
High-Level Small-Step Operational Semantics for Transactions

Katherine F. Moore Dan Grossman

University of Washington

{kfm, djg}@cs.washington.edu

Abstract
A high-level operational semantics for transactions can give
transactions a precise meaning in the context of a program-
ming language without exposing any details about how
transactions are implemented. Such semantics give program-
mers a simple model and serve as a correctness criterion for
transactional-memory implementations. This paper presents
such a semantics for a simpleλ-calculus with shared mem-
ory, threads, and transactions.

We use our approach to investigate two important aspects
of a transactional programming language, namely spawning
new threads (in particular, its interaction with transactions)
and strong versus weak atomicity. For the former, we present
a sound type system that ensures different ways of spawning
threads are used correctly. For the latter, we use a different
type system to prove the widely-held belief that if each
mutable memory location is used outside transactions or
inside transactions (but not both), then strong and weak
atomicity are indistinguishable.

1. Introduction
A primary reason to add transactions to programming lan-
guages is that doing so makes it easier to reason about the be-
havior of shared-memory multithreaded programs. For such
reasoning to be precise and well-founded, our languages
need rigorous semantic definitions. Oversimplified, informal
descriptions such as, “a transaction appears to happen all-
at-once to other threads” are insufficient for deciding what
programs mean, what programming idioms are correct, and
what implementation strategies are meaning-preserving. Be-
causeoperational semantics, in which languages are defined
by judgments that reduce programs to simpler programs, is
an expressive, convenient, rigorous, and well-understood ap-
proach, we advocate its use for defining transactions, resolv-
ing semantic subtleties, and proving properties of transac-
tional languages. This paper presents our first results from
pursuing this agenda.

Our goals are to formalize the simple “all-at-once” idea
underlying transactions and prove properties about how this
concept interacts with other language features. Therefore,
our formal languages give a semantic definition to transac-
tions at a very high level, essentially enforcing that a running

transaction has exclusive access to the shared-memory heap.
That this basic approach is simple is a good thing; it corre-
sponds exactly to why transactions simplify reasoning about
programs. We do not want language definitions in terms of
transactional-memory implementations. On the other hand,
we do not simplify to the point that an entire transaction ex-
ecutes as one computational step since doing so abstracts
away so much that it is not clear how to add interesting fea-
tures such an internal parallelism (multiple threads within
a transaction) or weak atomicity (nontransctional memory
accesses that conflict with a transaction). As discussed in
Section 5, this places our approach between prior work that
was more suitable for proving implementations of transac-
tions correct at the expense of simplicity [11, 22] and work
that took the transactions-in-one-step approach that does not
extend well to other features [8].

After presenting a basic language in the next section,
we investigate two nontrivial extensions and prove appro-
priate results. (Full proofs are in a companion technical re-
port [14].) First, we consider three possibilities for what it
means to spawn a thread during a transaction and formal-
ize all three in one language. A sound type-and-effect sys-
tem classifies what code can run only in transactions, only
outside transactions, or anywhere, thereby ensuring that no
form of spawn occurs where it cannot execute successfully.
Second, we present a language that lets code outside transac-
tions access the heap while another thread executes a trans-
action. We prove thatif all mutable memory is partitioned
such that a location is accessed only outside or only inside
transactions, then this weaker semantics is indistinguishable
from the stronger one. While this result is not surprising, it is
reassuring given the subtle pitfalls of nontransactional code
bypassing transactional mechanisms [3, 12, 9, 20, 6, 21].
Moreover, we believe the structure of the proof will shed in-
sight into how to prove that more sophisticated (and less ob-
viously correct) invariants than a simple partition of memory
are also correct.

2. Basic Formal Language
This section presents the syntax and small-step operational
semantics for aλ-calculus with threads, shared memory, and
transactions. It is primarily a starting point for the additions
and type systems in the subsequent two sections, which

1 TRANSACT 2007

e ::= c | x | λx.e | e1 e2 | seq(e1, e2)
| e1 := e2 | refe |!e
| spawntl e | atomic e
| l | inatomic(e)

v ::= c | λx.e | l
H ::= · | H, l 7→ v
T ::= · | T ‖ e
a ::= ◦ | •

Figure 1. Base Syntax

investigate internal parallelism and weak atomicity. Three
key design decisions characterize our approach:

• The semantics ishigh-level. It relies on implicit nondeter-
minism to find a successful execution sequence. There is
no notion of transactions conflicting or aborting. Rather, a
transaction is always isolated from other threads because
no thread may access shared memory if another thread
is in a transaction. This simple semantics provides a cor-
rectness criterion for more realistic implementations and
a simple model for programmers.

• The semantics issmall-step. In particular, transactions
take many computational steps to complete. While this
decision is an unnecessary complication for the basic
language, it is essential for considering the additional
thread interleavings that internal parallelism and weak
atomicity introduce.

• The semantics isstrong. Nontransactional code cannot
observe or influence partially completed transactions.
This lets us prove in Section 4 that strong-isolation se-
mantics is equivalent to weak-isolation semantics under
certain conditions. One cannot do such a proof without
defining both semantics.

Our language does not have an explicit abort/retry. It
is easy to add as in prior work [8] by simply having no
evaluation rule for it: A transaction that aborts is simply one
that can never be chosen by the nondeterministic semantics.
However, it would complicate stating type-safety since we
would have to accommodate an abort making a thread stuck.

2.1 Syntax

Figure 1 presents the formal abstract syntax for our small
transactional language. Most expression forms are typical
for a λ-calculus with mutable references, including con-
stants (c), variables (x), functions (λx.e), function applica-
tions (e1 e2), sequential composition (seq(e1, e2)), mem-
ory allocation (refe), assignment (e1:=e2), and derefer-
ence (!e). Many omitted constructs, such as records, would
be straightforward additions. In addition, we have thread-
creation (spawntl e), where thetl reminds us that threads
must be created at top-level (not within a transaction), and
atomic-blocks (atomic e) for executinge as a transaction.

