watch the live video stream, and provide feedback and answer to the user’s question. The server
forwards selected feedback and answers to the mobile application, which is read by VoiceOver.

BACKGROUND
People with disabilities have relied on the support of people
in their communities to overcome accessibility problems for
centuries [3]. For instance, a volunteer may offer a few min
utes of her time to read a blind person’s mail aloud, or a fellow
traveler may answer a quick question at the bus stop (e.g., “Is
that the 45 coming?”) Internet connectivity has dramatically
expanded the pool of potential human supporters, but finding
reliable assistance on-demand remains difficult. Chorus:View
uses crowds of workers to improve reliability beyond what a
single worker can be expected to provide.

Crowdsourcing has been proven to be an effective means of
solving problems that AI currently struggles with by using
human intelligence. Answering questions based on the con
text of visual data is difficult to do automatically because it re
quires understanding from natural language what parts of the
image are important, and then extracting the appropriate in
formation. At best, current automated approaches still strug
gle to accomplish one of these tasks at a time. Chorus:View
allows users to leverage the crowd, recruited on-demand from
online micro-task marketplaces (in our experiments, Ama
zon’s Mechanical Turk), to interactively assist them in an
swering questions as if they were a single co-located indi
vidual. Chorus:View builds off of continuous crowdsourcing
systems such as VizWiz [2], Legion [7], and Chorus [9]. In
this section, we describe what made these systems unique,
and how we leverage similar approaches to create an interac
tive accessibility tool powered by the crowd.

Automated Assistive Technology
Most prior mobile access technology for blind people in
volves custom hardware devices that read specific informa
tion then speak it aloud, such as talking barcode readers, color
identifiers, and optical character recognizers (OCR). These
systems are expensive, (typically hundreds of dollars [6]), and
often don’t work well in real-world situations. Thus, these
devices have had limited uptake.

Recently, many standard mobile devices have begun in
corporating screen reading software that allows blind peo
ple to use them. For instance, Google’s Android plat
form now includes Eyes-Free (code.google.com/p/eyes
free), and Apple’s iOS platform includes VoiceOver
(www.apple.com/accessibility/voiceover). These tools make
it possible for multitouch interfaces to leverage the spatial
layout of the screen to allow blind people to use them. In fact,

touchscreen devices can even be preferred over button-based
devices by blind users [5]. We have developed our initial ver
sion of Chorus:View for the iPhone because it is particularly
popular among blind users.

Because of the accessibility and ubiquity of these mobile de
vices, a number of applications—GPS navigation software,
color recognizers, and OCR readers—have been developed
to assist blind people. One of the most popular applica
tions is LookTel (www.looktel.com), which is able to iden
tify U.S. currency denominations. However, the capabilities
of these automatic systems are limited and often fail in real
use cases. More recently, the idea of “human-powered access
technology” [3] has been presented. For instance, oMoby
is an application that uses a combination of computer vi
sion and human computation to perform object recognition
(www.iqengines.com/omoby). A handful of systems have at
tempted to allow a blind user to be paired with a professional
employee via a video stream (e.g. Blind Sight’s “Sight on
Call”) but to our knowledge have not been released due to the
expense of recruiting and paying for the sighted assistance.
Chorus:View allows a dynamic group of whoever is available
to help, and mediates input to ensure quality.

VizWiz
VizWiz [2] is a mobile phone application that allows blind
users to send pictures of their visual questions to sighted an
swerers. Users can record a question and choose to route it to
anonymous crowd workers, automatic image processing, or
members of the user’s social network. In its first year, over
40,000 questions were asked by VizWiz users, providing im
portant information about the accessibility problems faced by
blind people in their everyday lives [4]. Figure 1 shows an
interaction from the pilot version of the application.

When questions are sent to crowd workers, answers are
elicited in nearly realtime by pre-recruiting members of the
crowd from services such as Mechanical Turk. Workers are
asked to answer the user’s question, or provide them with
feedback on how to improve the pictures if the information
needed to answer a question is not yet visible. Figure 3 shows
that despite cases where individual feedback and answers can
be obtained quickly, answering long sequences of questions
using single-image interactions can be time consuming.

