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ABSTRACT 
A large number of people rate public speaking as their top 
fear. What if these individuals were given an intelligent 
interface that provides live feedback on their speaking 
skills? In this paper, we present Rhema, an intelligent user 
interface for Google Glass to help people with public 
speaking. The interface automatically detects the speaker’s 
volume and speaking rate in real time and provides 
feedback during the actual delivery of speech. While 
designing the interface, we experimented with two different 
strategies of information delivery: 1) Continuous streams of 
information, and 2) Sparse delivery of recommendation. 
We evaluated our interface with 30 native English speakers. 
Each participant presented three speeches (avg. duration 3 
minutes) with 2 different feedback strategies (continuous, 
sparse) and a baseline (no feeback) in a random order.  The 
participants were significantly more pleased (p < 0.05) with 
their speech while using the sparse feedback strategy over 
the continuous one and no feedback.  

Author Keywords 
Public Speaking; Google Glass; Live Feedback; Design 
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ACM Classification Keywords 
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INTRODUCTION 
Humans intuitively understand the elements of a well-
presented speech. In addition to presenting meaningful 
content, the speaker needs to modulate his or her volume 
and vary speaking rate to retain the audience’s attention 
[11]. Yet many presenters forget to do this in the delivery. 
During the act of publicly speaking, the speaker becomes 
the center of attention. In these kinds of scenarios, many 
people feel afraid and conscious of judgment, which often 
results in an overwhelming, uncomfortable, and stressful 
speaking experience. As a result, people rate public 

speaking as their number one fear (higher than the fear of 
death) [24]. With the advent of new and comfortable 
wearable technologies (e.g. Google Glass) and smart 
interfaces, a whole new realm of opportunities have arose to 
enable users to increase awareness of their nonverbal 
behavior during public speaking. 

In this paper, we present the design, development and 
evaluation of a smart user interface, Rhema1, which 
presents live feedback on users’ speaking styles through a 
wearable Google Glass. We have implemented a framework 
to record the live speech of the speaker using the Glass, 
transmit the audio to a server for automated processing of 
volume and speaking rate, and then present the data to the 
user. The analysis occurs in real time, allowing the interface 
to function during an actual speech delivery. The data is 
presented to the user in a format that is intuitive and 
informative about his or her voice modulation, without 
distracting them from delivering the speech and engaging 
with the audience. 

                                                           
1 www.cs.rochester.edu/hci/currentprojects.php?proj=rh 
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Figure 1: Usage scenario for Google Glass based real-time 
feedback system 



Providing feedback during a live speech has a number of 
design challenges. One challenge is to keep the speakers 
informed about their speaking performance without 
distracting them from their speech. A significant enough 
distraction can introduce unnatural behaviors, such as 
stuttering or awkward pausing. Because the human brain is 
not particularly adept at multitasking [19,22], this is a  
significant issue to address in our feedback design. 
Secondly, the head mounted display is positioned near to 
the eye, which might cause inadvertent attention shifts [2]. 
Human attention is a limited resource [20], and the user 
might completely ignore the interface if the interaction 
requires too much attention. Additionally, if the user 
continuously stares at the feedback screen, the speaker will 
lose eye contact with the audience, causing the quality of 
the presentation to disintegrate. 

We address these concerns by designing the interface in the 
form of “Secondary Display” [16], which avoids cognitive 
overload from multitasking and significantly improves the 
quality of the presentation. Information presented in 
secondary display is perceived and interpreted through a 
quick glance or a series of short glances. Unlike usual 
computer displays, it does not require a lengthy period of 
the users’ attention. As a result, information presented in 
this form is less intrusive and minimizes the level of 
distraction. Physically, Google Glass works well as a 
secondary type because it is positioned in the periphery of 
the user’s field of vision (Figure 2).  The user must look 
upwards to actually see the display. In effect, it enables the 
users to usefully “tradeoff attention for utility” [16]. They 
make a glance towards the display if needed but do not lose 
attention inadvertently. A low requirement in attention 
makes the task cognitively less demanding, which results in 
more effective delivery of information. This is reflected in 
the results of our quantitative user study, in which the 
participants rated themselves significantly more satisfied (p 
< 0.05) with their speech while using the sparse feedback 
strategy than with the continuous one. They also strongly 

appreciated the minimization of distraction in comparison 
to what they had expected. 

