
Dissecting Transactional Executions in Haskell

Cristian Perfumo+* Nehir Sonmez+* Adrian Cristal+

Osman S. Unsal+ Mateo Valero+* Tim Harris#

+Barcelona Supercomputing Center,
*Computer Architecture Department, Universitat Politècnica de Catalunya, Barcelona, Spain

#Microsoft Research Cambridge
{cristian.perfumo, nehir.sonmez, adrian.cristal, osman.unsal, mateo.valero}@bsc.es tharris@microsoft.com

Abstract
In this paper, we present a Haskell Transactional Memory
benchmark in order to provide a comprehensive application
suite for the use of Software Transactional Memory (STM)
researchers. We develop a framework to profile the execu-
tion of the benchmark applications and to collect detailed
runtime data on their transactional behavior. Using a com-
posite of the collected raw data, we propose new transac-
tional performance metrics. We analyze key statistics rela-
tive to critical regions, transactional log-keeping and overall
transactional overhead and accordingly draw conclusions on
the results of our extensive analysis of the set of applications.
The results advance our comprehension on different charac-
teristics of applications under the transactional management
of the pure functional programming language, Haskell.

Keywords Transactional Memory, Multicores, Haskell,
Concurrent Programming, Transactional Benchmarks

1. Introduction
Research on Transactional Memory (TM) has been done
over more than two decades with different flavors, semantics
and implementations [1, 2, 3]. Even if a lot of intuitive
conclusions can be made after observing execution times and
speedup analysis, it might be useful to look deeper inside
a transactional application execution to extensively inspect
the most relevant characteristics of TM, such as number of
committed transactions, rate of aborts, read and write set
sizes.

Although it is not absolutely necessary, when a pro-
grammer runs her application written under a transactional
paradigm, she might like to know some internal details of the
execution. What is absolutely mandatory is that a researcher
knows very well how the engine works, because she is try-
ing to make observations on some results to eventually make
something faster, better or easier.

As hinted above, in the particular case of Transactional
Memory, some questions arise when an application is ex-
ecuted: Does my application suffer from a a high rollback

rate? Is it spending a lot of time in the commit phase? What
is the overhead that the transactional runtime introduces?
How big are the readset and the writeset? Is there any rela-
tionship between the number of reads and the readset? What
about writes? What is the (transactional) read-to-write ratio?
What would be the trend like with more processors? The aim
of this work is to profile a set of transactional Haskell ap-
plications and to draw conclusions out of the data obtained
from monitoring actual applications. In order to accomplish
this, the Haskell Runtime System (RTS) has been modified
by inserting monitoring probes. Those probes extract appli-
cation runtime data relevant to the software transactional ex-
ecution.

Another motivation for this work is the dearth of Transac-
tional Memory benchmarks. Although several benchmarks
have been developed for future multi- and many-core Chip
Multiprocessors [4, 5, 6], none of the applications in those
benchmarks use Transactional Memory. Pre-TM era Haskell
benchmarks exist [7], and recently a one-application highly-
tunable TM benchmark was developed for imperative lan-
guages: STMBench7 [8]. No TM benchmark exists for
Haskell; an appropiate environment to test new TM ideas
given its small, simple, and easy-to-modify runtime system.
This work addresses this issue.

In particular, the contributions of this paper are as fol-
lows:

• A Haskell STM application suite that can be used as a
benchmark by the research community is presented.

• The Haskell runtime system is instrumented to collect
transactional information such as commit and abort rates,
as well as their runtime overheads on those applications.

• Based on the collected raw transactional information,
new metrics such as wasted time and useful work are de-
rived, which could be used to characterize STM applica-
tions. For example, it is observed that applications can
be classified into subclasses such as low, medium and
high abort-rate, based on clustering the harvested run-
time transactional information. This information could be

1 TRANSACT 2007



used by researchers in future work to test the effective-
ness of their STM ideas.

The rest of this paper is organized as follows: Section
2 gives some background on TM in Haskell, section 3 de-
scribes the applications in the suite, section 4 discusses the
statistics obtained from the instrumentation of the runtime
system and finally section 5 concludes and looks into future
work.

