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Abstract transaction has exclusive access to the shared-memory heap.
That this basic approach is simple is a good thing; it corre-
sponds exactly to why transactions simplify reasoning about
programs. We do not want language definitions in terms of

A high-level operational semantics for transactions can give
transactions a precise meaning in the context of a program-

ming language without exposing any details about how . A )
transactions are implemented. Such semantics give program/ransactional-memory implementations. On the other hand,
e do not simplify to the point that an entire transaction ex-

mers a simple model and serve as a correctness criterion fo onal , doi b
transactional-memory implementations. This paper presentsecmes as one computational step since doing so abstracts

such a semantics for a simplecalculus with shared mem- away so much that it is not clear how to add interesting fea-
ory, threads, and transactions tures such an internal parallelism (multiple threads within

We use our approach to investigate two important aspects? transaction) or weak atomicity (nontransctional memory
of a transactional programming language, namely Sp‘,ﬂv\mimgacce.sses thgt conflict with a transaction). As ghscussed in
new threads (in particular, its interaction with transactions) Section 5, th|§ places our a.ppr(.)ach betweep prior work that
and strong versus weak atomicity. For the former, we present"_"as more suitable for proving |mplem_entat|ons of transac-
a sound type system that ensures different ways of spawningionS Correct at the expense of simplicity [11, 22] and work
threads are used correctly. For the latter, we use a differenttat 100k the transactions-in-one-step approach that does not
type system to prove the widely-held belief that if each €Xtend wellto other features [8]. , _
mutable memory location is used outside transactions or After presenting a basic language in the next section,

inside transactions (but not both), then strong and weak W& investigate two nontrivial extensions and prove appro-
atomicity are indistinguishable. priate results. (Full proofs are in a companion technical re-

port [14].) First, we consider three possibilities for what it

means to spawn a thread during a transaction and formal-
1. Introduction ize all three in one language. A sound type-and-effect sys-
tem classifies what code can run only in transactions, only

A primary reason to add transactions to programming lan- outside transactions, or anywhere, thereby ensuring that no
guages is that doing so makes it easier to reason about the be- ' yw ' y 9

) . form of spawn occurs where it cannot execute successfully.
havior of shared-memory multithreaded programs. For such :
. . Second, we present a language that lets code outside transac-
reasoning to be precise and well-founded, our languages

need rigorous semantic definitions. Oversimplified, informal tions access the heap while another thread executes a trans-

descriptions such as, “a transaction appears to happen a”_actlon. We prove thaf all mutable memory is partitioned

at-once to other threads” are insufficient for deciding what such that a location is accessed only outside or only inside

S transactions, then this weaker semantics is indistinguishable
programs mean, what programming idioms are correct, and

. : ) : . from the stronger one. While this result is not surprising, it is
what implementation strategies are meaning-preserving. Be- : . . :
reassuring given the subtle pitfalls of nontransactional code

causepperational semanti¢c$n which languages are defined bypassing transactional mechanisms [3, 12, 9, 20, 6, 21].

by judgments that reduce programs to simpler programs, IsMoreover, we believe the structure of the proof will shed in-

an expressive, convenient, rigorous, and well-understood ap- &y o 1o prove that more sophisticated (and less ob-
proach, we advocate its use for defining transactions, resolv- 9 P P

ing semantic subtleties, and proving properties of transac_V|0usly correct) invariants than a simple partition of memory

. . ' are also correct.
tional languages. This paper presents our first results from

pursuing this agenda. .

Our goals are to formalize the simple “all-at-once” idea 2. Basic Formal Language

underlying transactions and prove properties about how this This section presents the syntax and small-step operational
concept interacts with other language features. Therefore,semantics for a-calculus with threads, shared memory, and
our formal languages give a semantic definition to transac- transactions. It is primarily a starting point for the additions
tions at a very high level, essentially enforcing that a running and type systems in the subsequent two sections, which
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Figure 1. Base Syntax

investigate internal parallelism and weak atomicity. Three
key design decisions characterize our approach:

¢ The semantics isigh-level It relies on implicit nondeter-
minism to find a successful execution sequence. There is
no notion of transactions conflicting or aborting. Rather, a
transaction is always isolated from other threads becaus

A program state has the formy H; T wherea indicates
if any thread is currently executing a transactian e for
yes andae = o for no), H is the mutable heap (a mapping
from labels, also known as addresses, to values) Jaisda
collection of threads. Each thread is just an expression. We
useT; || T» to combine two thread collections into a larger
one, and we assunjes commutative, associative, and has
(the empty collection) as an identity. We writén place of
- || e where convenient.