Properly framing an image can be challenging even for an ex
perienced user because they must center an object at the right

2

www.iqengines.com/omoby
http:www.looktel.com
www.apple.com/accessibility/voiceover

distance without visual feedback. While some approaches
have tried to provide feedback about framing automatically
(e.g., EasySnap [14]), these can be brittle, and don’t account
for object orientation or occlusion within the frame (i.e. a la
bel facing away, or important information being covered by
the user’s thumb). Chorus:View’s interactive approach allows
users to get open-ended feedback and suggestions from the
crowd as if they were an individual helping in-person.

Legion
Legion [7] is a system that allows users to crowdsource con
trol of existing interfaces by defining tasks using natural lan
guage. This work introduced the idea of continuous real-time
interactions to crowdsourcing. Prior systems (such as [13, 10,
1]) focused on discrete micro-tasks that workers were asked
to complete, whereas in Legion, workers are asked to par
ticipate in a closed-loop interaction with the system they are
controlling. This model has also been used to power assistive
technologies such as real-time captioning using the crowd [8].

Chorus:View uses a similar system of collective input to re
spond to users in real-time. The difference is that while
Legion combines workers’ inputs behind the scenes, Cho
rus:View explicit uses a custom interface and incentive mech
anism designed to encourage workers to both generate and
filter responses.

Chorus
Chorus is a crowd-powered conversational assistant. It elic
its collaborative response generation and filtering from mul
tiple crowd workers at once by rewarding workers for mes
sages accepted by other workers (more for proposing a mes
sage than for just voting). Using this, Chorus is able to hold
reliable, consistent conversations with a user via an instant
messenger interface. Chorus not only provides a framework
for the design of a conversational interface for the crowd, but
demonstrates the power of crowds versus single workers in an
information finding task. Chorus:View uses the idea of a con
versation with the crowd, and focuses the interaction around
a video stream displayed to workers in the interface.

Privacy
Chorus:View introduces privacy concerns by making both
streaming video (potentially of the user or their home) and
audio recordings of the user’s voice available to people on
the web. While a vast majority of workers in the crowd are
focused on helping the user, the potential risks might impede
adoption. Many problems are easily mitigated by educating
users about the operation of the system. For instance, by
not streaming video near potentially private information (such
as letters with addresses or other documents), and disabling
video between questions, the risk of disclosing information
unintentionally can be reduced.

Prior systems have also looked at how video might be
streamed to the crowd in a privacy-preserving way without
reducing the workers’ ability to complete the underlying task.
For instance Legion:AR [12] helped mitigate privacy con
cerns by using automatically-generated privacy veils that cov
ered a user’s face and body, and by limiting a worker’s in
volvement with a single user. In many ways, VizWiz has

shown that this type of service can be embraced by users for
its benefits, even in the presence of potential security issues.

MOTIVATION
While visual question answering tools like VizWiz allow
users to get answers from single photographs, there remain
scenarios where this model does not allow more complex
question asking. In this section we discuss current issues with
the photographs and questions being sent in by blind VizWiz
users, and discuss additional use cases in which VizWiz may
not be a suitable source for answering user’s questions.

Current Uses
VizWiz users frequently ask one-off identification, descrip
tion, and reading questions, which best suit its design where
each worker interacts only with a single photograph and ques
tion, and does not have any of the previous context from re
cent questions. In contrast, Chorus:View focus on answer
ing questions that require multiple contextually-related steps,
such as finding a package of food, reading its type, then lo
cating and reading the cooking instructions (an example of a
user completing this task using VizWiz is shown in Figure 3),
or locating a dropped object on the ground (which often re
quires searching an area larger than the default field of view
of a single image taken at standing height). For these tasks,
contextual information is critical to achieve the final objective
and single-photograph based approaches may be ill-suited to
answer due to the limited scope of a single photo.

In order to demonstrate that there is a need for tools that
improve sequential question answering, we first analyzed a
month of VizWiz data to determine how often users asked a
sequence of questions, where multiple questions were asked
by a user within a short period of time. These questions may
show scenarios where users have multiple questions about an
object that cannot be answered at once, or where their pho
tography techniques must be corrected by workers before an
answer can be found. 1374 questions were asked by 549 users
during the analysis period (March 2013). In order to identify
potential sequences, we looked for groups of 3 or more ques
tions asked by users in which each question arrived within 10
minutes of the previously asked question. We identified 110
potential sequences from 89 users, with an average sequence
length of 3.63 questions.