2. Background: Transactional Memory in
Haskell

The Glasgow Haskell Compiler 6.6 (GHC) [9] provides a
compilation and runtime system for Haskell 98 [10], a pure,
lazy, functional programming language. The GHC natively
contains STM functions built into the Concurrent Haskell
library [11], providing abstractions for communicating be-
tween explicitly-forked threads. As Harris et al. state in their
work [12], STM can be expressed elegantly in a declara-
tive language, and moreover, Haskell’s type system (par-
ticularly the monadic mechanism) forces threads to access
shared variables only inside a transaction. This useful re-
striction is more likely to be voilated under other program-
ming paradigms, for example, as a result of access to mem-
ory locations through the use of pointers.

Although the core of the language is very different to
other languages like C# or C++, the actual STM operations
are used in a simple imperative style and the STM imple-
mentation uses the same techniques used in mainstream lan-
guages [12]. STM-Haskell has the attractions that (i) the
runtime system is small, making it easy to make experi-
mental modifications, (ii) the STM support has been present
for some time, leading to a number of example applications
using transactions; indeed, leading to applications which
have been written by “ordinary” programmers rather than
by those who built the STM-Haskell implementation.

STM provides a safe way of accessing shared variables
between concurrently running threads through the use of
monads [1], having only I/O actions in the IO monad and
STM actions in the STM monad. Programming using dis-
tinct STM and I/O actions ensures that only STM actions
and pure computation can be performed within a memory
transaction (which makes it possible to re-execute trans-
actions), whereas only I/O actions and pure computations,
and not STM actions can be performed outside a transac-
tion. This guarantees that TVars cannot be modified with-
out the protection of atomically. This kind of protection
is well known as “strong atomicity”[13]. Moreover, in the
context of Haskell and due to monads, the computations that
have side-effects from the ones that are effect-free are com-
pletely separated. Utilizing a purely-declarative language for
TM also provides explicit read/writes from/to mutable cells;
memory operations that are also performed by functional
computations are never tracked by STM unnecessarily, since
they never need to be rolled back [12].

Running STM Operations Transactional Variable Operations
atomically::STM a->IO a data TVar a

retry::STM a newTVar::a->STM(TVar a)

orElse::STM a->STM a->STM a readTVar::TVar a->STM a

writeTVar::TVar a->a->STM()

Table 1. Haskell STM Operations

Threads in STM Haskell communicate by reading and
writing transactional variables, or TVars. All STM oper-
ations make use of the STM monad, which supports a set
of transactional operations, including allocating, reading
and writing transactional variables, namely the functions
newTVar, readTVar and writeTVar, respectively, as it can
be seen on Table 1.

Transactions in Haskell are started within the IO monad
by means of the atomically construct. When a transaction
is finished, it is validated by the runtime system that it was
executed on a consistent system state, and that no other
finished transaction may have modified relevant parts of
the system state in the meantime [12]. In this case, the
modifications of the transaction are committed, otherwise,
they are discarded. The Haskell STM runtime maintains a
list of accessed transactional variables for each transaction,
where all the variables in this list which were written are
called the “writeset” and all that were read are called the
“readset” of the transaction. It is worth noticing that these
two sets can (and usually do) overlap.

Operationally, atomically takes the tentative updates
and applies them to the TVars involved, making these effects
visible to other transactions. This method deals with main-
taining a per-thread transaction log that records the tentative
accesses made to TVars. When atomically is invoked, the
STM runtime checks that these accesses are valid and that no
concurrent transaction has committed conflicting updates. In
case the validation turns out to be successful, then the mod-
ifications are committed altogether to the heap.

3. Analyzed Applications
The transactional analysis contains 13 applications, some of
which have been written by people who are not necessar-
ily experts on implementation details of Software Transac-
tional Memory, whereas others have been developed by the
authors of this work who have worked using and modifying
Haskell STM runtime for some time. Both kinds of applica-
tions are interesting because the former can show the way
regular programmers (the ultimate target of the whole TM
research) use Transactional Memory and on the other hand,
a programmer with a deep knowledge on TM can explore
corner cases, force specific situations or simply augment the
diversity by adding applications that are intended to have a
variety of features that are different from the common ones.

