
Xipeng Shen

Eddy Z Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian

Matching with Non-Uniformity: A Key to
Efficiency on Multicore and GPU

Computer Science Department
The College of William and Mary

Xipeng Shen xshen@cs.wm.edu

Appearance of Non-Uniformity

2

Matching with the non-uniformity is key
to computing efficiency.

non-uniform execution model non-uniform communication

non-uniform resource sharing

GPU manycore

multicore

The College of William and Mary

GPU

3

a SIMD group
(warp)

Regularity Within a Warp is Key to GPU
Efficiency

Xipeng Shen xshen@cs.wm.edu

Dynamic Irregularities

4

A[]:

P[] = { 0, 5, 1, 7, 4, 3, 6, 2}

... = A[P[tid]];

tid: 0 1 2 3 4 5 6 7

 Degrade throughput by up to (warp size - 1) times.
 (warp size = 32 in modern GPUs)

memory

2 4 10 0 6 0 0A[]:

tid: 0 1 2 3 4 5 6 7
if (A[tid]) {...}

control flow (thread divergence)

for (i=0;i<A[tid]; i++) {...}{
a mem seg.

P[] = { 0, 1, 2, 3, 4, 5, 6, 7}

Xipeng Shen xshen@cs.wm.edu

Performance Impact

• Applications: dynamic programming, fluid simulation,
image reconstruction, data mining, ...

5

HMMER 3D-LBM CUDA-EC NN CFD CG Unwrap

3.6

1.8

2.75
2.51

1.51.46

5.27

Potential Speedup
Host: Xeon 5540.

Device: Tesla 1060.

Xipeng Shen xshen@cs.wm.edu

Previous Work on GPU

• Mostly on Static Memory Irregularities
❖ [Baskaran+, ICS’08], [Lee+, PPoPP’09],[Yang+, PLDI’10], etc.

• Dynamic Irregularity

❖ Remain unknown until runtime

❖ Mostly through hardware extensions.

❖ [Meng+, ISCA’10], [Tarjan+, SC’09], [Fung+, MICRO’07],
etc.

6

Xipeng Shen xshen@cs.wm.edu

Open Questions for
Dyn. Irreg. Removal

• Is it possible w/o hardware extentions?

• More fundamentally

• Relations among data, threads, & irregularities?

• What layout or thread-data mappings minimize the
irreg.? How to find them? Complexity?

• How to resolve conflicts among irregularities?
Dependences?

7

Xipeng Shen xshen@cs.wm.edu

Streamlining On the Fly

8

❖ No profiling or hw ext.
❖ Transparent removal on the fly
❖ Jeopardize no basic efficiency
❖ Treat both types of irreg. holistically

[Zhang+: ASPLOS’11]

G-Streamline

[Ding+:PLDI’99,
Chilimbi+:PLDI’06,
Tseng+:TPDS’06,
etc.]

Xipeng Shen xshen@cs.wm.edu 9

Efficiency control

Adaptive CPU-GPU pipelining

Three-level efficiency-driven

overhead hiding &
minimization

guidance for
transformations

Transformations

data reloc. ref. redirect.

data
reorder.

job
swap.

hybri

Optimality & approximation

Complexity analysis

Approximating optimal layouts and
mappings

• NP-Complete

• Layout: 3D matching

• Mapping: Partition Problem

• Approx.

• Duplication

• Clustered sorting

How to determine
optimal layouts / thread-data mapping?

G-Streamline

See Zhang+:ASPLOS’11 for details.

0

1

2

3

4

5

6

HMMER 3D-LBM CUDA-EC NN CFD CG Unwrap
0.270.30.380.45

1.1
1.429

2.49

3.6

1.8
1.6

2.51

1.51.46

5.27

Sp
ee

du
p

10

Without Overhead
With Overhead

How to minimize or hide overhead?