At run-time we need two new expression forms, labels
(1) andinatomic(e). The former represents a heap location.
The latter represents a partially completed transaction with
remaining computation.

The program-state componantleserves additional dis-
cussion. Oursemanticsallows at most one thread to exe-
cute a transaction at a time. In essencis like a “global
lock” wheree indicates the lock is held. This i®otto sug-

ggest our language is a desirable implementation, but it is the

no thread may access shared memory if another threadh|gh-level semantics that enforces atomicity and isolation.

is in a transaction. This simple semantics provides a cor-
rectness criterion for more realistic implementations and
a simple model for programmers.

The semantics ismall-step In particular, transactions
take many computational steps to complete. While this
decision is an unnecessary complication for the basic
language, it is essential for considering the additional
thread interleavings that internal parallelism and weak
atomicity introduce.

The semantics istrong Nontransactional code cannot
observe or influence partially completed transactions.
This lets us prove in Section 4 that strong-isolation se-
mantics is equivalent to weak-isolation semantics under
certain conditions. One cannot do such a proof without
defining both semantics.

Our language does not have an explicit abort/retry. It
is easy to add as in prior work [8] by simply having no
evaluation rule for it: A transaction that aborts is simply one

that can never be chosen by the nondeterministic semantics

However, it would complicate stating type-safety since we
would have to accommodate an abort making a thread stuck

2.1 Syntax

Figure 1 presents the formal abstract syntax for our small
transactional language. Most expression forms are typical
for a A-calculus with mutable references, including con-
stants ¢), variables ), functions Qz.e), function applica-
tions ;1 es), sequential compositiorsdg(es, e2)), mem-
ory allocation ¢efe), assignment ;:=e5), and derefer-
ence (e). Many omitted constructs, such as records, would
be straightforward additions. In addition, we have thread-
creation gpawn,, e), where thetl reminds us that threads
must be created at top-level (not within a transaction), and
atomic-blocks §tomic e) for executinge as a transaction.

We would like an efficient implementation to loerrect if,

by definition, it is equivalent to our semantics. (Correctness
should also involve some notion of fairness, but we do not
consider that in this work.)

2.2 Operational Semantics

Our small-step operational semantics rewrites one pro-
gram statea; H; T to anothera’; H'; T’. Source program

e starts witho:; -; ¢ and a terminal configuration has the form
o;Hjvy || ... || vn, i.€., all threads are values (and no trans-
action is active). Although the source program contains only
a singlee, the evaluation oé can spawn threads, which can
spawn more threads, etc.

The rule PROGRAM chooses a thread nondeterministi-
cally and that thread takes a single step, which can affect
a and H as well as possibly create a new thread. So the
judgment form for single-thread evaluation dsH;e —

a'; H';¢'; T, whereT is - if the step does not spawn a thread
and some” if it does.

For conciseness, we use evaluation contekist¢ iden-
tify where subexpressions are recursively evaluated and a
single rule CONTEXT) for propagating changes from eval-
uating the subexpressidms usual, the inductive definition
of E describes expressions with exactly one HdlandE[e]
means the expression resulting from replacing the hole in
E with e. So, for example, we can USBONTEXT to derive
a; H;ref(seq(er,es)) — a'; H ;ref(seq(el, e2)); T if we
can deriveq; H;ey — o' H'; el T.

Rules for reducing sequences, memory allocations, and
function calls are entirely conventional. kPpPLY, e[v/x]
means the capture-avoiding substitutiorvdér x in e.