After identifying potential sequences, we narrowed our defi
nition to likely sequences where the objects in three or more
photographs from the sequence were related, and the ques
tions asked were related over multiple images. For this task,
our definition of related images focused on objects that were
the same or similar types (e.g., two different flavors of frozen
dinner), while related questions were either the same question
asked repeatedly, questions where the user asked for multiple
pieces of information about the same subject, or questions
where no audio recording was received. A single rater per
formed this evaluation for all 110 potential sequences. We
also validated our definitions of relatedness by having another
rater evaluate 25 sequences (Cohen’s kappa of k = 0.733).

In all, we found that 68 of our potential sequences (61.8%)
contained a likely sequence, meaning that nearly 18% of

3

Preheat to 400, remove from
box, cover edges with foil and
put on tray, cook 70 minutes

Instructions are likely on
the other side of the box.

Box is mostly out of
frame to the right.

… …
Figure 3. An example of a question asked by a VizWiz user. The sequence of pictures was taken to answer the question “How do I cook this?” Each
question was answered in under a minute, but overall, the cooking instructions took over 10 minutes to receive as crowd workers helped the user frame
the correct region of the box. Chorus:View supports a conversation between a user and the crowd so that corrections can be made quicker and easier.

VizWiz questions are likely sequences. The average sequence
length was 3.70, with an average total time span of 10.01 min
utes to ask all photographs (in comparison, a single VizWiz
question is asked and answered in an average of 98 seconds).

These numbers serve as initial motivation, but are most likely
under-representing the problem, since users who do not get
correct answers to their questions or who had difficulty tak
ing photographs have been less likely to continue using the
VizWiz service after their first use [4].

New Uses
While examining the current use of VizWiz for sequential
question asking provides us with a demonstrated need for
longer term question asking, we believe that new tools may
be more suited to support longer term, contextual interactions
between workers and users. For instance, many VizWiz users
initially asked follow-up questions of the form “How about
now?”, which assumed the crowd had context from the pre
vious question. After getting responses from the crowd that
made it clear the initial question had been lost, users would
learn to ask future questions which contained the full orig
inal question. This shows that users expect the system to
remember initially, which we suspect makes the continuous
approach taken by Chorus:View more natural.

There are also situations that single-image approaches were
never meant to handle. For instance, navigating using visual
cues such as street signs, locating an object from a distance
(i.e. finding a shirt, or trying to find a place in a park with
benches). In these cases, we believe existing VizWiz users
either immediately understand that the requirement of tak
ing only single photos is not well-suited to these problems,
or have learned not to use the application for this over time.
As such, usage logs are not reasonable indicators for how
much use there is for such capabilities. By developing Cho
rus:View, we introduce a way to meet a range of user needs
that were not previously met using VizWiz.

PRELIMINARY TESTS
In order to test how users might benefit from our approach, we
first designed a wizard-of-oz test using student workers. We

first prototyped a version of VizWiz which had users submit
a short video instead of a single image. However, it was very
clear from initial tests that the down-side of this approach was
the high cost of resubmitting a question in the event that a
mistake was made in framing or focus (which was common).

Next, we developed a real-time streaming prototype, by using
FaceTime (www.apple.com/ios/facetime/) to stream video
from a users’ phone to workers’ desktop computer. We con
figured the computer used by the worker so that they could
view the streamed video and hear the audio question from the
user via FaceTime, but must reply via text, which was read by
VoiceOver on the user’s iPhone.

Experiments
To test the effect of our streaming prototype against VizWiz,
we paired users and workers in randomized trials, and mea
sured the time taken to complete each task. The user can ask
question(s) to the worker, who will respond with either in
structions to help frame the item or an answer to the question.
We recruited 6 blind users (3 females) to determine if they
would benefit from continuous feedback and if so, how they
might use it. We also recruited 6 students as volunteer work
ers who answered questions from the blind users remotely.
The first task was to find out specific nutrition content—for
example, the sodium content—for each of three different food
items that were readily found in the kitchen. The second task
was to get the usage instructions from a shampoo bottle.

Results
Our results showed that users spent an average of 141 seconds
getting the shampoo usage instructions via the streaming pro
totype versus an average of 492.6 seconds using VizWiz. In
finding the nutrition content of three food items, the users
spent 607.2 seconds to obtain satisfactory answers via the
prototype whereas they spent 1754.4 seconds using VizWiz.
Further analysis showed that system, task type (nutrition con
tent vs. usage instruction) and their interaction together ac
count for about 36.3% (R2 = 0.363) of the variance in task
completion time, and it is significant (F (3, 18) = 3.418,
p < 0.05). Moreover, method has a significant effect on com
pletion time (beta=0.293, F (1, 18) = 8.393, p < 0.01).

