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ABSTRACT 
Behavioral researchers spend considerable amount of time 
coding video data to systematically extract meaning from 
subtle human actions and emotions. In this paper, we present 
Glance, a tool that allows researchers to rapidly query, sam­
ple, and analyze large video datasets for behavioral events 
that are hard to detect automatically. Glance takes advantage 
of the parallelism available in paid online crowds to inter­
pret natural language queries and then aggregates responses 
in a summary view of the video data. Glance provides ana­
lysts with rapid responses when initially exploring a dataset, 
and reliable codings when refining an analysis. Our experi­
ments show that Glance can code nearly 50 minutes of video 
in 5 minutes by recruiting over 60 workers simultaneously, 
and can get initial feedback to analysts in under 10 seconds 
for most clips. We present and compare new methods for 
accurately aggregating the input of multiple workers mark­
ing the spans of events in video data, and for measuring the 
quality of their coding in real-time before a baseline is estab­
lished by measuring the variance between workers. Glance’s 
rapid responses to natural language queries, feedback regard­
ing question ambiguity and anomalies in the data, and ability 
to build on prior context in followup queries allow users to 
have a conversation-like interaction with their data – opening 
up new possibilities for naturally exploring video data. 

Author Keywords 
Data analysis; subjective coding; crowdsourcing; video 
ACM Classification Keywords 
H.5.m. Information Interfaces and Presentation: Misc. 

INTRODUCTION 
Behavioral video coding provides researchers in the social 
sciences a lens for studying human interactions [3]. In the do­
main of HCI, for example, researchers use video analysis to 
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Figure 1. Glance codes behavioral events in video quickly and accu­
rately. When a question is asked, small clips from the video are sent 
to crowd workers who label events in parallel. The judgments are then 
quickly merged together and displayed. In this example, we use Glance 
to count the frequency and duration of eye contact between presidential 
candidates during a 2012 debate. 

study how users interact with computational systems [21, 19] 
and to develop theories that explain those interactions (e.g., 
[3, 4]). While video coding affords a systematic measure 
of behavior, it is notoriously time-consuming. By some ac­
counts, video coding analysis takes 5-10x longer than the play 
time of video [20]. This does not include the time to develop 
a reliable coding scheme, to train coders, or to check for inter-
rater reliability. Given the high cost and lengthy turnaround 
required to test a hypothesis, researchers may exhibit sunk-
cost reasoning and resist changes to their coding scheme. 

Ideally —and maybe eventually —computational approaches 
will mature to the point of being able to automatically la­
bel segments of behavior. However, due to the diverse con­
texts and subtly interpretive nature of video coding, auto­
mated analysis of human behavior currently yields poor re­
sults. While commercial video coding tools make this pro­
cess easier for a research team, they do not eliminate the bot­
tleneck of sequentially viewing all the video [22, 1]. 
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In this paper, we introduce Glance, a system that allows re­
searchers to analyze and code events in large video datasets 
by parallelizing the process across a crowd of online workers 
(Figure 1). This approach significantly reduces the amount of 
time required to test a coding hypothesis within video data. 
Video data can be coded in a fraction of the actual time de­
pending on the size of the available crowd. By distributing the 
same video segments among multiple workers, Glance can 
calculate the variance to provide quick feedback result reli­
ability. Glance provides a front-end interface for analysts to 
enter natural-language queries and to visualize coding results 
as they arrive. 

To evaluate Glance, we coded multiple behavioral events in 
several different types of video data, including a publicly 
broadcast political debate and lab-based social science exper­
iment. To investigate the speed of the approach, we coded 
occurrences of a single type of behavioral event in an hour-
long video. Glance produced judgments on a 12 minute-long 
video in 2 minutes (6× speedup), and coded 48 minutes of 
video in just 5 minutes (a nearly 10× speedup). 

To evaluate accuracy, we coded for the occurrence and time 
window of variable-length behavioral events and compared 
them to a gold standard. Using 10 simultaneous workers for 
each video segment, Glance was able to accurately identify 
on average over 99% of the event occurrences and estimated 
the time window of these events within a 1-second margin of 
error, in terms of both when they occur and for how long. 

By dramatically reducing the speed and increasing the reli­
ability of video coding, researchers have the opportunity to 
interact more “opportunistically” with their data. Glance’s in­
terface visualizes coding results in real-time, allowing an ana­
lyst to issue new queries, and cancel or re-frame their original 
one after seeing initial results. The resulting conversational 
style of interaction allows video analysts to more quickly ex­
plore, develop and refine research hypotheses in ways that are 
not feasible today. 

Our contributions can be summarized as follows: 
•	 We propose a conversational interaction paradigm for 

video coding that leverages crowd workers with minimal 
expertise to provide rapid judgments on natural language 
queries about behavioral events in video data. 

•	 We introduce Glance, a video coding tool for researchers 
that (i) recruits and coordinates an online crowd for behav­
ioral coding, (ii) segments video data and distributes video 
coding tasks to individual crowd workers, and (iii) collects 
and visualizes individual judgments and aggregate statis­
tics in real-time. 

•	 We provide experimental evidence via a large study with 
Amazon Mechanical Turk workers that the crowd can 
quickly and accurately identify events in video on-demand. 

•	 We demonstrate an end-to-end interaction using Glance to 
explore real-world data, and show that the results are quick, 
accurate, and allow analysts to make informed decisions 
about subsequent steps in their data exploration process. 

ENVISIONED INTERACTION 
In this section, we overview an envisioned interaction with a 
video coding system, which inspired Glance, the system that 
we introduce in this paper. 