In the set of applications itemized in Table 2, all the runs
are arranged according to the execution environment to fit

2 TRANSACT 2007



Application Description # lines # atomic
BlockWorld Simulates two autonomous agents, each moving 100 blocks between non-overlapping

locations (CCHR)
1150 13

GCD A greatest common divisor calculator (CCHR) 1056 13
Prime Finds the first 4000 prime numbers (CCHR) 1071 13
Sudoku A solver of this famous game (CCHR) 1253 13
UnionFind An algorithm used to efficiently maintain disjoint sets under union, where sets are repre-

sented by trees, the nodes are the elements, and the roots are the representative of the sets
(CCHR)

1157 13

TCache A shopping simulation of 200000 purchases performed by as many users as the threads the
program has. It updates stock and spent money per customer. The information is maintained
using a library called Transactional Cache [14]

315 6

SingleInt A corner-case program that consists of n threads incrementing a shared integer variable
for a total of 200000 times. Therefore, the access to the critical section is serialized in this
application because the parallelization of two updates to the same variable is not possible

82 1

LL A family of singly-linked list applications inserting and deleting random numbers. There
are three list lengths: 10, 100 and 1000

250 7

LLUnr Same as LL (above), but using unreadTVar [15], a performance improvement that uses
early release [16], i.e. it lets a transaction forget elements that it has read, causing a smaller
readset, faster commits, but also possible race conditions if it is not used properly

250 7

Table 2. Description of the applications in the benchmark, number of lines of code and atomic blocks

exactly one thread per core so that when, for example, four
cores are used, each application spawns exactly four threads.

The applications marked with (CCHR) were taken from a
Concurrent Constraint Handling Rules implementation [17],
where the basic idea is to derive a set of rules and apply-
ing them until the most simplified expression possible is ob-
tained. In order to reach the goal, each of these applications
stores the current list of rules as shared data and accesses
them in a transactional way. For example, the union find al-
gorithm is used to maintain disjoint sets under union effi-
ciently. Sets are represented by trees, where the nodes are
the elements and the roots are the representative of the sets
[18]. The UnionFind application provided in the implemen-
tation of CCHR simply generates a several disjoint sets of
integers and combines them all together.

Even if the results turn out to be different among CCHR
programs, they all share the same principle of execution:
they define a set of rules and based on the inputs they create
the initial rules that are derived until getting the most simpli-
fied one. This one is the output of the application. The “ac-
tive” rules are maintained in a so called “execution stack”.
Active rules search for possible matching rules in order and
they become inactive when all matching rules have been ex-
ecuted or the constraint is deleted from the store.

In order to allow thread-level paralellism, several “exe-
cution stacks” are simultaneously mantained, meaning that
multiple active constraints can be evaluated at the same time.
The applications also balance the workload by moving con-
straints from one execution stack to another.

TCache is a program that uses a library called Transac-
tional Cache [14] as a base. The application included in the
benchmark models a shop with several clients purchasing
items available in stock. The program finalizes when there
are no more items to sell. The multi-threaded versions has as
many buyers as threads in the application and the shop starts

with 200000 for-sale items. Information about the purchases
is also stored in text files.

SingleInt is a simple program that updates an integer vari-
able that is shared among the threads. Both SingleInt and
TCache are programs that try to perform in parallel a task
that is inherently sequential. Since they update the shared
structure (integer and cache respectively) and almost no fur-
ther computation is carried out, their performance degrades
as the number of cores increases due to extremely high con-
tention. This observation is analyzed in depth in the next sec-
tion.

Linked list programs atomically insert and atomically
delete an element in a shared list. The workload is equally
divided among the threads and always totalizes 200000 op-
erations. Lists of different lengths (10, 100, 1000) were an-
alyzed given that the behaviour is intuitively expected to
be different. Two flavors of linked lists exist in the bench-
mark: the regular, and the unreadTVar-optimized [15]. The
next node link of the linked list is implemented as a trans-
actional variable. The regular version collects are many el-
ements in its readset as the elements traversed, whereas
the unreadTVar-optimized version always maintains a fixed,
small-sized readset.