❖ Benchmark Suites: Rodinia, Tesla Bio, and etc.
❖ Host: Xeon 5540. Device: Tesla 1060

After Transformation

Xipeng Shen xshen@cs.wm.edu 11

Efficiency control

Adaptive CPU-GPU pipelining

Three-level efficiency-driven
adaptation

overhead hiding &
minimization

• CPU-GPU pipelining

• Kernel splitting

• Partial transf. and overlap.

• Two-level adaptive control

❖ Automatically balance benefits and overhead

❖ Transparent, on-the-fly

❖ No perf. degradation

❖ Adaptive to pattern changes

❖ Resilient to dependence

G-Streamline

Xipeng Shen xshen@cs.wm.edu

CPU-GPU Pipelining
• Utilize Idle CPU Time

❖ Transform on CPU while computing on GPU
❖ Automatic shutdown when necessary

12

GPU

1

GPU

2

GPU

63

GPU

4

GPU

5

GPU

for i=1:n

gpu_kernel(i);
end

CPU

MEM

GPU

cpu_transform()

copy_to_gpu

gpu_kernel

MEMCPU

CPU MEM

CPU MEM

CPU MEM

CPU MEM

async_transform (i+2);
async_copy (i+2);

Xipeng Shen xshen@cs.wm.edu 13

Kernel Splitting

gpuKernel_org<<<...>>>(pData,...);

gpuKernel_org_sub<<<...>>>(pData,0, (1-r)*len, ...);

gpuKernel_opt_sub<<<...>>>(pData,(1-r)*len+1, len, ...);

split

• Also useful for loops with no dependences
❖ Enable partial transformation

pipeline

Xipeng Shen xshen@cs.wm.edu 14

Efficiency control

Adaptive CPU-GPU pipelining

Two-level efficiency-driven
adaptation

overhead hiding &
minimization

• CPU-GPU pipelining

• Kernel splitting

• Partial transf. and overlap.

• Two-level adaptive control

❖ Automatically balance benefits and overhead

❖ Transparent, on-the-fly

❖ No perf. degradation

❖ Adaptive to pattern changes

❖ Resilient to dependence

See Zhang+:ASPLOS’11 for details.

Final Speedup

0

1

2

3

HMMER 3D-LBM CUDA-EC NN CFD CG Unwrap

3.6

1.8

2.75

2.51

1.51.46

5.27

2.08

1.11.08

1.8

1.2

1.4

2.5

0.270.3
0.380.45

1.1

1.4

2.5

Sp
ee

du
p

15

Basic transformation
w/ efficiency control
full potential

Xipeng Shen xshen@cs.wm.edu 16

• Cache sharing is a double-edged sword

• Reduces communication latency

• But causes conflicts & contention

Non-Uniform Cache Sharing on Multicore

Xipeng Shen xshen@cs.wm.edu

Optimal Job Co-Scheduling

17

• Minimum-weight perfect matching
problem & a O(N4) solution.

• NP-completeness for K-core (K>2) &
some approximation algorithms.

[Jiang+: PACT’08, Jiang+:TPDS’11]

On Threads of a Multithreading Application

• Observation

• Insignificant effects from shared cache (PARSEC)

18Xipeng Shen xshen@cs.wm.edu

• Reasons

• Three mismatches with non-uniform shared cache
• Limited data sharing among threads

• Large working set size

• Uniform inter-thread relations

[Zhang+:PPoPP’10]

Xipeng Shen xshen@cs.wm.edu

Cache-Sharing-Aware Transformations

• Increase data sharing among siblings

• Decrease data sharing otherwise

19

Non-uniform data sharing

Non-uniform cache sharing

• >50% cache miss reduction.
• 5-33% speedup.

[Zhang+:PPoPP’10]

Xipeng Shen xshen@cs.wm.edu

Summary

G-StreamlineJob co-sch. Cache-sharing-aware
transformation

Matching with non-uniformity is the key.

Shared cache
on multicore

Exploiting job
non-uniformity

Creating thread
non-uniformity

Eliminating warp
non-uniformity

Execution model
on GPU

Xipeng Shen xshen@cs.wm.edu 21

Thanks!