We came to an effective design decision by involving the 
potential users early and often in the design process. 
Starting with the brainstorming session, we reached out to a 
potential user group via social media and online forums. 
This enabled us to evaluate wide varieties of possibilities 
for the feedback design. We identified two main approaches 
for information delivery. The first approach consisted of 
continuous and slowly changing feedback schemes. This 
type of interface was designed to constantly deliver 
information through various plots, graphs or icons. To 
minimize distractions arising from movements in peripheral 
vision, this approach required the interface to change 
slowly [8]. The second approach was designed to deliver 
information sparsely over time. We designed a feedback 
scheme named “Words” which falls under this category. 
This feedback scheme shows nothing for 20 seconds. After 
20 seconds, words such as “Louder”, “Faster”, “Good” 
(depending on the speaker’s volume and/or speaking rate) 
are displayed. The words are shown for three seconds and 
then the display is blank again for the next 20 seconds. 

We conducted a within-subject study with these two 
different types of feedback schemes along with a baseline 
case where Google Glass was turned off. 30 native speakers 
of English participated in this experiment. We collected 
qualitative and quantitative data from the participants. In 
addition, we collected quantitative ratings from 10 different 
Mechanical Turk workers for each speech to gain a sense of 
audience perception. The experiment demonstrated that the 
subjects found the system effective for adjusting their 
speaking rate. They also rated the sparse version of the 
feedback scheme significantly higher than the continuous 
version. 

In summary, we contribute the following in this paper: 

 We present a Google Glass interface to help people with 
public speaking by providing live feedback during the 

 

Figure 2: Demonstration of Google Glass as a secondary display (a) Eye position while looking forward (b) Eye position while 
looking at the glass display (c) User’s view 



delivery of the speech.  This information enables the 
speakers to modulate their volume and speaking rate. 

 We demonstrate that providing quick recommendations 
in regular intervals during the live speech delivery is 
more useful than continuously presenting the data to the 
users.  

 Our experiment with 30 participants shows that the 
Google Glass interface adds value during the actual 
speech delivery in regards to voice modulation and 
speaking rate. 

RELATED LITERATURE 
Designing an interactive system that can capture and 
analyze a live speech and provide feedback using a 
wearable device draws on areas from Wearable Computing, 
Human Factors, Human-Computer Interaction, and Virtual 
Reality. Teeters et al. from MIT Media Lab demonstrated 
the use of self-cam [23], a custom built prototype where a 
camera hangs out from a person’s neck and analyzes the 
facial expressions of the wearer. The prototype was 
developed with the need of individuals with autism to 
interpret their own emotions. This project allowed users to 
become self-aware by providing real time feedback on 
social behavior. While the prototype successfully 
demonstrated the feasibility of such technology, no user 
studies have been reported to measure its efficacy. 

There is a growing body of literature in the area of Human 
Factors that focuses on developing ways to present live 
information to people while they are engaged in a 
cognitively overloading task. For example, Ofek et al. [18] 
studied the mode and the amount of information that can be 
consumed during a conversation. Their study suggested that 
it is possible to process information while a person is 
engaged in a conversation. However, people consume more 
information when the data is presented in small batches of 
visual elements. McAtamney and Parker reported that 
wearable technologies with active display (e.g. the display 
of handheld smart phones) significantly disrupt social 
interactions because users lose the element of eye-to-eye 
contact [15]. We kept these findings in mind while 
designing our interface, and they also guided our decision 
to use Google Glass as a secondary display instead of an 
active head-mounted display.  

Researchers continue to study both verbal and nonverbal 
behaviors during public speaking in an effort to find ways 
to improve speaking skills. Eva et al. described a study in 
which they analyzed the effect of acoustic features of 
individuals perceived as excellent speakers [21]. They 
conducted a perceptual evaluation by manipulating the F0 
dynamics, fluency, and speech rate in a synthesized 
animation of a speaker. They noted that the amount of 
manipulation is highly correlated with the ratings of the 
speaker. Koppensteiner et al. [13] reported the effect of 
“dominant activation of body parts” with different 
personality traits. However, scopes of all these previous 

efforts are limited to manually inspecting and 
understanding positive and negative behaviors of public 
speaking. There is room for further research by automating 
the analysis and providing feedback. 