4

www.apple.com/ios/facetime

We asked the users to rate how easy it was to use of each
method to accomplish different tasks based on a 7-point Lik
ert scale where 1 was “strongly disagree” and 7 was “strongly
agree”. The median Likert rating for the prototype was 6.0
for both nutrition content and usage instruction tasks, while
it was 3.0 and 2.0 respectively for corresponding tasks in
VizWiz. Additionally, 4 out of 6 users indicated that they
prefer to use the Chorus:View prototype if only one of the
two approaches was available to them.

From our observation of the workers, some seemed hesitant
to respond to questions if they were not completely confident
about the answer, and some resisted giving corrective sugges
tions for the phone camera as they assumed their responsibil
ity was solely to provide the answers. When we told them that
they could help the users with positioning and framing the
camera, most of them adapted quickly. In addition, we noted
some instances where responses from the workers might have
potentially caused friction between the user-worker interac
tion. In such incidents, the users were frustrated with the help
they received from the workers. This indicates that training
the workers is necessary to help them understand the system,
and provide helpful and acceptable responses. As we discuss
later, we use a combination of a video tutorial and an interac
tive tutorial to train workers in Chorus:View.

On the other hand, the users struggled to properly align im
ages using both systems, but were able to get responses faster
using the streaming prototype. They were also able to bene
fit from better scanning behavior compared to VizWiz due to
immediate feedback from the workers. For example, the user
panned the camera across the object of interest until they were
told to stop. As a result, the answers came faster. VizWiz was
mostly plagued by framing problems and users who had never
used VizWiz previously struggled more noticeably.

Despite its advantages over VizWiz, our prototype system did
not allow workers to view past content, which often made
reading small details difficult. Based on this, Chorus:View
gives workers the ability to capture static images of the video.

CHORUS: VIEW
In order to improve on visual question answering for the
blind, Chorus:View adds the concept of a closed-loop ques
tion and answer interaction with the crowd. In this system,
users capture streaming video and a series of questions via
the mobile interface, and workers provide feedback to users,
in the form of corrections and answers.

When the Chorus:View mobile application is started, the
server recruits crowd workers from Mechanical Turk. The
server then forwards the audio question and the video stream
from the user to these workers, via the worker interface. Re
sponses are aggregated using a collective (group) chat inter
face in order to respond to the user’s questions using natu
ral language. While workers will still reply in text, a screen
reader on the user’s phone performs text to speech conversion
to make the text accessible. Chorus:View allows very rapid
successions of answers (each within a matter of seconds) to
complex or multi-stage questions, and lets workers give feed
back to users on how to frame the required information.

VizWiz users have previously noted that they prefer a more
continuous interaction [2]. We used an iterative, user-
centered design process to develop the Chorus:View mobile
application that allows users to stream video and send audio
questions to our service, as well as the worker interface which
elicits helpful responses. Instead of allowing only a single au
dio question per submission like VizWiz does currently, the
application lets users record an initial question and then re
record a new one at any point, which are shown to workers
as a playable audio file embedded in the chat window. Fu
ture versions of the system will also include a corresponding
caption generated by either automatic speech recognition or
a crowd-powered solution such as Legion:Scribe [8]. This al
lows users to modify a question to get the response they were
looking for, or ask follow-up questions to the same crowd of
workers who know the answers to previously asked questions.

We avoided using speech responses from the crowd because
it adds latency during worker evaluation, not all workers have
access to a high-quality microphone, and differences between
workers’ and users’ English fluency (and accents) adds diffi
culty to understanding responses. We also tried adding preset
responses to the worker interface to allow them to provide di
rection and orientation feedback to users quickly; however,
we found that switching between multiple modes of interac
tion (typing and clicking) caused confusion among workers.

User Interface
When users start the Chorus:View mobile application, they
are given the option to immediately begin streaming video to
the crowd, or first record a question. When they decide to
begin streaming, workers can view this content and provide
feedback. Users receive this feedback in a text area that is au
tomatically read by VoiceOver. Users can also read previous
responses by using a history button that will allow them to se
lect and listen to old messages. At any point in this process,
users can choose to either pause the video stream (useful for
when they want to complete a task in privacy but know there
is another question that they will need to ask soon), or end the
session completely, which will also end the worker’s session
and compensate them for their contributions.