3.1 A first-order runtime analysis
Before starting to examine detailed internal transactional be-
havior of the applications, it is important to have a global
idea about their execution time and the percentage of this
time that each application spent inside a transaction. Table
3 shows how long, in seconds, each program ran for 1, 2, 4
and 8 cores versions. Figure 1 plots these values normalized
to the single-core version and so, comparisons among the
scalability of different programs are straightforwardly visi-
ble. Most of the applications have smaller runtimes as the
number of threads goes up but there are a few exeptions that

3 TRANSACT 2007



Application 1 core 2 cores 4 cores 8 cores
Blockworld 13.43 7.30 13.24 5.91
Gcd 76.83 28.78 5.40 2.35
LL10 0.08 0.08 0.07 0.26
LL100 0.31 0.28 0.25 0.25
LL1000 4.84 3.77 3.72 3.19
LLUnr10 0.08 0.08 0.06 0.21
LLUnr100 0.36 0.24 0.18 0.24
LLUnr1000 3.10 1.92 1.16 0.83
Prime 38.41 21.19 14.14 8.44
SingleInt 0.12 0.52 0.62 0.77
Sudoku 0.72 0.44 0.40 0.32
TCache 2.58 3.52 4.20 4.70
UnionFind 2.64 1.78 1.17 0.74

Table 3. Execution time (secs) of each application

are worth analyzing: SingleInt and TCache experience high
contention because the task they perform does not match
the optimistic approach of most transactional memory sys-
tems (including Haskell). These applications were explicitly
written to conflict and so, the more the conflicts, the more
the rollbacks, the more the re-executed tasks, the more the
cache thrashing and the more the spent time. The other two
applications that suffer from performance degradation are
both versions of linked list (LL and LLUnr), specially with 8
cores. The explanation for this phenomenon is that the num-
ber of elements in the list is almost the same as the number
of cores, increasing the number of conflicts.

Given Amdahl’s Law, if researchers want to propose im-
provements for STM management, they have to be sure that
a substantial amount of the applications’ runtime is spent
inside a transaction. For this reason we included Figure 2
that shows the percentage of time each application is in-
side a transaction for all its different core counts. As it can
be seen in this figure, several applications spend a substan-
tial amount of time in running transactions, therefore im-
provements in the transactional runtime system will non-
marginally reduce the overall execution time.

4. Observed Statistics
All the experiments are run in a four dual-core processor
SMP server with Intel Xeon 5000 processors running at
3.0 GHz with 4MB L2 cache/processor and 16GB of total
memory, and all of the reported results are based on the
average of five executions.

The statistics accumulated by the proposed extension to
the runtime system are encapsulated in a function called
readTStats, which by being invoked retrieves the whole
list of raw statistics shown in Table 4. This function resides
in the file that contains all STM functions (STM.c) inside
the Glasgow Haskell Compiler (GHC) 6.6, where the values
are gathered at different points in the transaction execution,
i.e. when starting the transaction, while performing a read or
write, or while committing. For some values, the data must
be temporarily kept in the Transactional Record (TRec), so

new fields were added to the TRec structure. Although this
procedure does add some overhead on the transactions, it is
the unique way of achieving our objective in this context.
Information about timing is obtained by querying hardware
performance counters. The update of collected statistics is
done at the commit phase and the data relative to transactions
that were actually committed or rolled back are accumulated
depending on the result of the commit attempt.

Out of these values we derive other meaningful statistics
such as reads per writes, average commit time, average work
time, commit phase overhead and “wasted work”, which
is the ratio of the aborted work to the total work. Note
that these derived statistics such as wasted work could be
used as metrics to gauge the transactional performance of
applications using STM.

In our experiments, the total STM execution time (the
time spent executing inside an atomic block) is divided into
two: the time spent for doing the work the transaction is sup-
posed to do (including the transaction start and the trans-
actional book-keeping), and the commit phase itself, which
signifies the time taken for committing or discarding the ten-
tative changes. The start transaction phase, which is always
constant and negligable independently of the characteristics
of the transaction, has been omitted from our calculations.

Since Transactional Memory is a scheme that imposes the
committing or rolling back of transaction sequences, the first
issue while trying to monitor the transactional management
is naturally the rate of rollbacks. Later in this work, other
values will be observed, such as the commit phase overhead,
data related to the transactional record, and the percentage
of wasted work.

4.1 Abort Rate
To start off, it is important to state that throughout this
work, the terms abort and rollback are used interchangably.
However, the reader should be aware that in other contexts
they might be used to mean distinct concepts.

In our set of applications, none of the programs roll back
on a single core environment because of the condition previ-
ously explained: one and only one thread per core. After an-
alyzing the abort rate (shown in Figure 3) in a multicore en-
vironment, a classification was made based on the observed
values:

• High abort rate group: In this first group of applications
reside the SingleInt and the TCache. These programs
continuously update their shared data, therefore abort
most of the time on multicore and also suffer from high
cache thrashing.