A considerable amount of effort has taken place related to 
public speaking in the virtual reality domain as well. In 
1998, North et al. described a study in which virtual reality 
was used as a therapy to treat phobia associated with public 
speaking [17]. In the study, a group of people was exposed 
to a virtual public speaking scene. The group showed 
significant improvements after five weeks of treatment. 
This experiment provided evidence in support of virtual 
reality therapy for improving public speaking skills.  

Researchers have also worked on virtual environments to 
enable people to practice public speaking. Chollet et al. 
from University of Southern California developed an 
interactive virtual audience program for public speaking 
training [5]. The program collects a dataset of public 
speaking performances under different training conditions. 
The same team of researchers is currently working to build 
a fully multimodal platform named “Cicero” [1] to 
automatically analyze and train a user’s behavior during 
public speaking. Cicero can identify some nonverbal 
descriptors that are considered characteristics of speakers’ 
performances. However, providing any user level feedback 
to improve speaking performances remains part of their 
future work. Hoque et al. developed an intelligent avatar 
coach named MACH, “My Automated Conversation 
coacH” [12], to help people practice job interviews. Their 
results suggested that a virtual coach might be more 
effective than traditional behavioral interventions. 
However, all the aforementioned applications only allow 
participants to practice social interactions offline. In this 
paper, we take on the challenge of providing live feedback 
during the actual interaction. 

TECHNICAL DETAILS 
In order to validate whether real time feedback would 
actually elicit measurable improvements, we implemented 
working prototypes on Google Glass using the Android 
platform. We chose Google Glass as it is lightweight and 
comfortable to wear and comparatively cheaper than other 
head mounted displays. We hoped that people using this 
form factor would not become overwhelmed from the 
discomfort of a traditional head-mounted display. In 
addition, as shown in Figure 2, the position of Google Glass 
display worked effectively for communicating information 
in real time without inadvertently distracting the user. 
Unfortunately, Google Glass is not designed to run 
computationally intensive programs [10]. It does not have 
any suitable heat dissipation mechanism. As a result, 
running intensive algorithms to process the speakers’ 
speeches made the glass hot and uncomfortable for long 
continuous use. 

To overcome this problem, we used a local server for 
leveraging the computational capabilities. The server 



analyzed the audio data for loudness (in decibels) and 
speech rate (in words per second) and sent the results back 
to the glass.  We experimented with Transfer Control 
Protocol (TCP), Real-time Transport Protocol (RTP) and 
User Datagram Protocol (UDP) to transmit each second of 
audio clips to the local server. The use of streaming 
protocols like RTP caused the Glass to overheat. On the 
other hand, UDP datagrams were too unreliable for accurate 
calculation of loudness and speaking rate as there is no 
guarantee for packet delivery, ordering and duplicate 
protection. Therefore, TCP was suitable for our application 
as the audio clips were only used in calculation of loudness 
and speaking speed and not for playing them in real-time. 
Offloading the computationally expensive tasks to a local 
server enabled us to use the Google Glass for about an hour 
without overheating it. However, with further upgrade to 
the hardware, it may be possible to extend the battery life in 
the future. 

On the server-side, we calculated the perceived loudness 
from the audio signal energy. Because we recorded the 
audio signal from the microphone embedded in Google 
Glass, the recorder settings remained consistent for each 
participant. As a result, calibrating the intensity levels once 
for a single user gives us highly accurate loudness estimates 
for all of the participants. We used an open source audio 
processing library named PRAAT [4] to calculate the 
loudness levels for the participants. In order to run 
experiments to validate the interface, we calibrated the app 
based on the audio settings in our lab, where the ambient 
loudness was 30dB. As a result, we empirically determined 
that a range of 54dB to 58dB to be a medium range for 
giving a speech. Less than 54dB was regarded as “quiet” 
and greater than 58dB as “loud”. We empirically adjusted 
these ranges and remained constant throughout the formal 
evaluation period. However, the application has the 
functionality to automatically calibrate these thresholds 
levels for each individual’s natural level of loudness, 
allowing it to be deployed outside of the lab. 