Worker Interface
Workers are presented with an interface which has two main
components: video streamed from the user and a chat win
dow that allows them to jointly generate responses along with
others synchronously. To stream and display video, we use
OpenTok (www.tokbox.com/opentok). To enable a conversa
tion between the user and multiple crowd workers, we use a
chat interface similar to Chorus [9].

Viewing the Video Stream and Capturing Screenshots
During our preliminary tests, we found that most users could
not hold the camera stable enough for workers to focus on
small details. In response, we designed the worker interface
to allow workers to capture still images of the video stream
by clicking on the video window. This functionality enables
workers to capture moments of interest from the video stream,
and view them at a time of convenience to answer the ques
tions. The interface also allows the workers to delete and

5

www.tokbox.com/opentok

Figure 4. Chorus:View worker interface. Workers are shown a video
streamed from the user’s phone, and asked to reply to spoken queries
using the chat interface. In this example, the recorded message asks
workers “How do I cook this?” a question that often involves multiple
image-framing steps and was often challenging using VizWiz.

browse all the captured images, and switch back to viewing
the live video stream at any moment. Alternatively, future
versions of Chorus:View could include video playback con
trols instead of capturing select images.

Feedback Selection Process
In order to select only a set of responses that is beneficial
to the user, our system uses an approach similar to Chorus,
in which workers can both vote on existing responses and
propose new ones. In Chorus:View, workers need to agree
quickly on what feedback to give users, while still being con
sistent (receiving both ‘move item left’ and ‘move item right’
at the same time as a response would be confusing). Cho
rus:View chat system helps do that by introducing an incen
tive mechanism that rewards workers for quickly generating
answers, but also for coming to agreement with others. Once
sufficient consensus is found, the text response is forwarded
to the user to be read aloud. The latency of this approach is
low enough that it does not interfere with the overall speed of
the interaction (around 10-15 seconds per response).

Server
The Chorus:View server handles the streaming media man
agement, worker recruitment, and input mediation. When a
user starts the application, the server automatically generates
a session ID and begins recruiting workers from Mechanical
Turk using quikTurKit [2]. Once requested, streaming video
is then sent from the user’s mobile device to the server using
OpenTok. The server manages all current connections using
the session ID parameter, publishes the video stream and for
wards audio messages to the appropriate set of workers. Once
workers respond, the server tracks the votes and forwards ac
cepted messages back to the user’s device.

EXPERIMENTS
The goal of our experiments was to better understand Cho
rus:View’s performance on question types that often require
asking multiple repeated or related questions.

Worker Study
We began our experiments to measure the ability for work
ers to answer questions using Chorus:View. Our chat inter
face supports multiple simultaneous workers collaboratively
proposing and filtering responses, but a key questions is if
we really need multiple workers to effectively answer users’
questions. To test this, we had users ask a set of objective
questions about information contained on an object. Using
10 household objects (8 food items), a unique question was
asked regarding a single fact discernible from text on each
object selected. The study was run over the span of 2 days to
get a wider sample of crowd workers.

We tested 2 conditions with each object. In the first condition,
a single worker was used to provide answers. In the second, a
group of 5 workers were recruited to answer questions simul
taneously. We randomized the order of the items being tested,
the order of the conditions, and separated tests using the same
item to be on different days to help prevent returning workers
from recalling the answers from previous trials.

We recruited all of our workers from Mechanical Turk. For
this series of tests, the ‘user’ role was played by a researcher
who followed a predefined set of guidelines determining how
he would respond to given types of user feedback (i.e. ‘turn
the can to the right’ would be performed the same as ‘turn the
can 90 degrees counter-clockwise’). The condition used for
each trial—single versus multiple workers—was also made
unknown to the researcher. For any situation that was not in
the predefined set, an interpretation was made as needed and
used consistently for the rest of the trials (if the situation arose
again). Our goal was to normalize for the user’s behavior
within these tests to more accurately measure the workers.

Worker Results
We had a total of 34 distinct workers contribute to our task.
Of these, 29 proposed at least one new answer, and 20 voted
for at least one answer generated by another worker.