A program state has the forma;H;T wherea indicates
if any thread is currently executing a transaction (a = • for
yes anda = ◦ for no), H is the mutable heap (a mapping
from labels, also known as addresses, to values), andT is a
collection of threads. Each thread is just an expression. We
useT1 ‖ T2 to combine two thread collections into a larger
one, and we assume‖ is commutative, associative, and has·
(the empty collection) as an identity. We writee in place of
· ‖ e where convenient.

At run-time we need two new expression forms, labels
(l) and inatomic(e). The former represents a heap location.
The latter represents a partially completed transaction with
remaining computatione.

The program-state componenta deserves additional dis-
cussion. Oursemanticsallows at most one thread to exe-
cute a transaction at a time. In essencea is like a “global
lock” where• indicates the lock is held. This isnot to sug-
gest our language is a desirable implementation, but it is the
high-level semantics that enforces atomicity and isolation.
We would like an efficient implementation to becorrect if,
by definition, it is equivalent to our semantics. (Correctness
should also involve some notion of fairness, but we do not
consider that in this work.)

2.2 Operational Semantics

Our small-step operational semantics rewrites one pro-
gram statea;H;T to anothera′;H ′;T ′. Source program
e starts with◦; ·; e and a terminal configuration has the form
◦;H; v1 ‖ ... ‖ vn, i.e., all threads are values (and no trans-
action is active). Although the source program contains only
a singlee, the evaluation ofe can spawn threads, which can
spawn more threads, etc.

The rule PROGRAM chooses a thread nondeterministi-
cally and that thread takes a single step, which can affect
a and H as well as possibly create a new thread. So the
judgment form for single-thread evaluation isa;H; e →
a′;H ′; e′;T , whereT is · if the step does not spawn a thread
and somee′′ if it does.

For conciseness, we use evaluation contexts (E) to iden-
tify where subexpressions are recursively evaluated and a
single rule (CONTEXT) for propagating changes from eval-
uating the subexpression.1 As usual, the inductive definition
of E describes expressions with exactly one hole[·] andE[e]
means the expression resulting from replacing the hole in
E with e. So, for example, we can useCONTEXT to derive
a;H; ref(seq(e1, e2)) → a′;H ′; ref(seq(e′1, e2));T if we
can derivea;H; e1 → a′;H ′; e′1;T .

Rules for reducing sequences, memory allocations, and
function calls are entirely conventional. InAPPLY, e[v/x]
means the capture-avoiding substitution ofv for x in e.

The rules for reading and writing labels (SETandGET) re-
quirea = ◦, meaning no other thread is currently executing

1 We do not treat the body of a transaction as an evaluation context precisely
because we do not use the samea anda′ for the subevaluation.

2 TRANSACT 2007

a;H; e → a′;H ′; e′;T

E ::= [·] | seq(E, e) | E := e | l := E | refE | !E | E e | v E

CONTEXT

a;H; e → a′;H ′; e′;T
a;H;E[e] → a′;H ′;E[e′];T

SEQ

a;H; seq(v, e2) → a;H; e2; ·

APPLY

a;H; (λx.e) v2 → a;H; e[v2/x]; ·

ALLOC

l 6∈ Dom(H)
a;H; refv → a;H, l 7→ v; l; ·

SET

◦;H; l := v → ◦;H, l 7→ v; v; ·

GET

◦;H; !l → ◦;H;H(l); ·

SPAWN TL

a;H; spawntl e → a;H; 0; e

ENTER ATOMIC

◦;H; atomic e → •;H; inatomic(e); ·

EXIT ATOMIC

•;H; inatomic(v) → ◦;H; v; ·

INATOMIC

a;H; e → a′;H ′; e′; ·
•;H; inatomic(e) → •;H ′; inatomic(e′); ·

a;H;T → a′;H ′;T ′

PROGRAM

a;H; e → a′;H ′; e′;T ′

a;H;TA ‖ e ‖ TB → a′;H ′;TA ‖ e′ ‖ TB ‖ T ′

Figure 2. Evaluation Rules

a transaction. This encodes a high-level definition of strong
isolation; it prohibits any memory conflict with a transaction.
If no thread is in a transaction, then any thread may read and
write the heap. We explain below how ruleINATOMIC lets
the computation within a transaction access the heap.

The rules defining how an expression enters or exits a
transaction are of particular interest because they affecta.
A thread can enter a transaction only ifa = ◦ (elseENTER

ATOMIC does not apply), and it changesa to•. Doing so pre-
vents another thread from entering a transaction untilEXIT

ATOMIC (applicable only if the computation is finished, i.e.,
some valuev) changesa back to◦.

A transaction itself must be able to access the heap
(which, as discussed above, requiresa = ◦) and execute
nested atomic expressions (which requires◦ for entry and•
for exit), buta is • while a transaction is executing. That is
why the hypothesis in ruleINATOMIC allows anya anda′

for the evaluation of thee inside the transaction. That way,
the• in the program state•;H; inatomic(e) constrains only
theother threads; the evaluation ofe can choose anya and
a′ necessary to take a step. If we requireda anda′ to be
◦, thene could access the heap but it could not evaluate a
nested atomic block. In the next section, internal parallelism
requires a more general technique.

Note ruleINATOMIC ensures a transaction does not spawn
a thread (the hypothesis must produce thread-pool·), which

encodes that all spawns must occur at top-level. An expres-
sion like inatomic(spawntl e) is always stuck; there is noa
andH with which it can take a step.

2.3 Type System

We could present a type system for this basic language, but
most of the errors it would prevent are the standard ones
(e.g., using an integer as a function). The only non-standard
“stuck state” in our language so far occurs when a thread
attempts to perform a spawn inside a transaction. The type-
and-effect system presented in Section 3 prevents this error.