We employed an estimation of fundamental frequency to 
detect the voiced and unvoiced regions in the audio signal. 
From these regions we calculated the speaking rate of the 
participants. We used the pitch detection algorithm 

available in PRAAT proposed by Paul Boersma [3]. We 
created a routine to count the number of discontinuities 
within the pitch contour. This count gave a rough estimate 
of the number of words per second. This was a simple 
metric and fast enough for our application. The server 
stored the loudness and speaking rate values of the last five 
seconds to calculate a weighted average of the samples. We 
used appropriate weights to resemble the effect of a “leaky 
integrator” so that it removed the effect of high frequency 
noise from the calculated values of speaking rate.  

METHODS 
One of the fundamental challenges of this research was to 
design a feedback interface that can convey loudness and 
speaking rate measurements to a speaker with minimal 
distraction. To achieve this goal, we performed a principled 
design strategy as illustrated in Figure 3. We involved our 
users early on in the design process. In this regard, we 
formed a focus group for quick evaluation and redesign of 
the prototypes. The participants of the focus group were 
students and faculty members who regularly met during 
weekly Human-Computer Interaction (HCI) meetings at the 
department of Computer Science over the summer of 2014. 
Members of this focus group included two professors in 
Computer Science, two PhD students, one research 
programmer, and five undergraduate students. We describe 
each activity in the following sections. 

Design Constraints 
Based on our theoretical understanding, we decided that the 
intended feedback interface should use a secondary form of 
information delivery to avoid cognitive overload. 
Additionally, the feedback scheme should contain as few 
movements as possible in order to avoid unintentional 
attention drift. Lastly, the interface should contain temporal 
history of the user’s performance. As we wanted to 
encourage the users to modulate their voice, showing only 
an instantaneous value of loudness and speaking rate was 
not enough to understand how they were modulating their 
voice. 

Brainstorming Session 
Before brainstorming the possible ideas and design choices 
for the interface, we solicited ideas from Reddit.com in the 

 

Figure 3: Chronological list of actions taken for finding a suitable design of a live feedback scheme 



form of a survey. We particularly chose the forums 
“Futurama” and “HackerNews” since these communities 
are open to new and innovative ideas. We obtained a mixed 
response in this survey. 4 people out of 28 total respondents 
mentioned that it would be a bad idea to provide any 
information while a person is speaking because it would 
severely distract the speaker. However, many others 
proposed several feedback schemes. Seven respondents 
proposed displaying only raw numbers in decibels and 
words per second as a feedback scheme. Five participants 
proposed various forms of bar graphs (horizontal for speed, 
vertical for loudness, bars changing colors, decibel meters, 
etc.). Others proposed various icons, line graphs or traffic 
colors to represent volume and speaking rate.  

In the brainstorming session with the focus group, we 
reviewed the proposed feedback schemes. Everyone in the 
focus group agreed that raw values or simple bar graphs 
would not be sufficient according to the design constraints 
because they do not contain enough temporal history. We 
converged on a few potentially viable designs from the 
brainstorming session as shown in Figure 4. The 
“Quadrant” feedback scheme (Figure 4a) resembles a 2D 
graph. The volume is on the y-axis and speed is on the x-
axis. This graph is divided into four quadrants, each 
representing a range in volume and speed. When the user’s 
voice is within a certain range, the corresponding box fades 
to green. If the user’s voice hits a different range, that range 
will begin to fade to green and the previous range will start 
to fade back to red. The fading is slow enough so that more 
than one box can be green at once. Ideally, all the boxes 
turn green during a speech, indicating an appropriate 
amount of voice modulation. Presence of red boxes 
indicates that the user is not hitting that range for a 
considerable amount of time. The “Bars” feedback scheme 
(Figure 4b) involves two bars, each segmented into three 
regions. The vertical bar represents volume and the 
horizontal one is speed. The fading between red and green 
works the same way as in the Quadrant feedback scheme. 
Orientations of the bars were decided from people’s natural 
tendency to associate high/low volume with up/down and 
fast/slow speed with left/right.  This design allowed the 
users to immediately identify in a quick glance which bar is 
for volume and which one is for speaking rate. These two 
bars change independently of one another. The “Plot” 