• Medium abort rate group: LL10, LL100, LL1000 and
LLunr10 abort frequently. For the particular case of a
ten element linked list, the high rate of rollbacks should
be expected even when unreadTVar is used, due to the
small list size almost ending up equaling the number of
cores present. Even for larger lists, the significantly larger

4 TRANSACT 2007



Figure 1. Execution time normalized to the single-core time

Figure 2. Percentage of the time the application is inside and outside a transaction

number of aborts is a general case for linked structures
since the STM tries to look after more than what is
needed by collecting all traversed elements in the readset
[15].

• Low abort rate group: LLunr100 and GCD rarely abort,
Blockworld, Sudoku, Prime, LLunr1000 almost never
abort and UnionFind never aborts. The low rollback rate
of LLunr100 and LLunr1000 is a consequence of the ef-
ficiency of unreadTVar. In general, CCHR applications
do not rollback very often, and instead make use of the
atomicity promise due to the fact that CHR naturally sup-
ports concurrent programming, and wants to make use of
the simplicity of using transacted channels while doing
so [17].

It would also be interesting to look at how the aborts
are distributed. For this purpose, the histograms in Figure
4 show the distribution of rollbacks per transaction from 0
to 10+ times. It can be clearly seen that the transactions of
the programs tend to be able to commit mostly in the first
try, except for the cases of TCache, SingleInt and the LL10.
It should also be apparent to see how late some transactions
finally end up committing, from the last bar of each com-
bination of application and number of cores. Our findings
show that for some applications certain transactions abort
repeatedly sometimes more than 10 times, which shows the

need for research into STM runtime mechanisms to avoid
excessively aborting transactions for the sake of fairness.

4.2 Work time, commit time and commit phase
overhead

Having had a general idea on the set of programs, one can
now proceed to examine another important measure of trans-
actional behaviour, the commit time and the associated over-
head.

Figure 5 illustrates the way that time is spent when the
application is within a transaction, taking into account only
committed transactions. The values are normalized to the
single core execution for each application. That is, how
much of the time is used to execute the transaction and how
much to commit it. The commit phase overhead is obtained
by dividing the commit phase time by the total time. We be-
lieve that commit phase overhead could be one of the ap-
propriate metrics to measure STM implementation perfor-
mance. The highest commit phase overhead per commit-
ted transaction is present in the programs belonging to the
CCHR set: reaching almost 70% in the case of UnionFind
running on two cores (GCD is an exception with no more
than 24%). For scalability, these applications have a very
large number of small transactions to avoid costly rollbacks
produced by large transactions, impacting the overall perfor-
mance negatively.

5 TRANSACT 2007



Figure 3. Rollback rate: Number of rollbacks per committed transaction

Statistics Explanation
CommitPhaseTime Accumulated time the application spent in the

commit phase (transactions that have finally
committed)

CommitNumber Number of committed transactions
CommitReads Total number of transactional reads in com-

mitted transactions
CommitReadset Sum of the readset sizes of all committed

transactions
CommitWrites Total number of transactional writes in com-

mitted transactions
CommitWriteset Sum of the writeset sizes of all committed

transactions
CommitWorkTime Accumulated time that the application spent

inside a transaction that finally committed
(useful transactional work)

AbortPhaseTime Accumulated time the application spent in the
commit phase (transactions that rolled back
in the end)

AbortNumber Number of rolled back transactions
AbortReads Total number of transactional reads in rolled

back transactions
AbortReadset Sum of the readset sizes of all rolled back

transactions
AbortWrites Total number of transactional writes in rolled

back transactions
AbortWriteset Sum of the writeset sizes of all rolled back

transactions
AbortWorkTime Accumulated time that the application spent

inside a transaction that finally aborted
(wasted transactional work)

HistogramOfRollbacks Number of transactions that were rolledback
0 .. 10 times and more than 10 times

Table 4. Summary of the statistics gathered by readTStats

Regarding high abort-rate applications , SingleInt (being
second highest) had on average 25,1% commit overhead per
committed transaction, while TCache only had 3,4%. The
explanation for such a big difference between these two
applications that belong to the same group is that for the
single integer application, the only work that has to be done
is to read and write back a variable, whereas in the latter, the
relatively larger work involves finding the item, the user, and
calculating and updating the stock values.