Alice is a human-computer interaction researcher who wants 
to analyze 18 hours of video of computer game play sessions 
to determine if the system she has built improves players’ en­
gagement with one another. She begins by opening her be­
havioral coding software package and loading the video she 
recorded during her experiments. Once loaded, she asks the 
system to find all of the times when at least one person was 
talking in the video. Instantly, indicators appear below the 
play bar that mark the 75% of her videos that contain some­
one talking. She then asks the system to find “when two 
players are engaged with one another”. The system responds 
with several instances as well as a message indicating that 
the question is too vague and there is low confidence in the 
reported results. Realizing that she has underspecified the 
problem, Alice researches the literature for behavioral cues 
to look for when measuring engagement, and asks the sys­
tem to find instances of eight such cues. The system returns 
separate event logs for all eight behaviors, and from this vi­
sualization, Alice is able to see that only five of the behaviors 
occur more than once in her data. 

Given the few returned instances, Alice suspects that those 
might be only a small part of the two-person interactions in 
the video. For this reason, she asks the system to find all 
times where two people talk directly to one another, as a sub­
set of the times when people are talking. The system realizes 
that this is a follow-up query and only checks sections of the 
video that it knows has someone talking in them. After see­
ing the results, Alice realizes her suspicions were correct – 
only about 60% of conversations were coded for the target 
engagement metrics. Looking at her initial coding scheme, 
she realizes that she was only coding for positive engagement 
cues. After doing another search, she tries asking the sys­
tem to mark a few negative engagement cues during periods 
where other cues were not found, but that had two players 
talking to one another. The system returns a number of ex­
amples, and Alice is able to see that, at some points, players 
are fighting with one another about in-game decisions. In 
further interactions with the system, she is able to make a 
number of other corrections to her initial assumptions and de­
velop a well-informed coding scheme that other analysts can 
be trained on to get reportable data for her research. 

Alice’s interaction with the behavioral coding tool demon­
strates a best-case scenario: the system understands natural 
language queries, replies instantly, gives feedback on the clar­
ity and expected accuracy of queries even when no ground 
truth is available, and allows follow-up queries as subsets of 
previous queries – similar to a Q&A conversation. 

In this paper, we present a system, Glance, that attempts to 
bring analysts closer to this type of ideal interaction by using 
the crowd to provide highly parallelizable on-demand human 
intelligence when answering queries. But, before we intro­
duce the tool, we review related work and empirically eval­



uate to what extent the speed and accuracy of crowd-based 
video coding could support the interaction we envision. 

RELATED WORK 
Glance is a crowd-powered system that allows users to 
rapidly iterate on a video coding task. It draws from prior 
work in both behavioral coding and crowd-powered systems. 
Prior research in behavioral coding illustrates what would 
need to be done to approach the envisioned interaction pre­
sented in the last section, and work on crowd-powered sys­
tems suggests a path for achieving it. 

Behavioral Observation and Coding 
Observing and coding behavioral events in video is a common 
research practice in the social sciences, used in fields as di­
verse as human-computer interaction, linguistics, anthropol­
ogy, psychotherapy, and child psychology [11, 20]. System­
atic observation through video focuses on creating a precise 
measurement of behavioral streams. To demonstrate rigor, 
researchers often use “properly trained observers to produce 
identical protocols, given that they observed the same stream 
of behavior” [3]. In practice these are often undergraduate 
students who are given training that may range from a day to 
multiple weeks for complex events. 

Bakeman and Gottman [3] provide a comprehensive intro­
duction into this technique that is largely performed in three 
steps. First a coding scheme, which defines the set of behav­
ioral categories, has to be developed. This can be done in 
a bottom-up, top-down approach [34], or, more often, a hy­
brid approach. In a bottom-up approach the coding scheme 
is constructed from behavioral features observed during care­
ful viewing and re-viewing of the video, while in a top-down 
approach it is derived from theory. 

The second step is then to train coders. The amount of train­
ing required largely depends on the complexity of the cod­
ing scheme, and can take up to several weeks or require de­
tailed training curriculum.Training is often seen as a continu­
ous process even after the actual coding has started. For ex­
ample, Coan and Gottman [11] describe a practice in which 
coders collectively watch practice videos in order to clarify 
confusions. We integrate a similar (but shorter) form of train­
ing into our tasks to prepare crowd workers. 

The final step is then to categorize or “code” the video data 
according to the coding scheme. At least one independent 
observer should code some of the videos for a second time 
to test reliability. Researchers often selectively test inter-rater 
agreement [12] throughout the process to refine the coding 
scheme. Practitioners recommend that analysts make several 
passes through the video data and code one event type at a 
time, in order to avoid missing occurrences [20]. This in­
creases reliability, but also greatly increases the amount of 
time required to code a video. 

Video Coding Tools 
Several tools have been developed to support the video coding 
process, particularly steps two and three described above. For 
example, ANVIL, Datavyu [1], VACA [9], and VCode [18] 
all provide an interface for easily annotating audio and video 

with event tags, and some allow for testing of inter-rater 
agreement, but only for the overlap of observed events. Tools 
such as GSEQ [4] calculate agreement statistics and provide 
visual feedback for coders. 

Despite this growing availability of video coding tools, there 
is a lack of support for the highly iterative process of devel­
oping, testing, and re-visiting a coding scheme . This pro­
cess can take several times longer than the length of the video 
content itself, and as a result, researchers invest considerable 
time in each iteration of their coding scheme. This makes it 
challenging for researchers to reanalyze video based on initial 
findings, to thoroughly explore the different types of events, 
or to modify a coding scheme based on preliminary analy­
sis. In this paper we address these shortcomings by providing 
tool-support for a process of rapidly iterating and testing cod­
ing schemes via the inherent parallelism of the crowd. 