3. Internal Parallelism
While one reasonable semantics for spawn is that it is an
error for it to occur in a transaction, there are several reasons
to allow other possibilities. First, there is no conceptual
problem with treating isolation and parallelism as orthogonal
issues [16, 7, 11]. Second, ife spawns a thread (perhaps
inside a library), thene and atomic e behave differently.
Third, for some computations it may be sensible to delay
any spawned threads until a transaction commits, and doing
so is not difficult to implement. Fourth, it is undesirable to
forfeit the performance benefits of parallelism every time we
need to isolate a computation from some other threads.

This last issue becomes more important as the number
of processors increases; otherwise transactions become a

3 TRANSACT 2007

e ::= . . . | spawnoc e | spawnip e
| inatomic(a, e, Toc , Tip)

τ ::= int | ref τ | τ
ε→ τ ′

ε ::= tl | ip | ∅
Γ ::= · | Γ, x : τ

Figure 3. Internal Parallelism Syntax (extends Figure 1)

sequential bottleneck. For example, consider a concurrent
hashtable with insert, lookup, and resize operations. Resize
operations may be relatively rare and large yet still need
to be isolated from other threads to avoid the complexities
of concurrent operations. By parallelizing the resize opera-
tion while maintaining its isolation, we preserve correctness
without allowing sequential resize operations to dominate
performance.

In the rest of this section, we extend our formal language
to show that different flavors of thread-spawn have reason-
able semantics and a type-and-effect system can ensure the
different flavors are used sensibly. Efficiently implementing
parallelism within transactions is beyond the focus of our
present work.

3.1 Syntax and Operational Semantics

Figure 3 presents the new syntax and Figure 4 presents the
changes to the operational semantics.

The syntax additions are two new flavors of spawn ex-
pressions,spawnoc (for “on commit”) andspawnip (for “in-
ternal parallelism”). The former is allowed to occur any-
where, but if it occurs inside a transaction, the spawned
thread does not run until after the transaction commits. If
the transaction aborts, the spawned thread never runs. The
latter is allowed only within a transaction and the transaction
does not commit until the spawned thread completes execut-
ing (i.e., becomes a value). One could certainly devise addi-
tional flavors of spawn; we believe these two new ones and
spawntl cover a range of behaviors that are desirable in dif-
ferent situations. It is reasonable to provide them all in one
programming language, perhaps with an undecoratedspawn
being a synonym for one of them. For example, the current
Fortress specification [2] treatsspawn asspawntl, but it also
has constructs for fork-join style parallelism that our model
could encode withspawnip inside a transaction.

The inatomic expression, which as before does not ap-
pear in source programs, has also changed. In addition to
the e whose eventual result is the result of the transaction,
it now carries ana and two threadpools,Toc andTip . The
a indicates whethere or any of theTip are currently ex-
ecuting a transaction. TheToc are the threads that will be
produced as “on commit” threads only when the transaction
completes. The discussion of the semantics below explains
inatomic further.

A single-thread evaluation step produces three possibly-
empty threadpoolsTtl , Toc , andTip . The evaluation rules

for the three flavors of spawn each put the new thread in the
appropriate pool with the other pools empty. TheCONTEXT

rule propagates all three threadpools out to evaluation of the
larger expression. Other rules, like those for assignment, se-
quences, function application, etc., only change by produc-
ing three empty pools instead of one. The rule for sequences
has been included as an example.

The PROGRAM rule requires that the thread chosen for
evaluation produces an emptyTip , whereasTtl andToc are
added to the global pool of threads. In other words, it is an
error to create an “internally parallel” thread outside a trans-
action and other flavors of threads are spawned immediately.

In a manner similar to the base language, entering a trans-
action changes◦ to •, does not change the heap and creates
no threads. The resulting expressioninatomic(◦, e, ·, ·) is a
transaction with no nested transaction (hence the◦), no de-
layed threads (the first·) and no internally parallel threads
(the second·).

For a transactioninatomic(a, e, Toc , Tip), eithere or any
thread inTip can take a step, usingINATOMIC DISTIN -
GUISHED or INATOMIC PARALLEL , respectively. The only
reason to distinguishe is so inatomic produces a result; in
languages where the body is a statement that produces no
result we could combine these two rules. In either case, we
recursively evaluate the thread usinga and producing ana′,
H ′, e′, T ′

oc , andT ′
ip . As in the base language, evaluation in-

side a transaction may not spawn a toplevel thread. Thea′,
T ′
oc , andT ′

ip are all added to the resulting expression, i.e.,
they are part of the new state of the transaction. In particu-
lar, note that parallel threads in the transaction may produce
other parallel or on-commit threads. Any heap changes are
propagated outward immediately, which is no problem be-
cause the outer state is•.

A transaction is complete when the distinguished expres-
sion and all parallel threads are values. RuleEXIT ATOMIC

then propagates out all the on-commit threads in a single
step. Notice that a transaction never produces any threads
visible outside the transaction until this point.

Unlike in the base language, nested transactions are im-
portant; they allow a thread inside a transaction to per-
form multiple heap accesses atomically with respect to other
threads in the transaction. At each level of nesting, we have
an explicit a to ensure at most one of the threads is in a
transaction and (because we still have strong isolation) if
a thread is in a transaction, then no other threads access
the heap. However, in the most-nested transaction, parallel
threads may access the heap simultaneously. Finally, note
that on-commit threads spawned inside nested transactions
do not run until the outermost transaction commits. Other
possibilities exist, but the soundness of our type-and-effect
system depends on this choice.