We observed a clear difference between single workers and
groups of workers in terms of speed and accuracy. Using a
single worker, the mean time to first response was 45.1 sec
onds (median of 47.5 seconds), most likely due to workers
trying to orient themselves to the task with no other input pro
vided from other workers. When using a group of workers,
there was a drop of 61.6% to 17.3 seconds (median of 16.5
seconds), which was significant (p < 0.05). Likewise, the
average time until final response decreased from 222.5 sec
onds (median of 190.5 seconds) to 111.7 seconds (median of
113.5 seconds), a significant difference of 49.8% (p < 0.05).

User Study
The second part of our experiments focused on testing blind
users’ ability to use Chorus:View. We recruited blind users
to complete a set of experiments similar to the ones in our
preliminary trial, which are broken up into three sets:

•	 Product Detail: One of the most common problems ob
served in VizWiz is that, using a one-off interaction with
workers, it is difficult or even impossible to maintain con
text and get the most useful responses to a series of re

6

peated questions, such as when users re-ask a question after
adjusting their camera based on previous feedback from the
crowd. We compared Chorus:View to VizWiz in these situ
ations by using each to find a specific piece of information
about a product. Users were asked to select a household
object that has an expiration date, then ask the systems to
tell them the date. This task is a common example of one
that requires careful framing of information with no tactile
indicators meaning that users often require a lot of feed
back from workers to frame the date properly.

•	 Sequential Information Finding: We next compared the
ability of both systems to find sequences of related infor
mation by asking users to find a package of food which is
not identifiable by shape (e.g., cans of different types of
vegetables), then find first the type of food, and then the
cooking instructions. While finding each progressive piece
of information, the crowd observes more of the item, po
tentially allowing them to get the next piece of information
more quickly than a new set of workers could.

•	 Navigation: Chorus:View’s continuous interaction also al
lows for new applications beyond the scope of VizWiz. We
explored Chorus:View’s ability to help users navigate to
visual cues by asking participants to simulate an acciden
tally dropped item by rolling up a shirt and tossing it gen
tly. They were asked to face away from the direction that
they threw the shirt, and then use Chorus:View to locate
it and navigate to the shirt. While users had a rough idea
where the item landed (as is often the case when looking
for something), they do not know exactly where to begin
and thus often have difficulty.

Each of these conditions was randomized, as was the order
of the systems used. Because many workers return to the
VizWiz task posted to Mechanical Turk, there is an experi
enced existing workforce in place. To avoid bias from this
set of workers, we used a different requester account to post
the tasks (since many workers return to repeated tasks based
on the requester identity). In order to ensure the number of
responses was on a par with Chorus:View, we increased the
number of responses requested by the system from 1-2 (in the
deployed version of VizWiz) to 5. We also increased the pay
to $0.20–$0.30 per task (roughly $10–$20 per hour), instead
of the usual $0.05, to better match the $10 per hour antici
pated pay rate of Chorus:View.

In order to limit interactions to a reasonable length, we set
a maximum task time of 10 minutes. If the correct informa
tion was not found by the time limit, the task was considered
incomplete. For these tasks, the user expects an answer im
mediately (classified “urgent” in [4]).

User Results
We recruited a total of 10 blind users and 78 unique work
ers from Mechanical Turk to test Chorus:View. Our users
ranged from 21–43 years old and consisted of 6 males and 4
females—6 of them use VizWiz at least once per month, but
only 2 used it more than once per week on average.

For the product detail task, Chorus:View completed 9 out of
10 tasks successfully, with an average time of 295 seconds,

while VizWiz completed only 2 trials within the 10 minute
limit, with an average time of 440.7 seconds. For the sequen
tial information finding task, Chorus:View completed all 10
of the trials within the 10 minute limit, with an average time
of 351.2 seconds, while VizWiz completed only 6 trials with
an average time of 406.8 seconds. For the navigation task,
Chorus:View was able to complete all 10 trials, with an av
erage time of 182.3 seconds. VizWiz was not tested in this
condition since its interaction is not designed to support this
case, and thus in preliminary tests, it was not possible to com
plete the task in a reasonable amount of time in many cases.

The completion rate of Chorus:View (95%) is significantly
higher than VizWiz (40%). A two-way ANOVA showed sig
nificant main effects of the difference between the two ap
plications (F (1, 36) = 22.22, p < .001), as well as the two
task types (55%vs.80%, F (1, 36) = 4.59, p < .05), but there
was no significant interaction. Therefore blind users were
more likely to successfully complete both sequential infor
mation finding tasks and more difficult tasks which involve
exploring a large space for a tiny bit of information with Cho
rus:View. However, the improvement in completion time of
Chorus:View over VizWiz was not significant. This is due
to the small number of VizWiz trials that actually completed
within the allotted amount of time.