feedback scheme (Figure 4c) plots raw data on two separate 
line graphs, one of volume on the top half of the display 
and one of speed on the bottom half. The Plot Feedback 
Scheme was selected for its ability to present temporal 
information and its intuitive representation of data, thus 
eliminating the learning curve. The “Words” feedback 
scheme (Figure 4d) displays nothing for 20 seconds; during 
this period, the system measures the speaker’s voice 
modulation. For example, if the speaker spoke too quietly 
for a significant portion of the 20 seconds, then the word 
“LOUDER” will be displayed on the screen. Similarly, if 
the speaker spoke too loudly during the 20 seconds, the 
word “SOFTER” will appear on the screen. The same goes 
for speed (“FASTER” or “SLOWER”). If the speaker has 
adequately modulated their voice, either in volume or 
speaking rate or both, “good!” is displayed. These words 
are displayed for three seconds and then the Glass display 
becomes blank again for another 20 seconds. The 20 
seconds of time interval was decided in our iterative 
informal evaluations. We found that any additional increase 
in this duration causes the user to question whether the app 
is working. 

Iterative Implementation and Evaluation of Prototypes 
In the next step, we started an iterative implementation and 
evaluation cycle. We implemented different versions of the 
Quads, Bars, Plots, and Words feedback scheme and 
evaluated empirically in the focus group discussions. We 
also built a number of other innovative feedback schemes. 
For example, we implemented “Audio Feedback” which 
functions like a metronome. It produces a ticking noise at a 
rate determined by the user’s speaking rate. When the user 
talks too quickly for too long, the system starts ticking at a 
slower pace to encourage the user to slow down, and vice 
versa. Another feedback method we implemented is “Black 
and White”. The display fades between black and white 
depending on the loudness of the user’s voice.  However, 
the last two prototypes could deliver only one variable 
(either volume or loudness) at a time. Using both schemes 
together was found to be too distracting and overwhelming.  

One-to-One Interview Session 
As we wanted to select only two feedback schemes for the 
formal evaluation, we needed to rank among the prototypes 
in terms of their efficacy. We arranged one-to-one 

Figure 4: A few Feedback schemes that we explored for our interface 



interview sessions with 13 students to rank these 
prototypes. Before the interview session, all the participants 
were unfamiliar with the project. In total, 9 female and 4 
male students participated. The participants ranged from 19 
to 25 years old. We presented them with the Google Glass 
prototypes, explained the goal of the project, and allowed 
each participant to try each of the feedback schemes while 
reciting a poem or talking about him or herself.  Once they 
were accustomed with all the prototypes, we asked them to 
choose their top two preferred versions of the interface and 
explain their choice.  From their feedback, we found the 

following ranking: Words (11), Bars (8), Quadrant (6), and 
Plots (1). The quantitative data highlights the users’ 
preference for sparse feedback over continuous feedback. 
This was further echoed in the participants’ qualitative 
responses. 

EVALUATION 
We evaluated Rhema in order to seek answers to the 
following questions: 

 What value, if any, is added to the participants’ 
performance while using the interface? 

 Do the participants find the interface effective and easy 
to learn? 

 Are there any noticeable side effects or distractions from 
the usage of Rhema?  

Procedure 
In order to answer these questions, we designed a formal 
user study where we asked the participants to deliver three 
speeches, three minutes in duration, while wearing Google 
Glass. Two speeches were delivered with the Google Glass 
display on, one with the “Words” feedback scheme and the 
other with the “Bars” feedback scheme. Another speech 
was delivered with the Google Glass display turned off, 
which served as a baseline. The participants wore Google 
Glass for the baseline to ensure that the results would not be 
influenced due to the mere existence of the Glass. Before 
the participants delivered the speeches with the Bars and 
Words feedback schemes, we explained the use of the 
interface to the users and set aside at least five minutes so 
that they may practice and familiarize themselves with it. 
We began the actual speech only when the participants said 
they were comfortable with the feedback scheme. The 
speakers chose three topics from a list of sample topics (e.g. 
favorite pastime, favorite book/movie/superhero, etc.) that 
we supplied for convenience. The topics were decided at 
least two days ahead of the presentation time to allow the 
participants to prepare. The order of both the topics and the 
Google Glass feedback schemes were counterbalanced to 
remove any ordering effects.   