The rules for reading and writing labelsHTandGET) re-
quirea = o, meaning no other thread is currently executing

1We do not treat the body of a transaction as an evaluation context precisely
because we do not use the sam@nda’ for the subevaluation.
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Figure 2. Evaluation Rules

a transaction. This encodes a high-level definition of strong encodes that all spawns must occur at top-level. An expres-
isolation; it prohibits any memory conflict with a transaction. sion likeinatomic(spawn,, ¢) is always stuck; there is n@
If no thread is in a transaction, then any thread may read andand H with which it can take a step.
write the heap. We explain below how ruleatomic lets
the computation within a transaction access the heap. 2.3 Type System

The rules defining how an expression enters or exits a We could present a type system for this basic language, but
transaction are of particular interest because they affect most of the errors it would prevent are the standard ones

A thread can enter a transaction only.if= o (elSEENTER (e.g., using an integer as a function). The only non-standard
ATOMIC does not apply), and it change$o e. Doing so pre-  “stuck state” in our language so far occurs when a thread
vents another thread from entering a transaction w@xifr attempts to perform a spawn inside a transaction. The type-

ATOMIC (applicable only if the computation is finished, i.e., and-effect system presented in Section 3 prevents this error.
some valuey) changes: back too.

A transaction itself must be able to access the heap3. |nternal Parallelism
(which, as discussed above, requites= o) and execute
nested atomic expressions (which requisder entry ande
for exit), buta is e while a transaction is executing. That is
why the hypothesis in ruleNaTomic allows anya anda’
for the evaluation of the inside the transaction. That way,
the e in the program state; H; inatomic(e) constrains only
the otherthreads; the evaluation efcan choose any and
a’ necessary to take a step. If we require@nda’ to be
o, thene could access the heap but it could not evaluate a
nested atomic block. In the next section, internal parallelism
requires a more general technique.

Note ruleiINATOMIC ensures a transaction does not spawn
a thread (the hypothesis must produce thread-poulhich

While one reasonable semantics for spawn is that it is an
error for it to occur in a transaction, there are several reasons
to allow other possibilities. First, there is no conceptual
problem with treating isolation and parallelism as orthogonal
issues [16, 7, 11]. Second, if spawns a thread (perhaps
inside a library), there and atomic e behave differently.
Third, for some computations it may be sensible to delay
any spawned threads until a transaction commits, and doing
so is not difficult to implement. Fourth, it is undesirable to
forfeit the performance benefits of parallelism every time we
need to isolate a computation from some other threads.

This last issue becomes more important as the number
of processors increases; otherwise transactions become a
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e u= ...|spawn,. e |spawn; e for the three flavors of spawn each put the new thread in the

| inatomic(a, €, Toc, Tip) appropriate pool with the other pools empty. TH@NTEXT
T ou= int|refr|r =7 rule propagates all three threadpools out to evall_Jation of the
e u= tl|ip|0 larger expression. Other rules, like those for assignment, se-
I == -|Dz:7 guences, function application, etc., only change by produc-

ing three empty pools instead of one. The rule for sequences
Figure 3. Internal Parallelism Syntax (extends Figure 1) has been included as an example.
The PROGRAM rule requires that the thread chosen for
) ) evaluation produces an emgty,, whereasl; and7),. are

sequential bottleneck. For example, consider a concurrentagded to the global pool of threads. In other words, it is an

hashtable with insert, lookup, and resize operations. Resizegrror to create an “internally parallel” thread outside a trans-
operations may be relatively rare and large yet still need action and other flavors of threads are spawned immediately.
to be isolated from other threads to avoid the complexities |4 3 manner similar to the base language, entering a trans-

of concurrent operations. By parallelizing the resize opera- 5ction changes to », does not change the heap and creates
tion while maintaining its isolation, we preserve correctness ng threads. The resulting expressiaatomic(o, e, -, ) is a
without allowing sequential resize operations to dominate ransaction with no nested transaction (hences)h@o de-

performance. _ _ layed threads (the firs) and no internally parallel threads
In the rest of this section, we extend our formal language (the second).

to show that different flavors of thread-spawn have reason-  For a transactiomatomic(a, e, T, T,,), eithere or any

able semantics and a type-and-effect system can ensure théyread in Ty, can take a step, USINGNATOMIC DISTIN-
different flavors are used sensibly. Efficiently implementing ¢y sHeD or INATOMIC PARALLEL, respectively. The only
parallelism within transactions is beyond the focus of our regson to distinguish is soinatomic produces a result; in
present work. languages where the body is a statement that produces no
result we could combine these two rules. In either case, we
recursively evaluate the thread usimg@nd producing an’,
Figure 3 presents the new syntax and Figure 4 presents they’, ¢/ 7" and77,. As in the base language, evaluation in-

oc?