For the linked list programs, larger list size implies less
commit overhead because although there is a larger read-

set and writeset and a greater number of reads in these pro-
grams, the commit time does not rise as rapidly as the work
time, as the list size goes up.

Another observation is that when the number of cores
increases, the number of aborts usually increases as well,
except for BlockWorld and UnionFind that almost never
abort (i.e. they abort either zero or once). Having more aborts
when the number of cores (and then threads) goes up is due
to the situation of having more concurrency and parallelism
in the application. This increases the probability of conflict
and, therefore, rollback.

A last interesting point is that average time per commit
increases as number of cores goes up. Especially the biggest
jump is observed when going from 1 to 2 cores, with a 2-4x
increase. Although this needs further investigation, a sen-
sible explanation for this is that shared variables are more
likely to be spread among local caches of all the cores, and
therefore, the situation mentioned above might be due to
cache misses. Although architectural concerns are beyond
the scope of this paper, this is an incidence where the ar-
chitecture of the system affects the calculations. For aborts,
there is only a slight increase in commit overhead because
all that has to be done is to nullify local (i.e. speculative)
changes.

4.3 Readset, writeset, reads, writes and reads/writes
Firstly, it should be pointed out that on committed transac-
tions, the number of reads per transaction is constant for al-
most all programs regardless of the number of cores, since
the readset and the writeset is usually defined by the pro-
gram itself and not the transactional management (Figure
6). A subtlety to clarify is the issue with expressing the size
of the readset and the writes. It is very common for these
two sets to intersect, for which we have accounted for in-
side the writeset, rather than the readset. So our readset mea-
surements only include those transactional variables that are
strictly only read.

In terms of efficiency regarding the writes, the optimal
case is that the writeset equals the number of writes per-
formed because the transactions only persist their changes
by committing, and thus there would be no point in writing

6 TRANSACT 2007



Figure 4. Rollback histograms

7 TRANSACT 2007



Figure 5. Commit phase overhead (Normalized to single core time)

Figure 6. Number of reads and size of the readset on committed transactions

a transactional variable more than once. Figure 7 compares
number of writes to writeset size, showing that programmers
usually use transactional writes efficiently. In case the STM
programmer needs to change a value several times within
a transaction, she can always do it with other kind of vari-
ables rather than with the Haskell transactional variable TVar
(ones with cheaper access, because STM writes imply iden-
tifying a variable in the writeset and only after that updating
the local copy) and then have the final result in the writeset
to be committed. This optimization could also be performed
by the compiler.

In the case of the linked list (with and without unread-
TVar) on commits, while the number of writes is constant
for all list sizes, the reads increment about 10 times as list
length is increased by an order of magnitude, which should
be obvious because traversing a ten times bigger list leads to
reading ten times more nodes on average.

unreadTVar functionality causes a very small commit
readset (with no other changes whatsoever in reads/wri-

tes/writeset) and for aborted transactions it presents very
small numbers for all values of reads, writes, readset, and
the writeset. As it is explained in [15], the proper use of un-
readTVar on the linked list binds the readset of an insertion
or a deletion to a maximum of three transactional variables,
and as seen on Figure 6, the readset size is contant and in-
dependent of the list size, whereas regular linked lists have
readset sizes proportional to their length.

For the aborted linked list transactions (not shown), it was
observed that all these four statistical values significantly de-
crease as more cores are introduced. This suggests that since
there are less transactional variables to check for, aborts are
less costly with more cores, at least for the commit phase.
However the wasted work is still wasted and is usually in-
creasing with more cores.

Another interesting observation concerns the relation be-
tween the readset size and the rollback probability of trans-
actions. In the case of Haskell STM, a transaction T1 will be
rolled back if and only if some other transaction Ti has modi-

8 TRANSACT 2007



Figure 7. Number of writes and size of the writeset on committed transactions

Figure 8. Average readset size of aborted transactions per
average size of committed transactions (8 cores)

fied any variable that T1 has read [12]. In case an application
can have transactions with different readset sizes, the intu-
ition then is that the bigger the readset, the more probabilitiy
that the transaction will rollback. Figure 8 confirms this intu-
ition by showing the ratio between the average readset size
of aborted transactions and the average readset size of the
committed ones. It is sufficient that the plot only includes
results of the 8 core executions since they have the greatest
rollback rate. Only 9 out of the 13 applications in the suite
are plotted because UnionFind and BlockWorld do not roll-
back in an 8 core configurations and SingleInt and TCache
do not have transactions with variable readset length. As it
could be seen, there is no value smaller than one, which
means that the rolled back transactions have the same or a
bigger readset size than the committed ones. Moreover, the
plotted average having a value of 1.8 confirms the correla-
tion between readset size and abort probability.