Statements 
related to 

speech 

Overall, I am happy with the quality of 
my speech; I varied my volume 
appropriately; My speech was well 
paced; I showed appropriate body 
language; I maintained eye contact with 
audience 

Statements 
related to 
Feedback 
Scheme 

Efficacy: I found this feedback to be 
very helpful; The quality of my speech 
improved due to the feedback; The 
feedback was useful in helping me 
modulate my volume; The feedback was 
useful in helping me vary my speed; I 
felt distracted by the feedback; The 
usefulness of the feedback outweighed 
any distractions; 
Learnability: The feedback scheme was 
easy to learn; It was easy to follow while 
delivering my speech; The learning 
curve for using the feedback system is 
huge; 
Future Use: If available, I would love to 
use this feedback system in an actual 
speech 

Table 1: List of statements as in the post-speech survey. The 
live form is available at http://tinyurl.com/rhemaSurvey 

Figure 6: Sample snapshot from a recorded video of public 
speaking 

Figure 5: The setup for formal evaluation 



The study was conducted in a lab environment where each 
speech was recorded using a high definition video camera, 
as shown in Figure 5. Figure 6 shows a sample snapshot of 
the videos that we recorded. The camera was placed to 
capture the participant and a part of the audience’s head. 
This allowed the viewers of the videos to judge if the 
speaker was maintaining eye contact with the audience. A 
brief interview session regarding the participants’ 
experiences with the feedback schemes took place at the 
end of each study session.  

Participants 
We recruited 30 students from University of Rochester, of 
which 17 were male and 13 female. Their ages ranged from 
18 to 32 and average age was 20. There were 10 freshmen, 
4 sophomores, 4 juniors, 5 seniors, 4 graduate students, and 
3 others. We posted flyers at different places throughout the 
campus, and we also posted recruitment messages in 
different Facebook groups associated with student 
activities. The study was limited to native speakers of 
English of at least 18 years of age. 

Measures 
To assess the extent of value that Rhema added to the 
participants’ experiences, we asked our participants to fill 
out a survey related to their speaking performance. 
Participants filled it out immediately after delivering each 
speech. These measures are listed in the first row of Table 1 
and are related to the participant’s overall speech. 

We asked the participants to fill out a different set of 
measures to assess the efficacy, learnability, and future use 
of the interface (Listed in the second row of Table 1). All 
the measures were answered in a 7-point Likert scale where 
7 represents ‘strongly agree.’ Since these measures are only 
related to a particular feedback scheme (e.g. easy to follow, 
the associated learning curve, etc.), these are not applicable 
when no feedback exists. Thus, we have responses in these 
measures for Bars and Words feedback only. 

Finally, to assess any noticeable effects of distractions 
arising from Rhema, we posted each video to Amazon 
Mechanical Turk. Ten different workers evaluated the 
videos. Table 2 presents the measures of ratings. The 
measures were selected to identify any possible effect of 

distraction. In order to ensure the quality of Mechanical 
Turk ratings, we opened the assignments only to workers 
with a good working history (i.e. master workers with 
>95% HIT acceptance rate and a total of >5000 accepted 
HITs). We considered the ratings from Mechanical Turk 
workers as anonymous opinions from a general audience.  

RESULTS 
Figure 7 illustrates a boxplot representing the participants’ 
responses to the questions related to their speech. The 
responses are shown under three different groups 
representing three different feedback schemes. In the 
boxplot, the red horizontal line represents sample mean, the 
blue vertical line represents 1 standard deviation range and 
the box represents 95% confidence interval in t-test (for 
illustration purpose only). As the users rated on an ordinal 
scale (7-point Likert), we used non-parametric methods of 
calculating statistical significance. We used Friedman’s test 
[9] to detect the differences among the groups. The p-value 
for this test is given within parentheses along the horizontal 
axis. Upon finding any significant differences among the 
groups, we used Wilcoxon’s Signed Rank [25] test for 
pairwise comparison. We applied Bonferroni correction [7] 
to counteract the problems of multiple comparisons. In the 
box plot, we used one or two asterisks to represent 
differences with significance level 0.05 and 0.01 

Statements Kα 

This person did not pause too often during 
the speech 

0.28 

This person maintained eye contact with 
whomever he or she was talking to 

0.35 

This person did not use a lot of filler words 
(Um, uh, basically etc.) during the speech 

0.39 

This person does not appear distracted 0.22 

This person did not appear stiff during the 
speech (i.e. looks spontaneous) 

0.30 

Table 2: List of statements in the Mechanical Turk 
worker’s questionnaire.  Kα represents the inter-rater 

agreement using Krippendorff’s Alpha [14]. 