3.2 Type System

The language just presented has several error states. These
include common type errors (e.g., treating an integer as a

4 TRANSACT 2007

a;H; e → a′;H ′; e′;Ttl ;Toc ;Tip

CONTEXT

a;H; e → a′;H ′; e′;Ttl ;Toc ;Tip

a;H;E[e] → a′;H ′;E[e′];Ttl ;Toc ;Tip

SEQ

a;H; seq(v, e2) → a;H; e2; ·; ·; ·

SPAWN TL

a;H; spawntl e → a;H; 0; e; ·; ·

SPAWN OC

a;H; spawnoc e → a;H; 0; ·; e; ·

SPAWN IP

a;H; spawnip e → a;H; 0; ·; ·; e

ENTER ATOMIC

◦;H; atomic e → •;H; inatomic(◦, e, ·, ·); ·; ·; ·

EXIT ATOMIC

•;H; inatomic(◦, v, Toc , (v1 ‖ . . . ‖ vn)) → ◦;H; v; ·;Toc ; ·

INATOMIC DISTINGUISHED

a;H; e → a′;H ′; e′; ·;T ′
oc ;T

′
ip

•;H; inatomic(a, e, Toc , Tip) → •;H ′; inatomic(a′, e′, (Toc ‖ T ′
oc), (Tip ‖ T ′

ip)); ·; ·; ·

INATOMIC PARALLEL

a;H; e → a′;H ′; e′; ·;T ′
oc ;T

′
ip

•;H; inatomic(a, e0, Toc , (Tip ‖ e ‖ T ′′
ip)) → •;H ′; inatomic(a′, e0, (Toc ‖ T ′

oc), ((Tip ‖ e′ ‖ T ′′
ip) ‖ T ′

ip)); ·; ·; ·

a;H;T → a′;H ′;T ′

PROGRAM

a;H; e → a′;H ′; e′;Ttl ;Toc ; ·
a;H;TA ‖ e ‖ TB → a′;H ′;TA ‖ e′ ‖ TB ‖ Ttl ‖ Toc

Figure 4. Internally Parallel Evaluation Rules (selected rules omitted)

function), performing a top-level spawn inside a transac-
tion, and performing an internally parallel spawn outside a
transaction. We now present a type-and-effect system that
soundly and conservatively prohibits such errors (Figure 5).
For proving type safety, Section 3.3 extends the type sys-
tem to run-time states, including expressions with labels and
inatomic subexpressions.

The typing judgmentΓ; ε ` e : τ means that (1)e has
type τ usingΓ to determine the types of variables, and (2)
executinge only spawns threads of the flavors allowed byε.
A source programe type-checks if we can derive·; tl ` e : τ
for someτ . Since (1) is completely standard, we focus on
(2), which is what makes our judgment an effect system.

The effect∅ describes computations that do not spawn
top-level or internally-parallel threads. It allows on-commit
threads; creating them never leads to dynamic errors. Simi-
larly, effecttl permits on-commit and top-level threads, and
ip permits on-commit and internally-parallel threads. We do
not have an effect that allows all three flavors of spawn.
Adding this effect is sound but not useful because code that
type-checked only under this most-permissive effect could
run safely neither insidenor outside a transaction.

Most aspects of our effect system are standard. Expres-
sions that do not spawn threads can type-check with any
effect. Values and variables are examples, so, for example,
T-CONST allows anyε. By not requiring effect∅ in rules

like T-CONST, rules likeT-SEQandT-SET can use the same
effect for both subexpressions. For example, we can derive
x:ref int; tl ` (x := 17; spawntl 42) : int.2 As usual, func-
tions havelatent effects, meaning function types carry an ef-
fect that occurs when the function is called. A function itself
can have any effect, but the effect of its body is included in
the effect of any call to it (seeT-LAMBDA and T-APP). In
T-APP, the simple subeffect relation allows using a function
with latent effect∅ in a computation with effecttl or ip. In
practice, we expect most functions type-check under effect
∅, which implies they definitely do not spawn threads. This
subeffecting allows such functions to be called anywhere.

The most interesting rules are for atomic-blocks and
spawn expressions. The body of an atomic-block must type-
check underip, but the atomic-block itself is allowed any-
where (thus enabling nested transactions and functions con-
taining atomic-blocks that can be called inside and outside
transactions). Because allspawntl expressions must execute
outside transactions, the effect of the spawnandof the inner
expression must betl. By contrast, all expressionscreated
byspawnoc are evaluated at the top level (requiring effecttl),
but it is acceptable to execute the spawn expression itself at
top-level or inside a transaction. Therefore, like for atomic-
blocks, we allow the unconstrained effectε for spawnoc. Fi-
nally, spawnip requires effectip for the entire expression and

2 A fine alternative is adding an effect-subsumption rule.

5 TRANSACT 2007

ε ≤ ε′

REFLEXIVE

ε ≤ ε

EMPTY

∅ ≤ ε

Γ; ε ` e : τ

T-CONST

Γ; ε ` c : int

T-VAR

Γ; ε ` x : Γ(x)

T-SEQ

Γ; ε ` e1 : τ1 Γ; ε ` e2 : τ2

Γ; ε ` seq(e1, e2) : τ2

T-SET

Γ; ε ` e1 : ref τ Γ; ε ` e2 : τ

Γ; ε ` e1 := e2 : τ

T-REF

Γ; ε ` e : τ

Γ; ε ` refe : ref τ

T-GET

Γ; ε ` e : ref τ

Γ; ε ` !e : τ

T-LAMBDA

Γ, x : τ1; ε′ ` e : τ2

Γ; ε ` λx.e : τ1
ε′

→ τ2

T-APP

Γ; ε ` e1 : τ1
ε′

→ τ2 Γ; ε ` e2 : τ1 ε′ ≤ ε

Γ; ε ` e1 e2 : τ2

T-ATOMIC

Γ; ip ` e : τ

Γ; ε ` atomic e : τ

T-SPAWN-TL

Γ; tl ` e : τ

Γ; tl ` spawntl e : int

T-SPAWN-OC

Γ; tl ` e : τ

Γ; ε ` spawnoc e : int

T-SPAWN-IP

Γ; ip ` e : τ

Γ; ip ` spawnip e : int

Figure 5. Types and Effects for Source Programs

the spawned expression because both execute only within a
transaction.

Note that if our language had expressions other than
spawntl that could not occur in transactions (e.g., irreversible
I/O), our effect system could statically prevent such errors
in the same way.

