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 Challenges:

 Single-core performance trend is gloomy

 Exploit chip-multiprocessors with multithreaded applications 

 The memory gap is paramount

 Latency, bandwidth, power

2

Chip-Multiprocessor Era

2[Figure: Hennessy and Patterson, Computer Architecture- A Quantitative approach]

 Two basic remedies:

 Cache – Reduce the number of out-of-die memory accesses

 Multi-threading – Hide memory accesses behind threads execution

 How do they play together? 

 How do we make the most out of them?



 The many-core span

 Cache-Machines ↔ MT-Machines

 A high-level analytical model 

 Performance curves study

 Few examples

 Summary
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Cache-Machines vs. MT-Machines

# of Threads

Cache/Thread

Thread Context

Cache

Cache Architecture
Region

 Many-Core – CMP with many, simple cores

 Tens  hundreds of Processing Elements (PEs)

MT Architecture
Region

Intel’s Larrabee

…

Nvidia’s GT200
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 What are the basic tradeoffs?

 How will workloads behave across the range?

 Predicting performance
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 Use both cache and many threads to shield memory access

 The uniform framework renders the comparison meaningful

 We derive simple, parameterized equations for performance, power, BW,..

A Unified Machine Model
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Cache Machines
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C

 Many cores (each may have its private L1) behind a shared cache

C C
C C
C C
C C

C C
C C
C C
C C

C C
C C
C C
C C

C C
C C
C C
C C

C C
C C
C C
C C

C C
C C
C C
C C

C C
C C
C C
C C

C
C
C
C

Cache

To Memory

C
C
C
C

C C
C C
C C
C C

C C
C C
C C
C C

C C
C C
C C
C C

C C
C C
C C
C C

# Threads

Performance

Cache Non Effective point (CNE)



 Memory latency shielded by multiple thread execution

Multi-Thread Machines
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Analysis (1/3)
 Given a ratio of memory access instructions rm (0≤rm≤1)

 Every 1/rm instruction accesses memory 

 A thread executes 1/rm instructions

 Then stalls for tavg cycles

 tavg=Average Memory Access Time (AMAT) [cycles]
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 PE stays idle unless filled with instructions from other threads

 Each thread occupies the PE for additional                      cycles

 threads needed to fully utilize each PE          

Analysis (2/3)
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Analysis (3/3)
 Machine utilization:

 Performance in Operations Per Seconds [OPS]:

1
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Performance Model
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 The many-core span
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Workloads:

 Can be parallelized into large number of threads

 No serial part

 Threads are independent of each other 

 No wait time/synchronization

 No data sharing:

 Cache capacity divided among 
all running threads

 Cache hit rate function:

HW/SW Assumptions 

Parameter Value
NPE 1024
S$ 16 MByte

CPIexe 1
f 1 GHz
tm 200 cycles
rm 0.2

Hardware:



0

100

200

300

400

500

600

700

800

900

1000

1100

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

17
00

0

18
00

0

19
00

0

20
00

0

G
O

PS

Number Of Threads

      

no $

16M

32M

64M

128M

perfect $

 Increase in cache size cache suffices for more in-flight threads 
 Extends the $ region 
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Increase in 
cache size

Cache Size Impact

..AND also Valuable in the MT region

 Caches reduce off-chip bandwidth delay the BW saturation point



 Increase in memory latency  Hinders the MT region
 Emphasise the importance of caches

Unlimited BW to memory
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 Simulation results from the PARSEC workloads kit 

 Swaptions:

 Perfect Valley 

Hit Rate Function Impact

Swaptions

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number Of Threads

Pe
rfo

rm
an

ce
 (G

O
PS

)

0

10

20

30

40

50

60

70

80

90

100

C
ac

he
 H

it 
R

at
e 

(%
)

Analytical Model
Simulation
Cache Hit Rate

19



 Simulation results from the PARSEC workloads kit 

 Raytrace:

 Monotonically-increasing performance

Hit Rate Function Impact

Raytrace

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number Of Threads

Pe
rfo

rm
an

ce
 (G

O
PS

)

0

10

20

30

40

50

60

70

80

90

100

C
ac

he
 H

it 
R

at
e 

(%
)

Analytical Model
Simulation
Cache Hit Rate

20



 Three applications families based on cache miss rate dependency:
 A “strong” function of number of threads – f(Nq) when q>1

 A “weak” function of number of threads - f(Nq) when q≤1

 Not a function of number of threads 
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 Simulation results from the PARSEC workloads kit 

 Canneal

 Not enough parallelism available

Workload Parallelism Impact

Canneal
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 The many-core span

 Cache-Machines ↔ MT-Machines

 A high-level analytical model 

 Performance curves study

 Few examples

 Summary

23

Outline

23



 A high-level model for many-core engines

 A unified framework for machines and workloads from across the range

 Validated by simulations with PARSEC workloads

 A vehicle to derive intuition

 Qualitative study of the tradeoffs 

 A tool to understand parameters impact

 Identifies new behaviors and the applications that exhibit them

 Enables reasoning of complex phenomena

 First step towards escaping the valley 

 Current work: architectural mechanisms to bridge the valley
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Summary
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Model Parameters
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Model Parameters
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Parameter Description
NPE Number of PEs (in-order processing elements)

S$ Cache size [Bytes]

Nmax Maximal number of thread contexts in the register file

CPIexe Average number of cycles required to execute an 
instruction assuming a perfect (zero-latency) memory 
system [cycles]

f Processor frequency [Hz]

t$ Cache latency [cycles]

tm Memory latency [cycles]

BWmax Maximal off-chip bandwidth [GB/sec]

breg Operands size [Bytes]

 Machine parameters:
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Model Parameters

28

 Workload parameters:

Parameter Description
n Number of threads that execute or are in ready state 

(not blocked) concurrently

rm Fraction of instructions accessing memory out of the 
total number of instructions [0≤rm≤1]

Phit(s, n) Cache hit rate for each thread, when n threads are 
using a cache of size s
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Model Parameters
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 Power parameters:

Parameter Description
eex Energy per operation [j]

e$ Energy per cache access [j]

emem Energy per memory access [j]

Powerleakage Leakage power [W]
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Parsec Workloads

30



Model Validation, PARSEC Workloads

Raytrace
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 Similar approach of using high level models:

 Morad et al., CA-Letters 2005

 Hill and Michael, IEEE Computer 2008

 Eyerman and Eeckhout, ISCA-2010

Related Work
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