3.1 Syntax and Operational Semantics

changes to the operational semantics. side a transaction may not spawn a toplevel thread.drhe
The syntax additions are two new flavors of spawn ex- 77 andT}, are all added to the resulting expression, i.e.,
pressionsspawne. (for “on commit”) andspawn;, (for “in- they are part of the new state of the transaction. In particu-

ternal parallelism”). The former is allowed to occur any- |ar, note that parallel threads in the transaction may produce
where, but if it occurs inside a transaction, the spawned other parallel or on-commit threads. Any heap changes are
thread does not run until after the transaction commits. If propagated outward immediately, which is no problem be-
the transaction aborts, the spawned thread never runs. Theguse the outer stateds

latter is allowed onIy within a transaction and the transaction A transaction is Comp|ete when the distinguished expres-
does not commit until the spawned thread completes execut-sion and all parallel threads are values. RejeT ATOMIC
ing (i.e., becomes a value). One could certainly devise addi-then propagates out all the on-commit threads in a single
tional flavors of spawn; we believe these two new ones and step. Notice that a transaction never produces any threads
spawny cover a range of behaviors that are desirable in dif- visible outside the transaction until this point.
ferent situations. It is reasonable to provide them all in one Unlike in the base |anguage, nested transactions are im-
programming language, perhaps with an undecoratan portant; they allow a thread inside a transaction to per-
being a synonym for one of them. For example, the current form multiple heap accesses atomically with respect to other
Fortress specification [2] treagpawn asspawny, butitalso  threads in the transaction. At each level of nesting, we have
has constructs for fork-join style parallelism that our model an explicita to ensure at most one of the threads is in a
could encode witpawn;, inside a transaction. transaction and (because we still have strong isolation) if
The inatomic expression, which as before does not ap- a thread is in a transaction, then no other threads access
pear in source programs, has also changed. In addition tothe heap. However, in the most-nested transaction, parallel
the e whose eventual result is the result of the transaction, threads may access the heap simultaneously. Finally, note
it now carries am and two threadpoolsl,c andTy,. The  that on-commit threads spawned inside nested transactions
a indicates whethee or any of theT}, are currently ex-  do not run until the outermost transaction commits. Other

ecuting a transaction. ThE,. are the threads that will be  possibilities exist, but the soundness of our type-and-effect
produced as “on commit” threads only when the transaction system depends on this choice.

completes. The discussion of the semantics below explains
inatomic further.

A single-thread evaluation step produces three possibly- The language just presented has several error states. These
empty threadpoold;, T,., andT;,. The evaluation rules  include common type errors (e.g., treating an integer as a

3.2 Type System
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Figure 4. Internally Parallel Evaluation Rules (selected rules omitted)

function), performing a top-level spawn inside a transac- like T-CONST, rules likeT-SEQandT-SET can use the same
tion, and performing an internally parallel spawn outside a effect for both subexpressions. For example, we can derive
transaction. We now present a type-and-effect system thatz:ref int;tl - (z := 17;spawn, 42) : int.2 As usual, func-
soundly and conservatively prohibits such errors (Figure 5). tions havdatent effectsmeaning function types carry an ef-
For proving type safety, Section 3.3 extends the type sys-fect that occurs when the function is called. A function itself
tem to run-time states, including expressions with labels and can have any effect, but the effect of its body is included in
inatomic subexpressions. the effect of any call to it (se&-LAMBDA and T-APP). In

The typing judgment’;e - e : 7 means that (1§ has T-APP, the simple subeffect relation allows using a function
type T usingT" to determine the types of variables, and (2) with latent effectf) in a computation with effectl or ip. In
executinge only spawns threads of the flavors allowedsby  practice, we expect most functions type-check under effect

A source prograna type-checks if we can derivetl - e : 7 @, which implies they definitely do not spawn threads. This
for somer. Since (1) is completely standard, we focus on subeffecting allows such functions to be called anywhere.
(2), which is what makes our judgment an effect system. The most interesting rules are for atomic-blocks and