DISCUSSION AND FUTURE WORK
Our tests showed that Chorus:View’s continuous approach
achieved a significant improvement in terms of response time
and accuracy over VizWiz in cases where sequential infor
mation is needed. While both VizWiz and Chorus:View rely
on images from the user’s phone camera, there is a clear dif
ference in final accuracy. Interestingly, the lower resolution
source (video in Chorus:View) outperforms the higher reso
lution images from VizWiz. We believe this is due to VizWiz
workers being biased towards providing an answer over feed
back if unsure. Additionally, video allows workers to give in
cremental feedback over the user’s camera positioning, poten
tially improving the quality of the images in the video stream.

We also observed a number of other effects on the quality of
responses. For instance, some VizWiz workers assumed the
task was simple object identification and did not listen to the
questions, resulting in unhelpful responses. In Chorus:View,
workers can see one another’s contributions, and get a better
understanding of the task. Some of the workers used “We”
to refer to themselves, which hints to us that they collectively
shoulder the responsibility of helping the user. In some trials,
we observed that the workers discussed among themselves—
that is, without voting on the chat submissions—whether cer
tain information is correct or not. A few users also thanked
the workers when they received the correct answers, which
is the sort of interaction not possible in VizWiz. These in
teractions lead us to believe that Chorus:View system engen
ders a collaborative and mutually-beneficial relationship be
tween the user and the workers. On the other hand, over
enthusiastic workers might trigger negative effects, such as
inundating the user with multiple simultaneous—and poten
tially contradicting—feedback.

7

http:55%vs.80
http:0.20�$0.30

The way a user asked a question influenced the helpfulness of
the responses they received, especially when an answer was
not readily apparent from the current view. For example, ask
ing “What is the expiration date of this food?” received short
unhelpful answers when the expiration date was not in view,
e.g. “Can’t see.” Slight variations on this question, e.g. “Can
you guide me to find the expiration date of this food?”, gener
ated more helpful responses like “The label is not in the pic
ture. Try turning the box over to show the other side.” Future
work may explore either training users to ask questions more
likely to elicit helpful responses, or emphasizing to workers
how to provide a helpful response even if they cannot answer
the specific question asked by a user.

User Feedback
Users were generally very enthusiastic about the potential of
Chorus:View, while noting that VizWiz could be also be help
ful for many non-sequential tasks (which fits its design). One
user noted, “For common tasks such as identifying a prod
uct I would use VizWiz, but for more specifics like obtaining
instructions on a box or can, I would use the Chorus:View
application most certainly.” In other cases though, the more
rapid feedback loop of answer and framing help was seen as
a major benefit. The video is also helpful because it does
not force users to achieve challenging maneuver such as get
ting camera focus right on the first try. A user commented,
“...[Chorus:View] is more convenient to use and you don’t
have to take a ‘perfect’ picture and wait for the results. It’s
just more practical when someone can tell you how to move
the camera differently.” However, one user raised a concern
about Chorus:View application potentially using up the data
quota when on carrier’s network. To prevent this, we plan to
update the app to use wireless networks when possible.

Worker Feedback
During our user studies, we also got a significant amount
of feedback from crowd workers. While positive feedback
from Mechanical Turk workers is very rare, we received
emails from 10 workers saying the enjoyed doing the task and
wanted to continue participation because of the benefit to the
end user. We expect this to help us eventually train a work
force of experienced workers who feel good about contribut
ing to the task, much in the same way the deployed version of
VizWiz benefits from this same effect.

FUTURE WORK
Our work on Chorus:View points to a number of exciting fu
ture directions of research. First, there is still room to im
prove the speed of the interaction, as well as determine when
users are best served by Chorus:View’s continuous interac
tion, versus VizWiz’s asynchronous interaction (where users
have the ability to do other things while they wait for a re
sponse). Once released to the public, Chorus:View will pro
vide an unmatched view into how low-vision users interact
with a personal assistant who can guide them throughout their
daily lives, and help answer questions that were not feasi
ble before even when using VizWiz. More generally, Cho
rus:View will provide insight into how people interact when
they are able to query a personal assistant that remains con
textually aware using the sensors available in common mobile

devices. This applies to both low-vision and traditional users,
who would benefit from applications such as a location-aware
navigation assistant that can find a route and provide naviga
tion instructions based on a complex but intuitive sets of per
sonal preferences that the user conveyed in natural language.