Figure 7: Boxplot of responses for each measure enlisted in the first row of Table 1 



respectively. The plot illustrates that the participants rated 
their speech to be significantly well paced while using the 
Words feedback scheme. The Friedman’s test rejects the 
null hypothesis with a p-value of 0.002 for this case. The p-
value for the measure on whether the participants varied 
their volume was slightly higher than the significance level 
and thus failed to reject the null hypothesis.  

Figure 8 represents the boxplots of responses to the 
measures related to the interface. As there are only two 
groups to be compared in this plot, we used Wilcoxon’s 
Signed Rank test [25] to calculate the statistical 
significance. In the figure, we used one, two, or three 
asterisks to represent 0.05, 0.01, and 0.001 significance 
level. The plot shows that the Words feedback scheme is 
rated significantly better in most of the survey measures. 

Measures from Mechanical Turkers 
We considered the ratings provided by the Mechanical Turk 
workers in order to assess viewer’s opinion (10 viewers per 
participant). While it is easy to get Mechanical Turk 
ratings, the workers are less likely to be experts in public 
speaking. Therefore, it was important to assess the 
reliability of the ratings. To determine the quality of the 
ratings, we calculated inter-rater agreement using 
Krippendorff’s Alpha [14] as shown in Table 2. 
Kippendorff’s alpha is a better metric than other methods of 
calculating inter-rater agreement (e.g. Cohen’s Kappa [6]) 
because it allows any number of raters, missing data, and 
any type of measurement values (e.g. binary, nominal, 

ordinal, interval, etc.).  

In our results, the agreement varied from 0.229 to 0.395 for 
different survey measures. We noticed that the agreement 
was highest for objective questions that asked the Turkers 
to rate the quality of eye contact and the use of filler words. 
On the other hand, it was lowest for the question on the 
speakers’ level of distraction. We suspect different people 
might consider different criteria for assessing distraction 
(e.g. it might mean not making eye contact, not moving, or 
repeating the same words), which may have led to this poor 
agreement between the raters in this measure. Figure 9 
shows the box plot of the responses. 

To calculate the statistically significant differences in the 
ratings under different feedback schemes, we conducted 
Friedman's test. The p-values are reported within 
parentheses in Figure 9. Unfortunately, the test failed to 
reject the null hypothesis for any of the measures. This may 
result from the fact that the Turkers are not as trained as 
public speaking experts to identify nuance differences in a 
public speaker's performance. The suboptimal agreement in 
Turker's ratings also indicate that possibility.  

Post Study Interview Results  
As evidenced in the brief post-study interview sessions with 
the formal evaluation of participants, some form of real-
time feedback during a live speech certainly has a 
beneficial effect. We asked each participant, “Was x 
feedback useful or effective in reminding you to modulate 

 

Figure 8: Boxplot of responses for each statement listed in the second row of Table 1 

 

Figure 9: Boxplot of responses from Mechanical Turk Workers 



your voice?” All replied yes to either one or both of the 
feedback schemes they tried. Several reflected on their 
three speeches and concluded that the feedback “definitely 
helped” and “made [them] more aware” of their voice 
modulation, especially when they compared their speech 
with feedback to that with no feedback. Regardless of the 
type of feedback scheme, all participants said that the 
customized feedback “actively changed how I spoke more” 
or that “it reminded me that I was supposed to change 
something”.  