Measuring Agreement 
Observer agreement describes the degree to which two or 
more observers agree with each other [3]. This is different 
from observer reliability that describes the degree to which 
an observation aligns with an established “truth”, such as a 
baseline observation protocol. Most observational research 
only assesses agreement, while reliability is assumed given 
sufficient agreement. Measuring agreement can: (i) indi­
cate the trustworthiness of observations in the data, and (ii) 
provide feedback to calibrate observers against each other or 
against baseline observations. If one assumes the baseline to 
be “true”, then observer agreement can be used to assess relia­
bility. A commonplace statistic to assess observer agreement 
is Cohens Kappa [12] which corrects for chance agreement 
between two workers. 

Crowdsourcing Video Annotations 
Crowdsourcing leverages human computation [32] in the 
form of open calls to paid online workers from platforms such 
as Amazon’s Mechanical Turk. Crowdsourcing has been used 
on tasks that rely on human judgment and that are difficult 
for automated systems. For example, Soylent [7] uses the 
crowd to edit or shorten writing, VizWiz [8] answers ques­
tions about photographs quickly, and Legion [24] follows nat­
ural language commands to intelligently control a GUI. 

The crowd has also been leveraged in the context of activity 
recognition systems. For instance, VATIC [33] allows crowd 
workers to tag where objects appear in a scene. While the 
crowd provides these annotations, it is not designed to re­
spond quickly to the end-user. Similarly, Legion:AR [25, 28] 
explores crowd labeling of low-level actions in video for as­
sistive home monitoring: workers are asked to watch a video 
stream as it happens live, and then an automated system la­
bels activities soon after they occur. Unlike our approach, 
Legion:AR does not process video any faster than an individ­
ual can, and is designed for use not by a human analyst, but 
by a Hidden Markov Model-based system.Di Salvo et al. [14] 
added game elements to an annotation task to get the crowd to 
mark where an object appears. With Glance, workers identify 
complex or subtle events, and to accurately identify the range 
over which they occurred. 
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Figure 2. The Glance analyst user interface (AUI). Analysts can load a video from YouTube, ask if or when an event occurs in the video in natural 
language, and set parameters to control cost and speed. Crowd workers then process this query and return results in a fraction of the playtime of the 
video. These results are aggregated to simplify the answer for the analyst, and make it more reliable than a single worker’s answer. 

GLANCE 
Glance is a video coding tool that leverages online crowds 
to produce rapid analyses of video data (Figure 1). To reach 
envisioned conversation-like interaction with data, Glance al­
lows analysts to ask questions about events in natural lan­
guage, provides nearly-immediate responses, and supports 
query refinement by building on known context. We describe 
the user experience here, then detail the novel technical com­
ponents in the next sections. 

Recruiting a Crowd 
When an analyst arrives to Glance’s analyst user inter­
face (AUI), shown in Figure 2, the system begins recruit­
ing workers into a retainer using the LegionTools toolkit 
(http://rochci.github.io/LegionTools/). This retainer allows 
workers to be available within a matter of seconds of posing a 
query [8, 6]. To load a video, the analyst provides the system 
a YouTube link, a link to a video on their own server, or di­
rectly uploads a file. The video is immediately loaded into the 
embedded player, and the query creation tool becomes active. 

Posing Queries 
When the analyst wants to ask Glance a question about the 
video, they enter a name for the query and a natural language 
description of the hypothesized behavioral event. To more 
clearly specify the sought-after event, the analyst has the op­
tion to select one or more parts of the video to serve as exam­
ples. These example video segments will then be shown to 
workers during a short training session. 

When a query is posted, Glance sends tasks to multiple crowd 
workers in parallel and retrieves answers as soon as possible. 
In order to reduce the cost of these queries, especially during 
early exploration where complete coverage of the video might 
not be necessary, Glance lets analysts select a portion of video 

to focus on. The system also allows analysts to adjust the 
following parameters: 

•	 Redundancy. Glance lets the user control the size of the 
crowd being used (and thus the cost of the query) in part by 
selecting a level of redundancy for each query. This defines 
the number of workers who will label each video clip. If 
the analyst wants to increase the reliability of the response 
later in the process, Glance lets them increase the level of 
redundancy – building upon already completed work. 

•	 Playback Rate. For some queries, costs can be reduced 
by increasing the playback rate of the video. While this 
is also common practice for current video coding systems, 
combining it with the parallelism of the crowd can lead to 
even quicker responses. As increasing playback speed is 
not practical with all types of data and events, we leave it 
to analysts to know when it is appropriate to use. 

•	 Sampling Rate. To get an initial idea of what types of 
events occur in a video, Glance lets analysts select a video 
clip sampling rate. This allows analysts to see how fre­
quently their events arise, without needing to hire work­
ers for a complete run. Glance selects this percentage of 
clips uniformly across the analyst-specified range. If ana­
lysts want to take a closer look at their data later, Glance 
lets them increase the sampling rate without repeating work 
that has already been done. 

•	 “Gist” Mode. In “gist” mode, the system asks workers to 
simply mark if any instance of the event occurs within a 
the clip, rather than asking them to mark the exact range in 
which it occurs. This option provides a means for quickly 
illustrating the high-level frequency of pertinent events. 

Each of these parameters lets the analyst fully specify the lim­
itations and behavior of the system for a specific query. Note 
that this additional complexity is entirely voluntary – analysts 
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Figure 3. A visualization of crowd worker responses when coding “head nodding” events in a 20-minute video. Colored lines denote the marked span of 
an instance of the event. The top half of the figure shows the results for all 20 minutes, and the bottom half shows a zoomed-in version of one 30-second 
clip. Worker inputs are shown at the bottom of the zoomed clip, while the aggregated spans produced by our 6 schemes are shown above. 

may use the built-in defaults for any or all of these settings if 
they so choose. 

Visualizing Results 
Once a worker codes a video clip, the judgement gets dis­
played in the video coding UI. Glance visualizes partial re­
sults to show analysts the work-in-progress results. In order 
to reduce the complexity inherent in multiple worker judge­
ments, Glance aggregates the answers. Analysts may choose 
to use one or more aggregation algorithms, and may choose 
to see raw worker input as well. Figure 3 shows an exam­
ple visualization and the next section provides details on the 
aggregation algorithms. 