3.3 Type Safety

Type safety means our computation never gets stuck. How-
ever, this does not mean that every thread can always pro-
ceed. For example, when one thread is in a transaction, an-
other thread is (temporarily) stuck if its next step is to enter a
transaction. Therefore, our type-safety theorem claims only
that some thread (at least one, possibly many) can always
proceed unless we have properly terminated:

Theorem 3.1 Type SafetyIf (1) ·; tl ` e : τ , (2) after
some number of steps◦; ·; e becomesa;H;T , and (3) not
all threads inT are values, then there exists a threade in T
such thata;H; e can take a single-thread evaluation step.

As usual, we prove this theorem by showing preservation
(any evaluation step from a well-typed state produces a well-
typed state) and progress (no well-typed state is stuck) [25].
Doing so requires extending the type system to full run-time
statesa;H;T including the expression forms that do not
appear in source programs. This extended system, presented
in Figure 6, is only for the purpose of the proof. Proof details
are in an available technical report [14]; here we sketch the
interesting invariants that carefully completing a rigorous
proof reveals.

To set the stage, most of the extensions are straightfor-
ward. To prove a state is well-typed (` a;H;T), we need

(1) the heap is well-typed (Γ ` H : Γ),3 and (2) each
thread type-checks under effecttl and the labels in the heap
(Γ; tl ` T). Note our definition ofΓ now includes types for
labels. Also note when type-checking the heap effects are
irrelevant because the heap contains only values and values
never spawn threads. The third obligation for a well-typed
state — correct(a,T) — is discussed below.

The typing rule for labels is as expected. The typing rule
for functions has the new hypothesis not-active(e). This is
a technical point ensuring that a function body never con-
tains a partially completed transaction. While this is true for
any state resulting from a source program, it is an invariant
that we must establish holds during evaluation. Otherwise, a
function call could lead to a state where two threads were ex-
ecuting transactions simultaneously. Formal syntax-directed
rules for not-active(e) are in the technical report, but as Fig-
ure 7 describes, they simply encode that noinatomic expres-
sion occurs ine.

The typing rule for evaluation inside a transaction has
several subtleties. Becausee andTip evaluate within a trans-
action, they must have effectip. Similarly, Toc is not eval-
uated until the top level so it must have effecttl. As with
atomic expressions, the overall effect ofinatomic is uncon-
strained to allow nesting. As with function bodies, the not-
yet-running threadsToc must not haveinatomic subexpres-
sions.

All that remains is to explain the hypotheses correct(a,T)
and correct(a, e‖T) for typing program states andinatomic
expressions, respectively. These judgments, defined for-
mally in the technical report and summarized in Figure 7,
are essential for showing that eacha is correct —a = • if

3 UsingΓ twice is a technical trick that allows cycles in the heap.

6 TRANSACT 2007

Γ; ε ` e : τ , additions and changes

Γ ::= . . . | Γ, l : τ
T-LABEL

Γ(l) = τ

Γ; ε ` l : ref τ

T-LAMBDA

Γ, x : τ ; ε′ ` e : τ2 not-active(e)

Γ; ε ` λx.e : τ1
ε′

→ τ2

T-INATOMIC

Γ; ip ` e : τ Γ; tl ` Toc Γ; ip ` Tip not-active(Toc) correct(a, e ‖ Tip)
Γ; ε ` inatomic(a, e, Toc , Tip) : τ

Γ ` H : Γ′ Γ; ε ` T ` a;H;T

Γ ` · : ·
Γ ` H : Γ′ Γ; ε ` v : τ

Γ ` H, l 7→ v : Γ′, l : τ Γ; ε ` ·
Γ; ε ` T Γ; ε ` e : τ

Γ; ε ` T ‖ e

Γ ` H : Γ Γ; tl ` T correct(a, T)
` a;H;T

Figure 6. Extensions for typechecking internally parallel program state. (See also Figure 7.)

not-active(e) e (or T) contains no
not-active(T) inatomic expression.

active(e) e (or T) contains exactly 1 non-nested
active(T) inatomic expression, and that occurrence

is in a “sensible” syntactic position.
(See discussion for more detail.)

correct(a, T) (a = ◦ and not-active(T))
or (a = • and active(T))

Figure 7. Active, Not-active, and Correct Atomicity

and only if exactly one thread is in a transaction, anda = ◦
if and only if no thread is in a transaction. If this invariant
does not hold, then the machine can be stuck. For example,
if a = •, no thread is in a transaction, and every thread is
blocked waiting to enter a transaction, then no thread can
proceed. The detailed rules for active(e) (or active(T)) re-
quire some care. There must be exactly oneinatomic ex-
pression ine (or T), not counting possibly nested transac-
tions inside it, and that one outermost transaction must oc-
cur in a thread’s “active position.” For example, we may be
able to show active(seq(inatomic(◦, 17, ·, ·), e)), but we can-
not show active(seq(e, inatomic(◦, 17, ·, ·))). To summarize,
proving progress requires “tight control” over the connec-
tion between eacha in the program state and the state of
the threads thea describes, and this control is specified with
the correct(a,T) invariant. Proving preservation requires es-
tablishing this invariant after each step, particularly when a
thread enters or exits a transaction.

With the ability to type-check heaps, thread-pools, and
run-time expressions, we can state and prove the following
two lemmas:

Lemma 3.2 ProgressIf ` a;H;T , then eitherT is all
values or∃a′;H ′, T ′ such thata;H;T → a′;H ′;T ′.

Lemma 3.3 Preservation If Γ ` H : Γ, Γ; tl ` T ,
correct(a, T), and a;H;T → a′;H ′;T ′, then there exists
someΓ′ extendingΓ such thatΓ′ ` H ′ : Γ′, Γ′; tl ` T ′, and
correct(a′, T ′).

Since ·; tl ` e : τ implies the initial program state type-
checks (i.e.,̀ ◦; ·; e), Theorem 3.1 is a corollary to Lemmas
3.2 and 3.3.