We also asked the participants about their preferred 
feedback scheme. 22 of the 30 participants preferred the 
Words feedback scheme, rather than the Bars, because the 
Words feedback was straightforward and simpler. Those 
who did not like Words complained that the feedback 
required additional effort from the language part of the 
brain since they were already using it for the content of 
their speech. However, other participants disagreed. One 
stated that the Words feedback scheme was “less 
cognitively demanding while giving a speech” as it was 
“more straightforward.” Several found it useful that the 
Words feedback scheme displayed “information that could 
be parsed a little more quickly” as it only showed two 
pieces of data for a few seconds at a time. 

“It was just enough information that I could take in 
while also talking, but not too much information that it 
was overwhelming.”  

Eight of the 30 participants preferred the Bars feedback 
scheme rather than the Words. Some preferred it because it 
contained more information that was always readily 
available on the screen, and this constant feedback felt 
reassuring to them. They also liked the visual aspect of it 
and that the “visual nature of it didn’t interfere with the 
words [they] were thinking of.” However, many did not 
find the Bars useful or effective. Several participants did 
not know how to interpret or apply the information to their 
voice. The Bars feedback scheme was also clearly 
confusing; two participants explicitly told us during the 
post-speech interview that they wondered, “What am I 
supposed to do with this?” and “What does it mean?” while 
using the Bars feedback. Some found it too overwhelming 
and complex and ended up completely ignoring it. One 
participant explained that  

“It was so complicated that I couldn’t use it. The pause I 
would have to take to process the information was so 
great that I couldn't maintain my speech.”  

Aside from these general overall trends in opinions on the 
feedback schemes, personal preferences drove many of the 
participants’ responses. For example, some are more 
receptive to visuals – those who preferred the Bars 
feedback scheme thought it worked well because they 
consider themselves “visual thinker[s]”. They also varied in 
the amount of information they wanted to see: one 
participant suggested using less boxes in the Bars feedback 

system, and another suggested using many more boxes; 
some wanted to see the words appear more frequently, 
whereas others thought the implemented frequency was 
good. Some participants thought the Bars feedback was 
easier to ignore, while others were more likely to disregard 
the Words feedback. From this, we concluded that the 
efficacy, usefulness, and level of distraction of the different 
feedback schemes vary largely as a result of the users’ 
personal preferences and tendencies. 

DISCUSSIONS AND CONCLUSION 
In this work, we implemented a fully functional, real time 
Google Glass interface to help people with public speaking. 
The interface provides live feedback regarding the user’s 
volume and speaking rate. The primary objective was to 
maximize the usefulness of our system by minimizing the 
level of distraction. 

From the quantitative and qualitative evaluations of our 
system, we can safely conclude that the participants found 
the interface valuable to their speaking performance. The 
qualitative study reflects that the participants rated the 
Words feedback to be effective in varying their speaking 
rate and significantly easier to learn than the Bars feedback 
scheme. We hypothesize that this is the effect of our Sparse 
information delivery strategy and recommendation-based 
feedback scheme. Unfortunately, we could not conclusively 
measure the level of distraction from the audience’s 
perception. As the Mechanical Turk raters were not experts 
in public speaking, their ratings did not agree and also 
failed to pass any hypothesis tests. It is possible to address 
this in the future by involving expert opinions from the 
Toastmasters International Organization. 

We collected Kinect [26] depth information while the 
participants delivered their speech, and we will leverage 
this dataset to train machine learning algorithms that can 
analyze and predict speaking performance from a 
combination of the speaker’s voice patterns, facial 
expressions, and body language. We will show these 
predicted performances to the users and offer live 
recommendations to help them further improve their public 
speaking skills and speech delivery. 

This research also has a number of implications for future 
endeavors. Presenting information sporadically through 
secondary display might be a generic strategy in situations 
with cognitive or attentional overload. The preliminary 
observation described in this paper calls for further 
investigation in this area. In addition, we see room to 
explore the potential for haptic feedback schemes in similar 
situations. 

Our current prototype was originally designed to give 
novice speakers real-time feedback on voice modulation. 
However, as the system already sends the audio data to a 
server, this data could be used to provide post-speech 
feedback to the user. Such a system could be useful for 
even expert users because it would allow them to review the 



speech and check for mistakes in retrospect. Without the 
need for instantaneous feedback, such a system could be 
adapted to a range of wearable technologies including smart 
phones. Rhema is available for download in the following 
webpage: 
www.cs.rochester.edu/hci/currentprojects.php?proj=rh 
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