The effect() describes computations that do not spawn spawn expressions. The body of an atomic-block must type-
top-level or internally-parallel threads. It allows on-commit check undeip, but the atomic-block itself is allowed any-
threads; creating them never leads to dynamic errors. Simi-where (thus enabling nested transactions and functions con-
larly, effecttl permits on-commit and top-level threads, and taining atomic-blocks that can be called inside and outside
ip permits on-commit and internally-parallel threads. We do transactions). Because aflawn;, expressions must execute
not have an effect that allows all three flavors of spawn. outside transactions, the effect of the spamd of the inner
Adding this effect is sound but not useful because code thatexpression must bd. By contrast, all expressiorgeated
type-checked only under this most-permissive effect could byspawn,. are evaluated at the top level (requiring effeyt
run safely neither insideor outside a transaction. but it is acceptable to execute the spawn expression itself at

Most aspects of our effect system are standard. Expres-top-level or inside a transaction. Therefore, like for atomic-
sions that do not spawn threads can type-check with anyblocks, we allow the unconstrained effedior spawn,.. Fi-
effect. Values and variables are examples, so, for example,nally, spawn;, requires effecip for the entire expression and
T-coNnsT allows anye. By not requiring effect) in rules

2 A fine alternative is adding an effect-subsumption rule.
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Figure 5. Types and Effects for Source Programs

the spawned expression because both execute only within g1) the heap is well-typedl( - H : I),® and (2) each
transaction. thread type-checks under effeattind the labels in the heap

Note that if our language had expressions other than (T';tl - T'). Note our definition of" now includes types for
spawny that could not occur in transactions (e.g., irreversible labels. Also note when type-checking the heap effects are
I/0), our effect system could statically prevent such errors irrelevant because the heap contains only values and values
in the same way. never spawn threads. The third obligation for a well-typed
state — correct(,7) — is discussed below.

The typing rule for labels is as expected. The typing rule
Type safety means our computation never gets stuck. How-for functions has the new hypothesis not-actye{This is
ever, this does not mean that every thread can always pro-a technical point ensuring that a function body never con-
ceed. For example, when one thread is in a transaction, antains a partially completed transaction. While this is true for
other thread is (temporarily) stuck if its next step is to enter a any state resulting from a source program, it is an invariant
transaction. Therefore, our type-safety theorem claims only that we must establish holds during evaluation. Otherwise, a
that some thread (at least one, possibly many) can alwaysfunction call could lead to a state where two threads were ex-
proceed unless we have properly terminated: ecuting transactions simultaneously. Formal syntax-directed

rules for not-activef) are in the technical report, but as Fig-
Theorem 3.1 Type Safetylf (1) -;tl - e : 7, (2) after ure 7 describes, they simply encode thatmaomic expres-
some number of steps-;e becomes:; H; T, and (3) not sion occurs ire.
all threads inT" are values, then there exists a threath T The typing rule for evaluation inside a transaction has
such thata; H; e can take a single-thread evaluation step.  several subtleties. BecausandT;, evaluate within a trans-
) _action, they must have effegi. Similarly, T,. is not eval-

As usual, we prove this theorem by showing preservation yated until the top level so it must have effettAs with
(any evaluation step from a well-typed state produces awell- 51, nic expressions, the overall effect ipltomic is uncon-
typed state) and progress (no well-typed state is stuck) [25]. girained to allow nesting. As with function bodies, the not-
Doing so requires extending the type system to full run-time yet-running threadg,. must not havénatomic subexpres-
statesa; H; T including the expression forms that do not gjgps.
appear in source programs. This extended system, presented || that remains is to explain the hypotheses coredt
in Figure 6, is only for the purpose of the proof. Proof details 5,4 correct, e||T) for typing program states aridatomic
are in an available technical report [14]; here we sketch the expressions, respectively. These judgments, defined for-
interesting invariants that carefully completing a rigorous mally in the technical report and summarized in Figure 7,

proof reveals. _ _ are essential for showing that eaelis correct —a = o if
To set the stage, most of the extensions are straightfor-

ward. To prove a state is well-typett (a; H;T), we need 3Using[" twice is a technical trick that allows cycles in the heap.