4. Weak Atomicity
In this section, we revisit the choice in our semantics that if
one thread is executing a transaction, then no other thread
may access the heap. Allowing such accesses is often called
weak atomicity [3], meaning that a data-race between trans-
actional and nontransactional code is allowed to violate the
isolation of the transaction. It is common in STM implemen-
tations because it can simplify an implementation and/or im-
prove its performance. Intuitively, if no data races can exist
between transactional and non-transactional code, then al-
lowing heap accesses concurrently with transactions does
not lead to any additional behavior. The theorem we state
in this section validates this intuition. Given the subtleties of
race conditions and isolation, it is wise not to rely on intu-
ition alone.

4.1 Operational Semantics

Beginning with the language in Section 2, changing the
semantics to define (one notion of) weak atomicity is as
simple as replacing the rules for reading and writing heap
locations:

SET

a;H; l := v → a;H, l 7→ v; v; ·

GET

a;H; !l → a;H;H(l); ·

7 TRANSACT 2007

τ ::= int | reftτ | τ
ε→ τ ′

t ::= tl | ip
ε ::= t | ∅
Γ ::= · | Γ, x : τ | Γ, l : (τ, t)

Figure 8. Weak Atomicity Syntax (extends Figure 1)

That is,◦ is no longer required for heap accesses (but it is
still required to enter a transaction).

This modified “weak” language clearly allows every se-
quence of steps the previous “strong” language does (rules
GET andSET apply strictly more often), and it allows more.
For example, from the program state:

◦; l1 7→ 5, l2 7→ 6;
(atomic (seq(l2 := 7, l1 :=!l2)))
‖ (l2 := 4)

the weak language allows a sequence of steps where the
final value inl1 is 4. Therefore, the two languages are not
equivalent, but there are still many programs for which they
are (i.e., any result possible in one language is possible in
the other). In particular, it is intuitive that for a program
to distinguish the two semantics it must have thread-shared
mutable data that is accessed inside and outside transactions.
We now define a type system that allows only programs for
which the two languages are equivalent.

4.2 Effect System for Ensuring Serializability

We use a type system to enforce the partition in which each
memory location can be accessed outside transactions or
inside transactions but not both. The syntax for types is
in Figure 8. For source programs, the only difference is that
reference types now carry an annotation indicating a side of
a partition. For example, refip(reftlint) can be the type of an
expression that produces a label that can be accessed (read or
written) inside transactions and that contains a label that can
be accessed outside transactions (and the pointed-to label
contains an integer). Notice pointers from one side of the
partition to the other are allowed. Continuing our example,
if x has type refip(reftlint), then(atomic (!x)) := 42 would
type-check.

Our typing judgment has the same form as before,Γ; ε `
e : τ , meaninge has typeτ and effectε whereε being ip,
tl, or ∅ meanse is safe inside transactions, outside trans-
actions, or anywhere, respectively. In fact, except for disal-
lowing spawnoc e and spawnip e, most of the typing rules
are identical to those in our previous effect system. The dif-
ferences are in Figure 9. RulesT-SET andT-GET require the
annotation on the reference type to be the same as the overall
effect, which is what enforces the partition on all accesses.
Notice ruleT-REF does not require this equality; it is safe
to allocate an outside-transactions reference inside a trans-
action and vice-versa. (At allocation-time the new memory
is thread-local.) When extending the type system to run-time

states, the rule for labels usesΓ to determine thet for the ac-
cessed label, but thist need not be the same as the effect of
the expression sincet controls access to the label’scontents.
As in the previous section, this extended type system is only
for proof purposes; the partition and annotations are entirely
conceptual (i.e., types are erasable).

The proofs of preservation and progress for this language
are actually simpler than the proofs for internal parallelism.
Type safety is necessary for the equivalence result we dis-
cuss next. That result is the primary reason we defined the
partition-enforcing effect system.

4.3 Weak/Strong Equivalence Under Partition

Our primary result for this language is that any program
that type-checks has the same possible behaviors under the
semantics in Section 2 and the semantics in this section.
Formally, letting→∗

s mean 0 or more steps under the strong
semantics and→∗

w mean 0 or more steps under the weak
semantics we have:

Theorem 4.1 EquivalenceIf ·; tl ` e : τ , then◦; ·; e →∗
s

a;H;T if and only if◦; ·; e →∗
w a;H;T .

In fact, the equivalence is stronger; the two semantics can
produce the same states using the same number of steps.
One direction of the proof is trivial because any sequence
of transitions under the strong semantics is also a sequence
of transitions under the weak semantics. The other direction
(given a weak transition sequence, produce a strong transi-
tion sequence) is much more interesting. Space constraints
require only a high-level description but the full proof is
available [14].

We can strengthen the induction hypothesis as follows:
If the weak semantics can producea;H;T after n steps,
then the strong semantics can producea;H;T in n steps.
Moreover, ifa = •, then the strong semantics can produce
a;H;T in n steps using a sequence where a suffix of the se-
quence is the active thread entering the transaction and then
taking some number of stepswithout steps from any other
threads interleaved. In other words, the current transaction
could have run serially at the end of the sequence.

To maintain this stronger invariant the interesting case is
when the next step under the weak semantics is done by
a thread not in the transaction. A key lemma lets us per-
mute this non-transactional step to the position in the strong-
semantics sequence just before the current transaction began,
and the ability to permute like this without affecting the re-
sulting program state depends precisely on the lack of mem-
ory conflicts that our type system enforces.