The problem of visualizing results that come in over time is 
one that has been studied in data analytics as well (e.g., [5]). 
There, the bound is the speed of machine computation over 
large datasets, which parallels the human computation delay 
seen in Glance, or any crowd-powered system. 

Receiving Feedback on the Query 
The reliability of the resulting worker judgements is under­
standably tied to the description given by the analyst. To help 
guide analysts, Glance provides feedback about a query’s 
clarity and likelihood of convergence. The system analyzes 
variance between workers and predicts the quality of results, 
even before a query is finished, and even when there is no 
baseline data for comparison. 

Glance can also highlight when individual clips may contain 
an exception to an otherwise stable rule (e.g., highlighting 
when one worker may have either made an error or noticed 
something the rest of the crowd did not). The next section de­
tails how Glance facilitates this feedback by observing agree­
ment levels between workers. 

Refining a Query with Followup Questions 
To further support conversation-like interaction with video 
data, Glance supports followup queries that use prior re­
sponses as filters to reduce the number of video clips un­
der consideration. For example, an analyst can search for the 
existence of a broad category of behavior, and then — only 
within clips that have this behavior — ask for more specific 
variations of that behavior. To select a filter query, the analyst 

can select one or more previously completed queries, and the 
new query will only be run over positive instances of the re­
turned clips. Conversely, the ‘inverse’ selection tells the sys­
tem to only run a query in selected clips where a previously 
coded event was not found. 

In sum, Glance supports conversation-like interaction with 
video data by accepting natural language queries, responding 
quickly, providing feedback when queries are too vague or 
when anomalies occur, and supporting a ”layering” approach 
to queries that build on prior coding results. The next section 
describes three empirical studies that demonstrate the techni­
cal innovations in Glance. 

FEASIBILITY EVALUATIONS 
To further describe and validate the core features of Glance, 
we ran a series of feasibility experiments. The following three 
sections provide empirical studies for three core aspects of 
the Glance system: (i) the time required to respond to natu­
ral language queries, (ii) the accuracy of multiple workers in 
aggregate, and (iii) the feedback provided to analysts to im­
prove their natural language queries based on incoming coder 
agreement. First, we describe the sample data, participants, 
and procedures used for these experiments. 

Method 
Sample Data 
We evaluated the core components of Glance using video 
clips from two different data sets: 

•	 2012 presidential debates. We leverage the first hour 
of video from the presidential town hall debate between 
Barack Obama and Mitt Romney. Presidential debates 
have long been subject to scientific analysis, examining as­
pects such as visual camera treatment [31], gesture anal­
ysis [10], and social media reactions to debate dynamics 
[30, 15]. The video shows the two candidates interacting 
with each other, audience members, and the moderator. 
Across our studies, Glance coded for five different types 
of behavioral events. Workers were instructed to mark the 
spans of time when the candidates: 1) made eye contact 
with each other, 2) argued with each other, 3) transitioned 
from sitting to standing or vice versa, 4) exhibited rapid 



changes in mood, and 5) used hand gestures. To estab­
lish a baseline for the purposes of quality comparisons, 
2 researchers from our team independently hand-coded a 
portion of the overall video (5-minute clips for the first 4 
events, and a 10-minute clip for the 5th event), then came 
to a consensus on each event. 

•	 Design team interactions. We selected a second data 
set from a human-subjects experiment where two people 
worked together on a design task and provide feedback to 
each other on their designs [16]. The data comprise 30 
seconds of interaction with 10 different pairs of people; all 
participants provided written permission to be included in 
this study. We kept these clips short, similar to Gottman’s 
’thin-slice’ studies of married couples [2]. Across our stud­
ies, Glance coded for four different behavior events: Work­
ers marked segments of video when the designers 1) made 
eye contact, 2) shifted their focus between different de­
signs, 3) provided positive feedback, and 4) displayed a 
burst of excitement. To establish a baseline for quality 
comparisons, our research team independently coded these 
same four events in all ten clips. 

These two data sets are representative of data typically an­
alyzed using video coding. They are sufficiently large and 
complex to allow us to confidently evaluate our approach. 

Setup and procedures 
Participants: Across the various studies, we recruited a total 
of 493 unique workers from Mechanical Turk. In total, these 
workers marked 2593 clips. 

Training: When a worker arrives to the task, she is first 
shown a brief tutorial on the general coding task she will be 
asked to perform, and then asked to complete an interactive 
tutorial that confirms she understands what to do, or provides 
feedback until she completes the sample task correctly. At 
this point, the worker remains in the retainer model until a 
query gets posted. 

Task: When an analyst posts a query, workers in the retainer 
pool first see a brief description of the event to be coded, and 
an example, if the analyst specified one. Then they proceed 
to Glance’s worker UI (Figure 4) where they see a video clip 
and a button that lets them mark the beginning and end of 
behavioral events. As they watch the video, they can press 
this button and then a new slider will appear below the video 
that marks the beginning of the event and follows the current 
position in the video until they click the button again to mark 
the end of a behavioral event. Workers can then go back and 
adjust times if corrections are needed. Workers can also mark 
as many or as few event spans as they see fit. 

In ‘gist’ mode, the worker UI is simplified to elicit only 
whether the event has occurred or not. As soon as a worker 
marks the presence of an event and hits submit, the worker 
gets a new clip and the data gets recorded and displayed in 
the analyst’s UI. 

Study 1: Eliciting Rapid Results 
The first of three feasibility studies focuses on how rapidly 
Glance can respond to natural language queries. For this eval­
uation, we ran several preliminary time trials, as well as, a live 
real-time experiment at scale. 