3.3 Type Safety
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Figure 6. Extensions for typechecking internally parallel program state. (See also Figure 7.)

not-activeg)

not-active(")
activeg)
active(l")

e (orT) contains no
inatomic expression.
e (or T') contains exactly 1 non-nested
inatomic expression, and that occurren
is in a “sensible” syntactic position.
(See discussion for more detail.)

(a = o and not-activel))

or (¢ = e and activel))

’ correct@, T)

Figure 7. Active, Not-active, and Correct Atomicity

and only if exactly one thread is in a transaction, and o
if and only if no thread is in a transaction. If this invariant
does not hold, then the machine can be stuck. For example
if @ = e, NO thread is in a transaction, and every thread is
blocked waiting to enter a transaction, then no thread can
proceed. The detailed rules for actiwg(or active(")) re-
quire some care. There must be exactly @meomic ex-
pression ine (or T), not counting possibly nested transac-
tions inside it, and that one outermost transaction must oc-
cur in a thread’s “active position.” For example, we may be
able to show activeéq(inatomic(o, 17, -, -), e)), but we can-
not show activedeq(e, inatomic(o, 17, -, -))). To summarize,
proving progress requires “tight control” over the connec-
tion between each in the program state and the state of
the threads the describes, and this control is specified with
the correct¢,T’) invariant. Proving preservation requires es-
tablishing this invariant after each step, particularly when a
thread enters or exits a transaction.

With the ability to type-check heaps, thread-pools, and
run-time expressions, we can state and prove the following
two lemmas:

Lemma 3.2 ProgressIf - a; H;T, then eitherT is all
values orda’; H', T’ such thatu; H; T — oa'; H'; T".

Lemma 3.3 Preservationlf ' - H : I, I';tl + T,
correct@,T), anda; H;T — a'; H';T’, then there exists
somel” extending’ such thaf™” + A’ : TV, TV;tl - 7", and
correct@’, T7").

Since-;tl - e : 7 implies the initial program state type-
checks (i.e.l- o;-; €), Theorem 3.1 is a corollary to Lemmas
3.2and 3.3.

4. Weak Atomicity

In this section, we revisit the choice in our semantics that if

one thread is executing a transaction, then no other thread
may access the heap. Allowing such accesses is often called
weak atomicity [3], meaning that a data-race between trans-

actional and nontransactional code is allowed to violate the

isolation of the transaction. Itis common in STM implemen-
tations because it can simplify an implementation and/or im-
prove its performance. Intuitively, if no data races can exist
between transactional and non-transactional code, then al-
lowing heap accesses concurrently with transactions does
not lead to any additional behavior. The theorem we state
in this section validates this intuition. Given the subtleties of
race conditions and isolation, it is wise not to rely on intu-
ition alone.

4.1 Operational Semantics

Beginning with the language in Section 2, changing the
semantics to define (one notion of) weak atomicity is as
simple as replacing the rules for reading and writing heap
locations:

SET

a;H;l:=v— a;H,1— v;v;-

GET

a; H;l — a; H; H(); -
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int | refr | 75 7/ states, the rule for labels usB$o determine the for the ac-

T =
t u= tl|ip cessed label, but thisneed not be the same as the effect of
e = t|0 the expression sindecontrols access to the labetentents
I w= -|Dz:7|T,0: (1) As in the previous section, this extended type system is only
for proof purposes; the partition and annotations are entirely
Figure 8. Weak Atomicity Syntax (extends Figure 1) conceptual (i.e., types are erasable).

The proofs of preservation and progress for this language
are actually simpler than the proofs for internal parallelism.
Type safety is necessary for the equivalence result we dis-
cuss next. That result is the primary reason we defined the
partition-enforcing effect system.

That is,o is no longer required for heap accesses (but it is
still required to enter a transaction).