It is clear that this equivalenceproof relies on notions
similar to classic ideas in concurrent computation such as
serializability and reducibility. Note, however, that thetheo-
rem is purely in terms of two operational semantics. It says
that given the type system enforcing a partition, the language
defined in Section 2 may be correctly implemented by the

8 TRANSACT 2007

Γ; ε ` e : τ

T-SET

Γ; t ` e1 : reftτ Γ; t ` e2 : τ

Γ; t ` e1 := e2 : τ

T-GET

Γ; t ` e : reftτ

Γ; t ` !e : τ

T-REF

Γ; ε ` e : τ

Γ; ε ` refe : reftτ

T-LABEL

Γ(l) = (τ, t)
Γ; ε ` l : reftτ

Figure 9. Weak Atomicity Typing (omitted rules are the same as in Figure 5)

language defined in Section 4. This result is directly useful
to language implementors and does not require a notion of
serializability.

4.4 Toward Weaker Isolation and Partition

In practice, many STM implementations have weaker trans-
actional semantics than those presented here. These weak-
nesses arise from explicit rollbacks or commits not present in
our semantics. For example, if nontransactional code reads
data written by a partially completed transaction that later
aborts, the nontransactional thread may have read invalid
data [12, 20]. Our semantics encodes an aborted transaction
as one that never occurred, which means nontransactional
code can never have done such a read. In future work, we
intend to define a slightly more complicated semantics that
allows a partially completed transaction to nondeterminis-
tically but explicitly roll back its heap changes and begin
anew. We conjecture and intend to prove that the Equiva-
lence Theorem holds for this language with no changes to
the type system.

An orthogonal direction is to create a more expressive
type system by relaxing the partition requirements while
preserving our equivalence result. For example, thread-local
or read-only data can be accessed both inside and outside
transactions without invalidating equivalence. Another ex-
tension would be “partition polymorphism,” which would
allow some functions to take arguments that could point into
either side of the partition, depending on the call-site. This
extension would require type-level variables that range over
effects.

5. Related Work
5.1 Operational Semantics

The work most closely related to ours uses operational se-
mantics to define various aspects of transactions. All work
we are aware of has significantly different foci and tech-
niques.

First, Jagannathan et al [11, 22] use a variant of Feath-
erweight Java [10] to define a framework in which different
transactional implementations (such as versioning or two-
phase locking) can be embedded and proven correct by es-
tablishing a serializability result. They support internally
parallel transactions by requiring each thread in the trans-
action to execute a commit statement before the transaction
is complete. This is most similar but not identical to our

spawnip; they have no analogue of our other spawn flavors
nor any notion of an effect system. Formally, they assume
all code executes within a transaction; there is no notion
of weak atomicity. Their run-time state and semantics is, in
our view, more complicated, with thread identifiers, nested
heaps, and traces of actions. While some of this machinery
may be necessary for proving lower-level implementation
strategies correct, it is less desirable for a high-level model.
Although their system and ours have many technical differ-
ences, the fundamental idea of permuting independent ac-
tions arises (unsurprisingly) in both settings.

Second, Harris et al [8] present an operational semantics
for STM Haskell. Like our work, it is high-level, with no ex-
plicit notion of conflicts or commits. Unlike our work, the
semantics is layered such that an entire transaction occurs
as one step at the outer layer, essentially using a large-step
model for transactions that does not lend itself to investigat-
ing internal parallelism nor weak atomicity. Indeed, they do
not have internal parallelism and the partition between mu-
table data accessed inside and outside transactions (enforced
by the monadic typing) allows them to define strong atomic-
ity yet implement weak atomicity. It is not particularly sig-
nificant that we enforced a partition with an effect system
rather than monads since there are well-known connections
between the two technologies [23]. Rather, our contribution
is proving that given a partition, strong and weak isolation
are indistinguishable.

Third, Wojciechowski [24] proves isolation for a formal
language where transactions with internal parallelism (called
tasks in the work) explicitly acquire locks before accessing
data and the beginning of the task must declare all the locks it
might acquire. Explicit locking and version counters leads to
a lower-level model and an effect system that is an extension
of lock types [4]. The main theorem is essentially proving
a particular low-level rollback-free transaction mechanism
correct.

Finally, Liblit [13] gives an operational semantics for the
hardware-based LogTM [15]. This assembly language is at
a much lower level. It has neither internal parallelism nor
weak atomicity.

5.2 Unformalized Languages

Many recent proposals for transactions in programming lan-
guages either do not discuss the effect of spawning inside
a transaction or make it a dynamic error. In other words, to
the extent it is considered, the most common flavor appears

9 TRANSACT 2007

to bespawntl. When designing the AtomCaml system [18],
we felt thatspawnoc would feel natural to users. As a result,
spawn on commit was selected as a reasonable method for
creating new threads while executing a transaction. The Ve-
nari system for ML [7] had something close tospawnip, but
it was up to the programmer to acquire locks explicitly in the
style pioneered by Moss [16].

Weak atomicity has primarily been considered for its
surprising pitfalls, including its incomparability with strong
atomicity [3] and situations in which it leads to isolation
violations that corresponding lock-based code does not [12,
9, 20]. It is widely believed that all examples of the latter
require violating the partition property we considered in
Section 4, which is why we plan to prove this result for
various definitions of weak atomicity.

5.3 Other Semantics

Operational semantics gives meaning directly to source pro-
grams, which lets us consider how transactions interact with
other language features, consider how a type system restricts
program behavior, and provide a direct model to program-
mers. Other computational models, based on various no-
tions of memory accesses or computation dependencies can
prove useful for investigating properties of transactions. Re-
cent examples include Scott’s work on specifying fairness
and conflicts [19], Agrawal et al’s work on using Frigo and
Luchango’s computation-centric models [5] to give seman-
tics to open nesting [1], and Moss and Hosking’s defini-
tion of open nesting in terms of transactions’ read and write
sets [17].

6. Conclusions and Future Work
We have presented a high-level small-step operational se-
mantics for a programming language with transactions. We
believe this language is (1) a natural way to define trans-
actions in a manner that is precise yet not wed to imple-
mentation techniques, and (2) a starting point for defining
variations that explain features and design choices. We pre-
sented three flavors of thread-spawn and proved sound a
type-and-effect system that prevents spawn expressions from
occurring where they cannot be successful. We also pre-
sented a weak-isolation semantics and proved it equivalent
to the strong-isolation semantics assuming a particular mem-
ory partition. This result confirms that if a programming-
language design can enforce such a partition, then an im-
plementation for that language can use a weak-isolation
transactional-memory system even if the language requires
strong isolation.