Figure 4. Glance’s worker interface. Workers are asked to press a but­
ton when they see an event start or end to get an initial estimate of the 
time range of the event. Workers can then correct the marked range if 
needed by sliding the start or end marker. In “gist” mode, workers are 
only asked to mark whether or not they saw the event occur at all. 

Time trials 
We measured the average time that it took workers to view 
and mark events in 30-second clips from the debate video. 
In this trial, we had ten workers per clip code one of four 
different behavioral events (eye contact, arguments, sit/stand 
transitions, and mode shifts. It took an average of 60.05 sec­
onds (σ = 12.29) per clip to mark the start and end times of 
all events. On average, there were 0.93 events per clip. 

We also tested the “gist” mode where workers provide a bi­
nary answer — instead of a time span – as soon as they per­
ceive a behavioral event. This drastically reduced the coding 
time — by nearly 10× — by removing the need to watch the 
entire clip and to fine-tune the event markers. The same 30­
second clips of the debate videos took ten workers an average 
of 8.7 seconds (p < .01). 

To get even faster results, we can increase the video playback 
rate. When we increase the playback rate ten-fold, we get a 
significant improvement from 8.7 to 4.4 seconds (p < .05). 
We further explored how playback speed and worker redun­
dancy affected the time to detect an event (Figure 5). In gen­
eral, increasing the playback speed reduces the time to re­
turn coded events, but sees diminishing value above 2x speed. 
Similarly, if an analyst wants to increase confidence by hiring 
multiple workers per clip, this increases the coding time. 

Increasing playback speed is also a common technique in tra­
ditional video coding. Other traditional approaches for reduc­
ing latency can also apply to crowd video coding, although 
some may require more training. 



Figure 5. As playback speed is increased, there is a non-linear decrease 
in the response rate of the first N workers (gist mode). 

Coding an hour of video in real-time 
To understand how Glance performs on a real video coding 
task, we coded an entire hour of video from the presiden­
tial debate as sixty one-minute clips. We set the playback 
rate to 2× speed and performed a full coding of the start and 
end times for all occurrences of eye contact between the two 
candidates. To optimize for speed, we recruited roughly 50 
workers into a retainer. Recruiting workers using a retainer 
model [8, 6] allows Glance to get workers started on a task in 
as little as a second. 

Figure 6 shows the amount of time required to complete all 
60 clips. After about 60 seconds, while the first workers view 
the video and mark events, answers begin to arrive. In the first 
5 minutes after submitting the query, 48 minutes of the video 
(80%) had been fully coded. As the task nears completion, 
we see a decrease in the completion rate, in part due to hav­
ing fewer workers in the retainer at that point. These results 
confirm that it is possible to code large amounts of video very 
quickly, especially if enough workers are recruited (in this 
case, we had just under 50 workers for the first 48 clips). 

Study 2: Aggregating Results 
The second feasibility study focuses on the accuracy of mul­
tiple workers when aggregated. Through crowdsourcing and 
massive parallelism, Glance can quickly produce answers to 
queries. However, with multiple workers coding the single 
clip, we observe different levels of agreement, due to the 
specificity/ambiguity of queries and worker differences (Fig­
ure 9). Individual crowd workers could miss events or mis­
understand the query. Some workers put no effort into tasks. 
To conceal these details and give analysts a clear indication 
of the occurrences of behavioral events, Glance aggregates 
worker responses using an input mediator. 

Glance uses a variety of input mediators to fit the needs of 
analysts (e.g., favoring recall over precision, or visa versa). 
To explore the space of mediation strategies, we implemented 
six input mediators for illustrating the consensus opinion on 
each clip: 

1.	 Simple Filtering. Our first approach uses a set of heuris­
tic filters to disambiguate worker input by removing out­
liers (mid-points or spans more than 2 standard deviations 

Figure 6. A plot of the number of 1-minute clips from an hour-long 
video being completed by crowd workers in real-time as part of our live 
trial. In two minutes, 20% of the content was labeled. In five minutes, 
80% of the 60 clips were labeled. This demonstrates that large groups of 
workers (> 50 people in all in this case) can be recruited simultaneously 
to complete our coding task quickly. 

from the mean), then determines the mode of the num­
bers of segments marked in a clip and averages the start 
and end points of responses from workers that match the 
correct number of segments marked. To avoid discard­
ing input from workers who saw the same basic events, 
but marked them slightly differently (e.g., as two sequen­
tial events instead of a single continuous one) we also look 
at input where segments are subsumed by the majority of 
other workers with the correct number of inputs. 

2.	 k-means Clustering. To move beyond basic overlap de­
tection, we implemented a k-means clustering algorithm 
that groups the start and end times of k clusters. To select 
k, we use the mode number of events marked by workers, 
after combining all majority-subsumed events into single 
spans (as described for filtering). Once worker segments 
are clustered, the final answer is generated by averaging 
all of the spans in each cluster and defining an equivalent 
range around the cluster’s centroid. 

3.	 Scanning. As opposed to trying to aggregate their marked 
spans directly, this approach uses a “scanning” pass to de­
termine if the majority of workers agreed that an event oc­
curred at that point in time. To calculate this, we discretize 
the clip into 10-millisecond bins and check for agreement 
within each bin. To prevent small coincidental gaps in ma­
jority agreement from fracturing events into multiple in­
stances, we set a 0.5 second minimum bound for how small 
the gap can be between two events for them to be consid­
ered distinct. 