Another STM notion is the reads/writes ratio of the pro-
gram, which is useful to see whether the program is read-
dominated or write-dominated. On committed transactions,

Figure 9. Commit time comparison between regular linked
list traversal and unreadTVar usage

the SingleInt and the TCache have a reads/writes ratio of 1,
i.e. a read for each write performed. For the rest of the pro-
grams, this ratio is always greater than one, which supports
the fact that most applications are read-dominated by nature.

4.4 Wasted and useful work and the breakdown of
improvements

In a rollback situation, all of the operations perfomed by the
transaction have to be ignored and re-executed; the time that
this work took is, then, wasted. By dividing the wasted work
by the sum of wasted and useful work, the percentage of
overall wasted work is gathered (Figure 10).

Following is an example showing the contribution of this
work to the research community: It has been observed (Ta-
ble 3, Figure 1 and [15]) that by utilizing unreadTVar, the
execution of a program that traverses linked list gets much
faster and more scalable. In that work, it is hypothesized
that the causes of this important speedup can be the reduc-
tion of both: the wasted work and the commit phase dura-
tion. By looking at Figure 10 it is clear that unreadTVar
helps to have much fewer rollbacks (and consequently less
wasted work) so the first part of the hypothesis is confirmed.
Moreover, Figure 9 shows that commit times are much lower

9 TRANSACT 2007



Figure 10. Percentage of wasted work per application

when unreadTVar is used, finally confirming all the predic-
tions on the causes of the speedup.

The previous example shows how useful a profiling tool
can be for researchers at the time of explaining results and
for measuring the impact of their ideas in the detail that they
need, i.e. not only how faster the application is after applying
the idea, but precisely the breakdown of the performance
gain by transactional attributes.

We believe that this metric is useful to indicate how
well the applications scale transactionally: this could also be
useful to decide the switchover point in mechanisms such as
speculative lock-elision [19] in which the runtime switches
from transactions to locks when there is too much wasted
work.

5. Conclusions and Future Work
In this work, the internal behavior of several Haskell STM
programs was analyzed. First, it is shown that one of the dis-
tinguishing factors of STM applications is the rollback rate
(defined as number of rollbacks per committed transaction).
The increase in the rollback rate as the number of cores is in-
creased determines the transactional scalability of the appli-
cation. On the same topic of rollbacks, we found that when
the different threads update the same variable, there is no
way of making the critical section parallel so it is intuitively
expected to have a big number of rollbacks. Consequently,
it can be also concluded based on the high number of times
some transactions rollback (the authors coin the term “late
commit” for this condition), that it might be necessary to
tune the runtime system in order to avoid excessively abort-
ing transactions. Finally on the topic of rollbacks, we exper-
imentally verified our intuition that a bigger readset size is
correlated with a greater probability of rollback.

Although providing the application with more cores
might appear to be promising to increase performance, it
was observed that average transactional time also increases
in that situation. Particularly with a high number of cores,
some transactions take too long to execute, therefore future
research needs to further tackle the issue of whether the
system architecture and thread scheduling conform to the
demands of transactional management. In order to address

this issue, we plan to run the benchmark on a 128 core SMP
machine.

Another issue is the overheads associated with transac-
tional management. In particular, for programs that do not
perform much work inside transactions, the commit over-
head appears to be very high. To further observe this over-
head, an analysis needs to be conducted on the performance
of commit-time course-grain and fine-grain STM locking
mechanisms of the Glaskow Haskell Compiler, this is left
as future work.

Another important contribution of this work is a first
gathering together of Haskell STM applications that can
serve as a benchmark suite. In the future, we are interested in
further expanding this benchmark suite. In particular, we are
especially interested in including networking applications
such as TCP or HTTP servers.

Acknowledgements
The authors would like to thank Srdjan Stipic, Oriol Prat,
Roberto Gioiosa, Edmund S. L. Lam and Martin Sulzmann
for their useful suggestions and help.