In the future, we hope to use our approach to do the
following:

• Prove our memory partition suffices for strong isolation
even if aborted transactions update and then rollback
heap locations.

• Incorporate open-nesting into our model and define suf-
ficient conditions under which open-nesting is “safe” in
the sense that other threads cannot determine that a trans-
action aborted.

• Combine our extensions for internal parallelism and
weak atomicity. The operational semantics is trivial, but
it is unclear if we can define a notion of memory partition
that makes sense with nested internally parallel transac-
tions.

• Define a semantics with a weaker memory model. Im-
plicit in our current semantics is sequential consistency,
which makes our semantics ill-suited to investigating
troubling questions about relaxed memory models and
transactions [6].

References
[1] Kunal Agrawal, Charles E. Leiserson, and Jim Sukha.

Memory models for open-nested transactions. InACM
SIGPLAN Workshop on Memory Systems Performance &
Correctness, 2006.

[2] Eric Allen, David Chase, Joe Hallet, Victor Luchangco, Jan-
Willem Maessen, Sukyoung Ryu, Guy L. Steele Jr., and
Sam Tobin-Hochstadt. The Fortress language specification,
version 1.0β, 2007. http://research.sun.com/projects/plrg/
Publications/fortress1.0beta.pdf.

[3] Colin Blundell, E Christopher Lewis, and Milo M. K. Martin.
Subleties of transactional memory atomicity semantics.
Computer Architecture Letters, 5(2), 2006.

[4] Cormac Flanagan and Martı́n Abadi. Types for safe locking.
In European Symposium on Programming, volume 1576 of
Lecture Notes in Computer Science, 1999.

[5] Matteo Frigo and Victor Luchangco. Computation-centric
memory models. In10th ACM Symposium on Parallel
Algorithms and Architectures, 1998.

[6] Dan Grossman, Jeremy Manson, and William Pugh. What do
high-level memory models mean for transactions? InACM
SIGPLAN Workshop on Memory Systems Performance &
Correctness, 2006.

[7] Nicholas Haines, Darrell Kindred, J. Gregory Morrisett,
Scott M. Nettles, and Jeannette M. Wing. Composing
first-class transactions.ACM Transactions on Programming
Languages and Systems, 16(6):1719–1736, 1994.

[8] Tim Harris, Simon Marlow, Simon Peyton Jones, and
Maurice Herlihy. Composable memory transactions. In
ACM Symposium on Principles and Practice of Parallel
Programming, 2005.

[9] Richard L. Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai,
and Benjamin C. Hertzberg. McRT-Malloc: A scalable
transactional memory allocator. InInternational Symposium
on Memory Management, 2006.

[10] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler.
Featherweight Java: a minimal core calculus for Java and GJ.
ACM Transactions on Programming Languages and Systems,
23(3), May 2001.

10 TRANSACT 2007

[11] Suresh Jagannathan, Jan Vitek, Adam Welc, and Antony L.
Hosking. A transactional object calculus.Science of
Computer Programming, August 2005.

[12] Jim Larus and Ravi Rajwar.Transactional Memory. Morgan
& Claypool Publishers, 2006.

[13] Ben Liblit. An operational semantics for LogTM. Technical
Report 1571, University of Wisconsin–Madison, 2006.

[14] Katherine F. Moore and Dan Grossman. High-level
small-step operational semantics for transactions (techni-
cal companion). Technical report, Univ. of Wash. Dept.
of Computer Science & Engineering, 2007. Available at
http://www.cs.washington.edu/

homes/kfm/atomic proofs.pdf.

[15] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore,
Luke Yen, Mark D. Hill, Ben Liblit, Michael M. Swift, and
David A. Wood. Supporting nested transactional memory in
LogTM. In 12th International Conference on Architectural
Support for Programming Languages and Operating Systems,
2006.

[16] J. Eliot B. Moss. Nested Transactions: An Approach to
Reliable Distributed Computing. The MIT Press, 1985.

[17] J. Eliot B. Moss and Antony L. Hosking. Nested transactional
memory: Model and preliminary architecture sketches.
In Synchronization and Concurrency in Object-Oriented
Languages (SCOOL), 2005.

[18] Michael F. Ringenburg and Dan Grossman. AtomCaml:
First-class atomicity via rollback. In10th ACM International
Conference on Functional Programming, 2005.

[19] Michael L. Scott. Sequential specification of transactional
memory semantics. InWorkshop on Languages, Compil-
ers, and Hardware Support for Transactional Computing
(TRANSACT), 2006.

[20] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai,
Steve Balensiefer, Dan Grossman, Richard Hudson, Kather-
ine F. Moore, and Bratin Saha. Enforcing isolation and
ordering in STM. InACM Conference on Programming
Language Design and Implementation, 2007.

[21] Michael F. Spear, Virendra J. Marathe, Luke Dalessandro,
and Michael L. Scott. Privatization techniques for software
transactional memory. Technical Report 915, Computer
Science Department, University of Rochester, 2007.

[22] Jan Vitek, Suresh Jagannathan, Adam Welc, and Antony L.
Hosking. A semantic framework for designer transactions.
In European Symposium on Programming, volume 2986 of
Lecture Notes in Computer Science, 2004.

[23] Philip Wadler. The marriage of effects and monads. In3rd
ACM International Conference on Functional Programming,
1999.

[24] Pawel T. Wojciechowski. Isolation-only transactions by
typing and versioning. InACM International Conference on
Principles and Practice of Declarative Programming, 2005.

[25] Andrew Wright and Matthias Felleisen. A syntactic approach
to type soundness.Information and Computation, 115(1):38–
94, 1994.

11 TRANSACT 2007