4.	 Scanning with E-M on the F1 Score. The Scanning ap­
proach tended to produce a bias for shorter spans (the core 
parts of a behavioral event where most workers agree), and 
often single events were split into multiple because of co­
incidental gaps in coverage that caused the agreement to 
fall below majority during a small span of time. To coun­
teract this, we implemented a new mediator that uses the 
initial scanning pass as a starting point, and then runs a 
version of Expectation-Maximization proposed by Dawid 
and Skene [13] to improve the initial guess for the seg­



Figure 7. Precision, recall, and F1 score results for all 6 of the worker aggregation schemes we explore. Using our “scanning” approach with additional 
filtering and adjustments proves the most effective overall, and is significantly better than simple filtering or k-means clustering (p < .05). 

ment with multiple observers. Specifically, the following 
two steps occur iteratively: (a) the workers are assigned 
weights that correspond to our confidence in their answers 
and (b) the start and end point of the best-guess segment are 
updated by computing the weighted average of the work­
ers’ start and end points, respectively. Our confidence in 
a worker corresponds to the agreement between her indi­
vidual answer and the current best guess for the segment. 
In this approach, we use the F1 score1, where the answer 
of a worker is tested against the current best guess for the 
segment. We repeat these two steps until the method con­
verges —when the weights (confidence) of the workers do 
not change, or equivalently, the best guess for the segment 
remains the same. 

5.	 Scanning with E-M on the Jaccard Index. This ap­
proach is similar to the one above, but runs Expectation-
Maximization using the Jaccard index between the 
worker’s answer and the current best guess as the confi­
dence level in a worker. 

6.	 Scanning with Filtering and Early-Bird Bias. We found 
that both of the EM modifications to scanning typically re­
sulted in over-sized spans for events. The recall improved, 
but at the cost of precision. As a result, we looked at other 
potential improvements to the basic scanning method. Due 
to a natural latency in human response, the scanning meth­
ods tend to mark the onset of behavioral events a bit late 
(the observed start time was often behind the true time). 
To counteract this, we created a mediator that uses scan­
ning to find the bins where a majority agreed, but then it 
shifts the start time earlier. We calculate a time shift using 
the average of the earliest start time reported by a worker 
and the aggregate start time across all workers. We use the 
midpoint because the earliest worker often observed subtle 
cues that let them anticipate the event early. To prevent this 
use of a single response from adding potentially far-fetched 
answers to the final response, we remove all starting times 
that are outliers from this selection process. 

To compare our input mediators, we calculated precision, re­
call, and F1 score using three different strategies: 1) agree­
1We also tried using the precision and recall individually to define 
the confidence in each worker, but the F1 score —which appropri­
ately combines the two metrics —works better. 

ment of the occurrence time and span, 2) agreement in the 
number of behavioral occurrences count, and 3) agreement 
of the span after running multiple sequence alignment to cor­
rect for any slight misalignment that may have otherwise pro­
duced low precision and recall (aligned). As Figure 7 shows, 
our modified scanning approach was the most effective over­
all. It was significantly better than the simple filtering and 
k-means approaches (p < .01), and borderline significantly 
better than the basic scanning approach (p = .05). Basic 
scanning did not perform significantly better than the scan­
ning with EM approaches. 

Study 3: Giving Feedback by Measuring Agreement 
The third feasibility study focuses on how Glance provides 
feedback to help analysts improve their natural language 
queries based on emerging coder agreement and potential 
edge cases in the data. This feature stems from the realization 
that not all queries are created equal. Since analysts specify 
their queries to Glance in natural language, their descriptions 
could be vague or underspecified. Queries are ”ambiguous” 
when their lack of specificity leaves them open to multiple 
interpretations by workers. In contrast, we refer to well-
defined queries as “concrete”. Of course, every query falls 
on a continuum between these two classifications, and gen­
erally speaking, as analysts develop a coding scheme, their 
queries will become less ambiguous. 

In this section, we explore how we can give analysts feedback 
on the clarity of their query, detect edge cases in descriptions, 
and even predict the quality of crowd responses without re­
quiring baseline values. 

Detecting Agreement 
To give analysts feedback on how well workers understand 
their query, and how good the resulting responses are likely to 
be, we measure the level of agreement between workers. As a 
preliminary trial, we compared the total count occurrence be­
tween workers when coding two different descriptions within 
the same clip, concrete (“the person is leaning forward”) ver­
sus ambiguous (“the person is engaged”). From this trial, we 
find that the ambiguous description led to significantly more 
disagreement among workers in the total count of behavioral 
events (p < .01). Further, we see an obvious difference in 



Figure 8. Correlation between our agreement score (variance in the 
number of segments marked by workers in a single clip) and the aligned 
F1 score (R2 = .74). This suggests that the level of agreement between 
workers can be used as a predictor of the overall answer quality even 
when no baseline is available to compare to. 

the variance of concrete events (σ2 = 0.014) versus more 
ambiguous events (σ2 = 0.884) (Figure 9). Intuitively, this 
makes sense – when subjectively coding an ambiguous event, 
different workers may have different interpretations. This can 
be avoided if analysts provide clear descriptions of events, 
and one (or more) examples to workers. 

To turn this insight into a means of providing feedback to ana­
lysts, we created two different agreement metrics. We look at 
how well each agreement measure predicts the F1 score of the 
aligned metric described in the previous section. The aligned 
metric provides a good measure of overall fitness due to the 
fact that it tolerates small time shifts in the marked segments. 

•	 Fleiss’ Kappa: A common way to measure agreement 
level is to use a kappa score to measure inter-rater reliabil­
ity [17]. When more than two coders are present, Fleiss’ 
kappa can be used. However, Fleiss’ kappa assumes that 
fixed, discrete information is being coded (such as whether 
a paragraph of text is written in a hostile tone or not). To 
adapt this measure to our continuous domain, we again bin 
time into 10ms units, then determine if each worker is im­
plicitly contributing a ‘yes’ or ‘no’ vote for the event occur­
ring in that bin (i.e., ‘yes’ if they marked that bin in one of 
their event spans, and ‘no’ otherwise). Despite its roots in 
existing inter-rater reliability settings, it is not a strong pre­
dictor of the final accuracy of a given set of inputs. Com­
paring to the aligned F1 score2, we find R2 = .24. 