This work is supported by the cooperation agreement be-
tween the Barcelona Supercomputing Center National Su-
percomputer Facility and Microsoft Research, by the Min-
istry of Science and Technology of Spain and the Euro-
pean Union (FEDER funds) under contract TIN2004-07739-
C02-01 and by the European Network of Excellence on
High-Performance Embedded Architecture and Compilation
(HiPEAC).

References
[1] M. Herlihy and E. Moss, “Transactional Memory: Architec-

tural Support for Lock-Free Data Structures”, in 20th Annual
International Symposium on Computer Architecture, May
1993.

[2] N. Shavit and D. Touitou, “Software Transactional Memory”,
in Proceedings of the 14th Annual ACM Symposium on
Principles of Distributed Computing, pp. 204-213, 1995.

[3] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir
and D. Nussbaum, “Hybrid Transactional Memory”, in
Proceedings of the Twelfth International Conference on

10 TRANSACT 2007



Architectural Support for Programming Languages and
Operating Systems (ASPLOS), October 2006.

[4] Man-Lap Li, Ruchira Sasanka, Sarita V. Adve, Yen-Kuang
Chen and Eric Debes. “The alpbench benchmark suite for
complex multimedia applications”, in Proceedings of the
IEEE International Symposium on Workload Characteriza-
tion (IISWC), 2005.

[5] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob,
C.-W. Tseng and D. Yeung, “BioBench: A benchmark suite
of bioinformatics applications” in Proceedings of the 2005
IEEE International Symposium on Performance Analysis of
Systems and Software (IS-PASS 2005), March 2005.

[6] Ramanathan Narayanan, Berkin Ozisikyilmaz, Joseph Zam-
breno, Jayaprakash Pisharath, Gokhan Memik and Alok
Choudhary. “MineBench: A Benchmark Suite for Data Min-
ing Workloads”, in Proceedings of the International Sympo-
sium on Workload Characterization (IISWC), October 2006.

[7] W. Partain. The nofib Benchmark Suite of Haskell Programs.
Dept. of Computer Science, University of Glasgow, 1993.

[8] R. Guerraoui, M. Kapalka and J. Vitek, “STMBench7:
A Bench-mark for Software Transactional Memory” in
Proceedings of the Second European Systems Conference,
March 2007.

[9] Haskell Official Site, http://www.haskell.org.

[10] Hal Daume III,“Yet Another Haskell Tutorial”,
www.cs.utah.edu/ hal/docs/daume02yaht.pdf

[11] S. Peyton-Jones, A. Gordon, and S. Finne, “Concurrent
Haskell”, ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (PoPL), 1996.

[12] T. Harris, S. Marlow, S. Peyton-Jones and M. Herlihy,
“Composable Memory Transactions”, in Proceedings of
the Tenth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Chicago, IL, USA, June
15-17, 2005.

[13] Blundell, Colin and Lewis, E Christopher and Martin, Milo
M. K., “Subtleties of Transactional Memory Atomicity
Semantics”, Computer Architecture Letters, Vol 5, Number
2, November 2006.

[14] Haskell and Web: Haskell Transactional Cache, http://haskell-
web.blogspot.com/2006/11/transactional-cache-for-haskell.html

[15] N. Sonmez, C. Perfumo, S. Stipic, A. Cristal, O. S. Unsal and
M. Valero, “UnreadTVar: Extending Haskell Software Trans-
actional Memory for Performance”, in Eighth Symposium on
Trends in Functional Programming (TFP 2007), New York,
April 2007.

[16] T. Skare and C. Kozyrakis, “Early Release: Friend or Foe?”,
Workshop on Transactional Memory Workloads, Ottawa,
Canada, June 2006.

[17] E. S. L. Lam and M. Sulzmann. “A concurrent Constraint
Handling Rules implementation in Haskell with software
transactional memory” in Proc. of ACM SIGPLAN Work-
shop on Declarative Aspects of Multicore Programming
(DAMP’07), January 2007.

[18] T. Fruhwirth, “Parallelizing Union-Find in Constraint Han-

dling Rules Using Confluence”, 21st Conference on Logic
Programming ICLP, October 2005.

[19] R. Rajwar and J.R. Goodman, “Speculative Lock Elision:
Enabling Highly-Concurrent Multithreaded Execution”,
in Proceedings of the 34th International Symposium on
Microarchitecture, 2001.

11 TRANSACT 2007


