Designing Chip-Level Nanophotonic Interconnection Networks

Christopher Batten Computer Systems Laboratory Cornell University

ASPLOS PC Meeting Mini-Symposium October 21, 2011

Nanophotonic Devices

Nanophotonic Networks

CMP Memory Bandwidth Challenge

Goal for Talk

Illustrate the nanophotonic interconnection network design process and explain what research in this area is trying to achieve

- Light coupled into waveguide on chip A
- Transmitter off : Light extracted by ring modulator
- Transmitter on : Light passes by ring modulator
- Light continues to receiver on chip B
- Light extracted by receiver's ring filter and guided to photodetector

- Light coupled into waveguide on chip A
- Transmitter off : Light extracted by ring modulator
- Transmitter on : Light passes by ring modulator
- Light continues to receiver on chip B
- Light extracted by receiver's ring filter and guided to photodetector

Nanophotonic Devices

Nanophotonic Networks

Nanophotonic Device Integration Strategy

MIT: Devices monolithically integrated on active layer of standard CMOS process

Poly-Si Waveguides with Etched Air Gap

Poly-Si Modulator

Poly-Si Passive Filter

Cornell: Devices deposited on top of metal interconnect stack of standard CMOS chips

Cornell CSL

Christopher Batten

Motivation

Designing Nanophotonic Interconnection Networks

- Architectural-Level Design
 - > Network topology, routing algorithm
 - > Analytical bounds on performance
 - Electrical baseline network
- Microarchitectural-Level Design
 - Choose electrical vs. nanophotonic components
 - Flow control and arbitration
- Physical-Level Design
 - ▷ Map µarch design to physical substrate
 - Assign wavelengths to waveguides/fibers
 - Decide how to layout waveguides and organize fibers

Motivation

Nanophotonic Devices

Nanophotonic Networks

Architectural-Level Design

Butterfly

Torus

┝╢┝╼╸

R

1,2

Nanophotonic Channels

Unified Nanophotonic Channels and Second-Stage Routers

Motivation

Nanophotonic Devices

Nanophotonic Networks

Physical Design for Butterfly

Goals for Nanophotonic Network Research

Non-Goal

Photonic network A is 50% "better" than electrical network B

Goal #1

Develop design patterns and design guidelines that capture high-level design trade-offs and provide context for device-level researchers

Goal #2

Explore how this emerging and potentially disruptive technology can radically change high-performance system design

Past and Current Research

Past Work

- Nanophotonic Processor-to-DRAM Networks [HOTI'08,IEEE Micro'09]
- Nanophotonic On-Chip Clos Network [NOCS'09]
- Nanophotonic DRAM Memory Channels [ISCA'10]
- Nanophotonic System-in-Package [WINDS'10]

Current Work

- Design patterns/guidelines for nanophotonic interconnection networks
- More sophisticated models to bridge device-level to system-level gap
- Leveraging new nanophotonic devices
- Mitigating thermal sensitivity of silicon photonic devices
- Simple prototype nanophotonic networks