•	 Count Variance: Another important way to measure 
agreement is the overall variance of the different worker 
inputs. We explored using the variance in the number of 
events workers marked in a segment (count), total duration 
of the segments they marked (span), and area of each seg­
ment marked (area), as well as combinations of the three. 
Most combinations scored between R2 = .3 and R2 = .5. 
In the end, measuring the count variance was the most pre­
dictive of the F1 score of the whole clip, with a Pearson 
correlation of 0.86, R2 = .74 (Figure 8). 

2We use the aligned F1 score because it is most indicative of the 
overall quality of the final answer. 
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Figure 9. Visualization of the agreement levels between workers for 
three 30-second clips (in black, blue, red, respectively). The Y-axis is 
the worker ID and the X-axis is time (position). Each bar (segment) rep­
resents an event marked in the video clip. 

While different in their predictive power, the two measures 
did support one another’s findings. The count variance tightly 
correlates with the Fleiss’ kappa, with a Pearson correlation 
of 0.87, and R2 = 0.76 (Figure 10). 

Threshold Pruning 
Our ultimate goal in measuring agreement is to use it as a 
proxy for performance that can be calculated immediately, 
without the need for a baseline to be calculated (which would 
defeat the point of having a rapid-response tool!) The trend 
observed when plotting F1 score against agreement score 
(Figure 8) indicates that the count variance is a good predic­
tor. But does it really work? 

The results shown in Figure 7 have been filtered by remov­
ing low-agreement clips. To compare the clips in terms of 
workers’ agreement level (response), we performed ANOVA 
analysis with the clip ID as a single factor with 10 lev­
els. We found that at least one clip had a significantly dif­
ferent mean agreement level from the other sample means 
(F9,55 = 4.4555, p < .001). To understand how the mean 
agreement levels differ, we performed multiple pairwise com­
parisons using Tukey-Kramer HSD, to correct for Type I er­
rors. At the 95% confidence level, we found that the highest 
mean agreement value was statistically significantly different 
from the mean agreement values of four other sessions. We 
used this as a threshold value (an agreement level of 0.72) and 
filtered out the three significantly lower trials. This resulted 
in a 7.8% to 11.1% average increase in the performance of 
each aggregation method. 

In practice, we will not have such a wide range of results 
to draw from when selecting a cutoff. Thus, we won’t be 
able to predict an exact threshold a priori. However, our goal 



Figure 10. While the count variance is much more predictive of the final 
F1 score of a response (R2 = .74 versus R2 = .24 for Fleiss’ kappa), 
the count variance still tightly correlates with Fleiss’ kappa, suggesting 
they are measuring similar aspects of agreement. 

when providing agreement as feedback to analysts is to pro­
vide some signal that they can use to determine how confident 
they can expect to be in Glance’s results. In high-agreement 
cases, Glance’s precision and recall exceeded 99%. 

Giving Feedback 
The correlation and corresponding effectiveness of filtering 
based on differences in agreement levels denote it is an effec­
tive indicator of the final quality of the answers to a query. 
This in turn suggests that we can provide this measure to an­
alysts to allow them to judge how consistently workers are 
agreeing with one another, and thus how accurate they can 
expect their results to be. For particularly low values of re­
sponses for a query (we use below 0.50 in practice), Glance 
can even alert users to the potential issues with their query. 
Most commonly, low values will occur when very subjective 
descriptions are provided because each worker will interpret 
the event they are looking for slightly differently. As results 
arrive, this measure can instantly be applied, potentially al­
lowing analysts to retract their query before it is completed in 
the event that it is unclear to workers – something not possi­
ble using current approaches where results are typically not 
seen until after they are completed. 

Even when the overall agreement score is acceptably high, 
Glance can detect when a subsection of the video (even a sin­
gle clip) falls below the expected norm. In this case, it is 
likely true that something in that video is causing confusion 
for workers (e.g., an edge case that the analyst did not think or 
know to clarify for in the initial description). In these cases, 
the clip can be highlighted and shown to analysts who can 
choose to skip the clip, redefine the query, or continue. 

EXAMPLE SCENARIO AND EVALUATION 
To demonstrate Glance and the AUI, we present an example 
interaction between an analyst and Glance. Throughout this 
example, we report real data coded by the crowd. This data 
came from a third video dataset showing a couple on a date, 
which is 20 minutes long and includes baseline data for 4 
events for the entire video, resulting in 80 minutes of video 
content. This video is separate from the one used in the eval­
uations of the individual approaches above. 

Our imaginary analyst is a relationship researcher interested 
in quickly coding a video of a couple dating. Since our ana­
lyst initially does not even know what she is most interested in 
or if the data is valid, she decides to run a rapid-response task 
with no redundancy but 100% coverage to determine when 
the two people are talking to one another. This query takes an 
average of 9.6 seconds to return results, and correctly identi­
fies 100% of the 35 segments in the video that have conversa­
tion. The same query with a redundancy level of three would 
have still only taken 20.6 seconds on average. 

Once our analyst sees that there are enough instances of con­
versation between the two partners to make the video po­
tentially interesting, she decides to ask a follow-up question: 
“when are the people in the video engaged?” This question is 
asked about only the 35 clips that contain interaction between 
the two people in the video since it is a follow-up. After just 5 
clips are completed, the system alerts our analyst that worker 
agreement on the answer is potentially very low. She sees 
that the agreement score is just 0.57 (recall that our threshold 
value was 0.72 before), so she decides to stop the query early 
and rephrase her question to be more clear. 

In an attempt to make her query less ambiguous, she asks 
workers to code specific actions instead of broad interaction 
properties. For her first query, she asks “when is the person on 
the right laughing?”, of which the crowd finds 71.0% of the 
53 instances with 99.9% precision. For her second query, she 
asks “when is the person on the left nodding?”, of which the 
crowd finds 64.6% of the 87 instances with 99.2% precision. 