This modified “weak” language clearly allows every se-
guence of steps the previous “strong” language does (rules

GET andsEeT apply strictly more often), and it allows more. 4.3 Weak/Strong Equivalence Under Partition

For example, from the program state: Our primary result for this language is that any program

o; 1y + 5,y > 6; that type-checks has the same possible behaviors under the
(atomic (seq(ly := 7,11 :=!l5))) semantics in Section 2 and the semantics in this section.
| (I := 4) Formally, letting—? mean O or more steps under the strong

semantics and-} mean 0 or more steps under the weak
the weak language allows a sequence of steps where th&emantics we have:

final value inl; is 4. Therefore, the two languages are not

equivalent, but there are still many programs for which they Theorem 4.1 Equivalencelf -;tl - e : 7, theno; ;e —
are (i.e., any result possible in one language is possible in. r7. 7 if and only ifo; -; e —* a: H;T.

the other). In particular, it is intuitive that for a program

to distinguish the two semantics it must have thread-shared In fact, the equivalence is stronger; the two semantics can
mutable data that is accessed inside and outside transactiongaroduce the same states using the same number of steps.
We now define a type system that allows only programs for One direction of the proof is trivial because any sequence
which the two languages are equivalent. of transitions under the strong semantics is also a sequence
of transitions under the weak semantics. The other direction
(given a weak transition sequence, produce a strong transi-
We use a type system to enforce the partition in which eachtion sequence) is much more interesting. Space constraints
memory location can be accessed outside transactions orequire only a high-level description but the full proof is
inside transactions but not both. The syntax for types is available [14].

in Figure 8. For source programs, the only difference isthat We can strengthen the induction hypothesis as follows:
reference types now carry an annotation indicating a side of If the weak semantics can produaeH ;T after n steps,

a partition. For example, rgfrefyint) can be the type of an  then the strong semantics can producéf; T in n steps.
expression that produces a label that can be accessed (read dforeover, ifa = e, then the strong semantics can produce
written) inside transactions and that contains a label that cana; H; T in n steps using a sequence where a suffix of the se-
be accessed outside transactions (and the pointed-to labetjuence is the active thread entering the transaction and then
contains an integer). Notice pointers from one side of the taking some number of stepgthout steps from any other
partition to the other are allowed. Continuing our example, threads interleavedin other words, the current transaction

£
S

4.2 Effect System for Ensuring Serializability

if « has type ref(refyint), then(atomic (!z)) := 42 would could have run serially at the end of the sequence.

type-check. To maintain this stronger invariant the interesting case is
Our typing judgment has the same form as befbre, - when the next step under the weak semantics is done by

e : 7, meaninge has typer and effecte wheree beingip, a thread not in the transaction. A key lemma lets us per-

tl, or @ meanse is safe inside transactions, outside trans- mute this non-transactional step to the position in the strong-
actions, or anywhere, respectively. In fact, except for disal- semantics sequence just before the current transaction began,
lowing spawn,. e andspawn;, e, most of the typing rules  and the ability to permute like this without affecting the re-
are identical to those in our previous effect system. The dif- sulting program state depends precisely on the lack of mem-
ferences are in Figure 9. RulesseTandT-GET require the ory conflicts that our type system enforces.

annotation on the reference type to be the same as the overall It is clear that this equivalengaroof relies on notions
effect, which is what enforces the partition on all accesses. similar to classic ideas in concurrent computation such as
Notice ruleT-REF does not require this equality; it is safe serializability and reducibility. Note, however, that tteo-

to allocate an outside-transactions reference inside a transfremis purely in terms of two operational semantics. It says
action and vice-versa. (At allocation-time the new memory that given the type system enforcing a partition, the language
is thread-local.) When extending the type system to run-time defined in Section 2 may be correctly implemented by the
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T-SET T-GET T-REF T-LABEL
I;theq:refir Tithes: T Iithe:refir ILiekbe:T () = (r,t)

Iithepi=eq: 7 itkle:r I';e b refe : refyr ekl refir

Figure 9. Weak Atomicity Typing (omitted rules are the same as in Figure 5)

language defined in Section 4. This result is directly useful spawn;,; they have no analogue of our other spawn flavors
to language implementors and does not require a notion ofnor any notion of an effect system. Formally, they assume

serializability. all code executes within a transaction; there is no notion
) N of weak atomicity. Their run-time state and semantics is, in
4.4 Toward Weaker Isolation and Partition our view, more complicated, with thread identifiers, nested

