/O and Syscalls in Critical
Sections and their Implications
for Transactional Memory

Lee Baugh and Craig Zilles
University of lllinois at Urbana-Champaign

Side-Effects in Transactions

begin transaction();
myarr[x]= fgetc(myfile) ;
end transaction();

® Will programmers use side-effects!?
® How will programmers use side-effects?

® What implications does this have on proposed
mechanisms handling side-effects in transactions!?

Analyzing Side-Effects in
Transactions

® ... is pretty tough because there are no large
transactional workloads

® We assume that side-effects in current critical
sections are representative of transactions

® So we looked inside critical sections in
two large, multithreaded applications:

Firefox and MySQL

Our Findings

Critical sections do perform side-effects

® ... and not just for mutual exclusion on I/O resources
Side-effecting critical sections tend to be long

Side-effects are distributed through their lives

Side-effects’ outputs tend to be consumed (deferral unlikely)
Serializing side-effecting transactions can be viable
® |f non-conflicting transactions aren’t serialized

Compensation can service >90% of side-effecting operations

® Can be integrated with transactional filesystem and system library

No proposed transactional I/O technique dominates

Existing TM |/O Proposals

Outlaw: simply forbid any non-protected actions inside transaction.
+ clean semantics
- Limits programmability and composition severely

Defer: postpone side-effecting actions until commit
- Prohibits dependences on side-effecting actions

“Go Nonspeculative’: serialize side-effecting transactions
+ Very simple and transparent, permits dependences
- Can affect performance; precludes explicit aborts

Compensate: protect unprotected actions with compensation code
+ Permits explicit aborts, doesn’t serialize, permits dependences

- New source of bugs, no implicit isolation or conflict detection

Experimental Method:
What'’s a Side-Effecting Action?

® |n TM, side-effects are I/O
® Three ways to perform I/O in x86:
1in and out instrs: not seen in critsecs

memory-mapped |I/O: only performed by the
kernel and the single X1 | thread

syscalls: what we saw plenty of

Experimental Method:

Should all syscalls be considered side-effecting?

® Prior work suggests application transactions
ought not to subsume kernel-mode work

® Performance isolation can be lost in kernel
sharing

® STMs cannot subsume kernel-mode work

® So we consider all syscalls to be performed
extra-transactionally, and thus potentially
side-effecting

Experimental Method

® We use Pin for binary instrumentation

® Tracked critical sections by counting
pthread mutex acquires and releases

® Only considered top-level critical sections

® | ooked for syscalls in critical sections:
® when they happened
® what they were

® which critical sections they lived in

Results: Syscalls Seen

Frequency in Critsecs
MySQL Firefox
Time gettimeofday, clock_gettime 3.91% 70.18%
read*,write*, open, close, 1lseek, access, dup,
mkdir, ftruncate, fsync,writev, pread#*,
pwrite*, stat, fstat, fcntl, getdents, getcwd,

fdatasync, mmap*, munmap*, mprotect*
Process Memory brk, mmap*, munmap*, mprotect* 31.03% 0.32%
waltpid, clone, sched _setscheduler,

sched_get_priority max,
sched_get_priority.min, rt_sigaction,
rt_sigprocmask, tgkill

ioctl, socket, pipe, read*, write*, pread*,
pwrite*

System Info sysinfo, uname 0.23% 0.03%

Category of Syscall Syscalls Seen in Critical Sections

Filesystem 53.79% 28.75%

Process Maintenance 8.97% 0.32%

Communication 2.07% 0.40%

® A Transactional Filesystem can protect filesystem syscalls

® Can the rest be compensated for!?