To check for negative signs during the interaction, she then 
asks the crowd to find any instances where someone is check­
ing their phone during the date. Because she is mainly inter­
ested to find out if this happens a notable number of times, she 
turns on the gist mode for a quick response. She soon finds 
that Glance correctly identified 100% of the 13 instances of 
someone checking their phone. Based on the high amount 
of direct interaction, our researcher begins to create a final 
coding scheme that best fits her data. 

DISCUSSION 
Glance’s quick, conversation-style interaction goes beyond 
the paradigm adhered to by prior work, which assumed that 
making coding faster, even for data exploration, was some­
thing that must be done while focusing on a single human in 
the loop. Glance uses the parallelism available via the crowd 
to not only greatly improve the speed at which video data can 
be explored by analysts while effectively compensating for 
the added complexity of getting multiple results, but actually 
uses the presence of multiple overlapping contributors to pre­
dict the effectiveness of the codes based on their agreement. 
But there are many challenges involved in robustly supporting 
analysis of behavioral video. 

Query Ambiguity 
Our results suggest that the quality of worker responses 
is highly dependent on the level of ambiguity in analysts’ 
queries. While this is a drawback, it is a bias shared with ex­
isting approaches that involve human coders. However, with 
shorter training times and more exploratory coding schemes 



compared to the well-evaluated ones used in traditional ap­
proaches, where getting coding data is very time consuming 
and expensive, Glance may help analysts better understand 
the ambiguity of their queries and refine their coding scheme 
and instructions to compensate. 

Context 
Maintaining context for workers, who may need to know in­
formation from prior clips to accurately understand an event’s 
context within a task, is also a key issue when splitting tasks 
among multiple people. The general case of this problem, 
where information from any previous point in the video may 
provide the necessary context for workers, requires novel 
techniques and is beyond the scope of this paper. However, 
the current version of Glance does try to ensure that individ­
ual events are captured in their entirety in a single video. To 
do this, we can look at workers who label events that continue 
to the end of a clip or begin immediately, allowing for some 
small E of error. In our experiments, less than a second was 
enough to capture all instances where an event was split, but 
this type of division happened so little in our experiments that 
no generalizable rule could be devised. Situations where in­
formation from more than one clip away was needed to code 
and event never arose, largely due to the types of questions 
we were asking in our examples. 

Worker Training 
We do not claim that Glance can code every type of event. 
For coding systems that are highly granular, and that capture 
very subtle events coders would normally be trained for pe­
riods up to weeks to be proficient enough to complete their 
task reliably. Crowd based coding has the potential to reduce 
training efforts, particularly for complex coding schemes, as 
each worker only has to learn a subset of the codes rather than 
the entire coding system. 

We currently use two forms of on-the-spot training to prepare 
workers for tasks: (i) a general interactive tutorial that gives 
workers feedback on an example task until they can complete 
it successfully (given before workers are sent to the retainer 
pool), and (ii) a dynamically created tutorial for the specific 
event being coded that consists of a text description and one 
or more video examples, if provided by the analyst. However, 
this does not fully leverage prior work that has shown workers 
remember task details from one session to the next [29], po­
tentially facilitating long-term learning, but instead presents 
a tool for using crowd workers’ common knowledge to code 
events now, while future work will explore how to train in­
terested crowd workers over time to allow them to handle in­
creasingly complex tasks. 

Cost 
Workers were paid $0.15 USD per task to code 30 seconds of 
video, which took them one minute on average. This equates 
to a $9/hour effective rate, which is comparable to a work 
study student. In some scenarios, video is coded redundantly. 
At a depth of 5 workers, which we do not believe to be nec­
essary in practice, the cost per minute could be as high as 
2 × 5 × $0.15 = $1.50/minute. The potential advantage of 
Glance comes from the ability to get feedback more quickly, 

which means that money is less likely to be wasted on coding 
that is not used or that has to be changed later. Therefore, 
total coding costs could be less. 

FUTURE WORK 
Glance is still only the first step towards allowing analysts 
to truly have a “conversation with their data”. Latency can 
be further improved by integrating automated coding where 
possible. By using the crowd to make it possible to handle 
these natural language requests now, realistic data on how 
users pose and refine questions can be collected and used to 
train automated systems to both elicit clear queries and rec­
ognize events more accurately. 

For longer, more in-depth tasks, context can be maintained 
more robustly through crowd curation of a shared “mem­
ory”, and a richer interaction with the system is possible by 
allowing workers to respond to queries (individually or as 
a collective) when something is unclear [23, 27]. This is 
similar to other types of message passing that has been ob­
served as an effective way to boost problem-solving abilities 
in crowdsourcing before [35]. This might also lead to cases of 
serendipitous discovery of new information, as has been ob­
served with crowd-powered conversational search tasks [23]. 

We will be releasing this tool for open use to both allow an­
alysts access to the coding tool to advance their own work, 
as well as to collect data on how our conversational interac­
tion paradigm is used in real settings to code video. Ongoing 
work will explore how the potential for privacy threats (see 
[26]) might be mitigated using video filtering techniques that 
allow for recognition of the queried events, without revealing 
the identity of people in the video. 

CONCLUSION 
In this paper, we have presented the motivation, design, and 
evaluation of Glance, a crowd-powered system for rapidly 
coding video. We have shown that by incorporating the ef­
fort of many human workers, the system is able to analyze 
video very quickly, making possible a conversation-like inter­
action with data that was not previously feasible. To further 
support iterative refinement and validation of hypotheses on 
video data sets, we have introduced methods that use variance 
in crowd responses to support iterative improvement of cod­
ing schemes, and introduced aggregation strategies that help 
produce reliable codes over time span inputs. Glance dramat­
ically reduces the time required for the arduous and slow task 
of video coding, and in the process may change how social 
scientists do their work. 
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