In practice, many STM implementations have weaker trans- heaps, and traces of actions. While some of this machinery
actional semantics than those presented here. These weakmay be necessary for proving lower-level implementation
nesses arise from explicit rollbacks or commits not present in strategies correct, it is less desirable for a high-level model.
our semantics. For example, if nontransactional code readsAlthough their system and ours have many technical differ-
data written by a partially completed transaction that later ences, the fundamental idea of permuting independent ac-
aborts, the nontransactional thread may have read invalidtions arises (unsurprisingly) in both settings.
data [12, 20]. Our semantics encodes an aborted transaction Second, Harris et al [8] present an operational semantics
as one that never occurred, which means nontransactionafor STM Haskell. Like our work, it is high-level, with no ex-
code can never have done such a read. In future work, weplicit notion of conflicts or commits. Unlike our work, the
intend to define a slightly more complicated semantics that semantics is layered such that an entire transaction occurs
allows a partially completed transaction to nondeterminis- as one step at the outer layer, essentially using a large-step
tically but explicitly roll back its heap changes and begin model for transactions that does not lend itself to investigat-
anew. We conjecture and intend to prove that the Equiva- ing internal parallelism nor weak atomicity. Indeed, they do
lence Theorem holds for this language with no changes to not have internal parallelism and the partition between mu-
the type system. table data accessed inside and outside transactions (enforced
An orthogonal direction is to create a more expressive by the monadic typing) allows them to define strong atomic-
type system by relaxing the partition requirements while ity yet implement weak atomicity. It is not particularly sig-
preserving our equivalence result. For example, thread-localnificant that we enforced a partition with an effect system
or read-only data can be accessed both inside and outsidgather than monads since there are well-known connections
transactions without invalidating equivalence. Another ex- between the two technologies [23]. Rather, our contribution
tension would be “partition polymorphism,” which would is proving that given a partition, strong and weak isolation
allow some functions to take arguments that could point into are indistinguishable.
either side of the partition, depending on the call-site. This  Third, Wojciechowski [24] proves isolation for a formal
extension would require type-level variables that range over language where transactions with internal parallelism (called

effects. tasks in the work) explicitly acquire locks before accessing
data and the beginning of the task must declare all the locks it
5. Related Work might acquire. Explicit locking and version counters leads to

a lower-level model and an effect system that is an extension
of lock types [4]. The main theorem is essentially proving
The work most closely related to ours uses operational se-a particular low-level rollback-free transaction mechanism
mantics to define various aspects of transactions. All work correct.

we are aware of has significantly different foci and tech-  Finally, Liblit [13] gives an operational semantics for the
niques. hardware-based LogTM [15]. This assembly language is at

First, Jagannathan et al [11, 22] use a variant of Feath-a much lower level. It has neither internal parallelism nor
erweight Java [10] to define a framework in which different \weak atomicity.

transactional implementations (such as versioning or two-
phase locking) can be embedded and proven correct by es
tablishing a serializability result. They support internally Many recent proposals for transactions in programming lan-
parallel transactions by requiring each thread in the trans-guages either do not discuss the effect of spawning inside
action to execute a commit statement before the transactiona transaction or make it a dynamic error. In other words, to
is complete. This is most similar but not identical to our the extent it is considered, the most common flavor appears

5.1 Operational Semantics

5.2 Unformalized Languages

9 TRANSACT 2007



to bespawny. When designing the AtomCaml system [18], e Incorporate open-nesting into our model and define suf-
we felt thatspawn,. would feel natural to users. As a result, ficient conditions under which open-nesting is “safe” in
spawn on commit was selected as a reasonable method for the sense that other threads cannot determine that a trans-
creating new threads while executing a transaction. The Ve-  action aborted.

nari system for ML [7] had something closedgawn,, but

it was up to the programmer to acquire locks explicitly in the
style pioneered by Moss [16].

Weak atomicity has primarily been considered for its
surprising pitfalls, including its incomparability with strong
atomicity [3] and situations in which it leads to isolation
violations that corresponding lock-based code does not [12,
9, 20]. It is widely believed that all examples of the latter
require violating the partition property we considered in
Section 4, which is why we plan to prove this result for
various definitions of weak atomicity.

e Combine our extensions for internal parallelism and
weak atomicity. The operational semantics is trivial, but
itis unclear if we can define a notion of memory partition
that makes sense with nested internally parallel transac-
tions.

¢ Define a semantics with a weaker memory model. Im-
plicit in our current semantics is sequential consistency,
which makes our semantics ill-suited to investigating
troubling questions about relaxed memory models and
transactions [6].
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