Results: the Advantage of Compensation

® Found four “protection classes” among the syscalls we observed,
representing what protection they require at the scope of the call:

e Null compensation syscalls require no protection -- e.g,'gettimeofday’
® over 70% in Firefox, under 10% in MySQL

e Memory-fixup syscalls only affect kernel state; can easily be compensated --
e.g.'lseek’

e Full compensation syscalls perform unprotected 1/O actions, and require
‘going nonspeculative’ or compensation -- e.g. an ‘open’ call creating a file may
compensate with ‘unlink’

® Real syscalls cannot be adequately compensated for at the scope of the
call -- e.g."tgkill’,*socket’. Programmers may compensate at

higher levels

® 7% in MySQL, <I% in Firefox

® Compensation code within the system library is widely applicable

Results: Critical Section Length

(a) Distribution of TCS Duratio n Firefox (b) Distribution of TCS Durat

i | ‘ |111

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E 7
fTCS (u) chs (p)
M Critic

Number of TCSs

® Syscalling Toplevel Critical Sections (TCSs) are a lot
longer than non-syscalling TCSs

= Syscalls deferred for more time; transactions going
nonspeculative -- that is, serializing -- for longer

Results: Syscall Distribution

(a) Distribution of Sy (b) Distributi yscalls in sy ing- in MySQL

0 |||||III||||||||I|II||I|||||II||||||I||II|II||III|I|II|||||||"||||||||||I|I||||I||||||||‘|H L 0% 0 LRI | || |||||I||||||I‘Illllllh”hl""”"”||||||‘||||"||‘"“m|m L 0%
0% 20% 40% 60% 80% 0% 20% 40% 60% 80%
i in Fi Progress Through syscalling-TCSs in MySQL

® Syscalls happen throughout their critical sections

® |Increased opportunity for intra-critsec dependence on
syscalls

Results: Syscall Distribution

(a) Distribution of First Syscalls in syscalling-TCSs in Firefox (b) Distribution of First Syscalls in syscalling-TCSs in MySQL

First Syscalls
Cumulative Syscalls
First Syscalls
Cumulative Syscalls

0 |I......-.....nl...-ll......u. R T) s | el s | ||I.|||||||.I sl |.I| . .III.. wn_slusluslans |I|||I|I|||"|||‘||

0% 20% 40% 20% 40% 60% 80%
Progress Through syscalling-TCSs in Firefox Progress Through syscalling-TCSs in MySQL

First syscalls are also fairly distributed

® |f“going nonspeculative”, serialized regions may be large

Implications for Existing
TM I/O Proposals

Outlaw: simply forbid any non-protected actions inside transaction.
Defer: postpone side-effecting actions until commit
“Go Nonspeculative’: serialize side-effecting transactions

Compensate: protect unprotected actions with compensation code

What does our data say about these!?

Results: The Applicability
of Deferral

® We analyzed syscalling-TCSs responsible for 90% of
the dynamic instances in our workloads:

® Over 96% of those in MySQL, and 100% in Firefox,
consumed the result of their first syscall

= Deferral is not a general solution

Results: The Cost of
“Going Nonspeculative™

® Two approaches: “commit lock™ and “unkillable”

® We measured the overlap of syscalling-TCSs:

® 3 syscalling-TCS x overlaps with all other TCSs
which retire between x’s first syscall and its release

® We use this overlap to quantify the cost of
“going nonspeculative”

® Overlap represents the number of transactions
which would like to retire but cannot

Results: “Going Nonspeculative™

(a) Syscalling-TCS Overlap in Firefox (b) Syscalling-TCS Overlap in MySQL

=

\
All TCSs

Syscalling-TCSs
Syscalling-TCSs

Syscalling TCSs

10 100 1000 10000 100000 1000000 10 1000
TCSs Overlapped # TCSs Overlapped

® |f “going nonspeculative” serializes all transactions, much parallelism is lost

® |f it serializes only syscalling transactions, much less parallelism is lost

Conclusions

Critical sections do have side effects in real code -- outlawing
won’t be trivial

However, between correct system-library-level compensation
code and a transactional filesystem, nearly all of the observed
side effects can be handled speculatively, by protecting them
at the library level

Deferring side-effects until commit applies in only a minority
of cases

“Going nonspeculative” is not observed to be likely to affect
performance, and could be a good choice if explicit aborts
are not required

No solution is a comprehensive answer!

Acknowledgements

® Thanks to Ravi Rajwar, who mentored an
internship in which the basis of this research
was performed

® This research was supported in part by NSF
CAREER award CCR-03047260 and a gift
from the Intel Corporation

