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10 Years ago: First ZebraNet

paper at ASPLOS ‘02
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During the 5-year project:
e ~5distinct generations of
tracking hardware

2 deployments of our
collar designs

 Additional deployments
of industry-made designs

Research contributions:
Protocols

Compression methods to
save radio energy

Middleware designs for
radio-based updates

| And graduated some great

PhD students:
e Chris Sadler, Pei Zhang,




Then and Now

Then: Cellular telephony not ubiquitous,
especially in less-developed countries and regions

Now: Cellphones are the world’s dominant
computing platform

=>Mobile services are burgeoning

Then: GPS was still a niche technology, with high-
wattage receivers and inaccurate readings

Now: GPS is widespread, more accurate, and
dropping in power requirements
=> Location-aware services




Opportunities and Challenges?

* Everyone has a GPS-based, communication-enabled sensor with
them nearly all the time

— Our work asks: What can we do with this? (For humans, not zebras!)

e Qur work:

— How can we use cellphones as implicit mobile sensing devices?
* E.g. Noise pollution maps
— How can mobility predictions and modeling improve performance of
“opportunistic” networking?

* And in turn provide higher-performance low-cost networking approaches for
the world’s rural poor.

* C-LINK

— How can collaboration between nearby phones lead to interesting
applications with better performance than non-collaborative versions?
* SignalGuru
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SignalGuru: The Goal

 How fast should | drive to hit all the green
lights?

* |n an arbitrary region, sense the traffic signal
green-red transition times

e And give drivers accurate “optimal speeds” at
which to drive to hit only green lights

Tracking Signal transitions:
* Individually: Insufficient information

* Cloud-Archived/Historic: Too static. Non-
adaptive.

* Grassroots regional collaboration: Gather info
quickly. Adjust even to highly-adaptive signal
schedules
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Summary of Approach

Sample video stream
every 2 seconds

ldentify red or green
stoplights

— Local computation on
iPhone

Share with neighbors

Predict appropriate
speed
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Use phone’s gyro and accelerometers

¢ to prune detection window
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* Process only area within detection window.
— Processing time reduced by 41%.
— Misdetection rate reduced by 49%.




Collaboration Module

* No cloud server.

* Real-time adhoc exchange
of timestamped R—G
transitions (last 5 cycles)
database.

e Collaboration:

— Improves mutual
information.

— Enables advance advisory.
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SignalGuru/GLOSA iPhone Application

. Adjust Exposure DeteCtion:
Residual amount Bconnectf Sync Camera - (7]
of time in sec ~ ON

until the traffic

signal turn Advisory
green.

Residual amount

of time in sec
until the traffic

signal turns red
again.

Recommend 11.9 mph

ed speed.




Singapore: Prediction Accuracy Evaluation

B detection module error
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# _ With collaboration SignalGuru accurately predicts | |
. both pre-timed and traffic adaptive traffic signals.
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A abiding by SignalGuru speed advisories. verage
* Traffic-adaptive traffic signals. . Errorpyerage = 2-455€C (3.8%).
* Experiment in downtown: . Errc:rm,nsition Detection = 0-60sec
* 8 carsover 30 min. (0.9%).
. .y * ErrorPhase Length Prediction = 1.85sec
e 2 signals, 26 transitions. (2.9%).

 Without collaboration:
* Errory,era.qe = 11.03sec




SignalGuru: Leveraging Mobile Phones for
Collaborative Traffic Signal Schedule Advisory
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