CONCLUSION
In this paper we have presented Chorus:View, a system that
enables blind users to effectively ask a sequence of visual
questions to the crowd via real-time interaction from their
mobile device. Our tests indicate that the continuous interac
tion afforded by Chorus:View provides substantial benefit as
compared to prior single-question approaches. Chorus:View
is an example of a continuous approach to crowdsourcing ac
cessibility. Its framework may help to enable future crowd-
powered access technology that needs to be interactive.

ACKNOWLEDGMENTS
This work is supported by National Science Foundation
awards #IIS-1116051 and #IIS-1149709, and a Microsoft
Research Ph.D. Fellowship.

REFERENCES
1. Bernstein, M. S., Little, G., Miller, R. C., Hartmann, B.,

Ackerman, M. S., Karger, D. R., Crowell, D., and Panovich, K.

Soylent: a word processor with a crowd inside. In Proc. of UIST

2010, 313–322.

2. Bigham, J. P., Jayant, C., Ji, H., Little, G., Miller, A., Miller, R. C.,
Miller, R., Tatarowicz, A., White, B., White, S., and Yeh, T.
Vizwiz: nearly real-time answers to visual questions. In Proc. of
UIST 2010, 333–342.

3. Bigham, J. P., Ladner, R. E., and Borodin, Y. The design of

human-powered access technology. In Proc. of ASSETS 2011,

3–10.

4. Brady, E., Morris, M. R., Zhong, Y., White, S. C., and Bigham,
J. P. Visual Challenges in the Everyday Lives of Blind People. In
Proc. of CHI 2013, 2117–2126.

5. Kane, S. K., Bigham, J. P., and Wobbrock, J. O. Slide rule: making
mobile touch screens accessible to blind people using multi-touch
interaction techniques. In Proc. of ASSETS 2008 (2008), 73–80.

6. Kane, S. K., Jayant, C., Wobbrock, J. O., and Ladner, R. E.
Freedom to roam: A study of mobile device adoption and
accessibility for people with visual and motor disabilities. In Proc.
of ASSETS 2009.

7. Lasecki, W., Murray, K., White, S., Miller, R. C., and Bigham, J. P.
Real-time crowd control of existing interfaces. In Proc. of UIST
2011, 23–32.

8. Lasecki, W. S., Miller, C. D., Sadilek, A., Abumoussa, A., Borrello,
D., Kushalnagar, R., and Bigham, J. P. Real-time captioning by
groups of non-experts. In Proc. of UIST 2012), 23–33.

9. Lasecki, W. S., Wesley, R., Nichols, J., Kulkarni, A., Allen, J. F.,

and Bigham, J. P. Chorus: A Crowd-Powered Conversational

Assistant. In Proc. of UIST 2013, To Appear.

10. Little, G., Chilton, L. B., Goldman, M., and Miller, R. C. Turkit:
human computation algorithms on mechanical turk. In Proc. of
UIST 2010, 57–66.

11. Singh, P., Lasecki, W.S., Barelli, P. and Bigham, J.P. HiveMind: A
Framework for Optimizing Open-Ended Responses from the
Crowd. URCS Technical Report, 2012

12. Lasecki, W. S., Song, Y. C., Kautz, H., and Bigham, J. P..
Real-time crowd labeling for deployable activity recognition. In
Proc of CSCW 2013, 1203–1212.

13.	 von Ahn, L., and Dabbish, L. Labeling images with a computer
game. In Proc. of CHI 2004, 319–326.

14. White, S., Ji, H., and Bigham, J. P. Easysnap: real-time audio
feedback for blind photography. In Proc. of UIST 2010
Demonstration, 409–410.

8

	Introduction
	Background
	Automated Assistive Technology
	VizWiz
	Legion
	Chorus
	Privacy

	Motivation
	Current Uses
	New Uses

	Preliminary Tests
	Experiments
	Results

	CHORUS: VIEW
	User Interface
	Worker Interface
	Viewing the Video Stream and Capturing Screenshots
	Feedback Selection Process

	Server

	Experiments
	Worker Study
	Worker Results

	User Study
	User Results

	Discussion and Future Work
	User Feedback
	Worker Feedback

	Future Work
	Conclusion
	Acknowledgments
	REFERENCES

