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Side-Effects in Transactions

• Will programmers use side-effects?

• How will programmers use side-effects?

• What implications does this have on proposed 
mechanisms handling side-effects in transactions?

begin_transaction();
myarr[x]= fgetc(myfile);
end_transaction();



Analyzing Side-Effects in 
Transactions 

• … is pretty tough because there are no large 
transactional workloads

• We assume that side-effects in current critical 
sections are representative of transactions

• So we looked inside critical sections in 
two large, multithreaded applications: 
Firefox and MySQL



Our Findings
• Critical sections do perform side-effects

• … and not just for mutual exclusion on I/O resources

• Side-effecting critical sections tend to be long

• Side-effects are distributed through their lives

• Side-effects’ outputs tend to be consumed (deferral unlikely)

• Serializing side-effecting transactions can be viable

• If non-conflicting transactions aren’t serialized

• Compensation can service >90% of side-effecting operations

• Can be integrated with transactional filesystem and system library

• No proposed transactional I/O technique dominates



Existing TM I/O Proposals
• Outlaw: simply forbid any non-protected actions inside transaction.

+ clean semantics

- Limits programmability and composition severely

• Defer: postpone side-effecting actions until commit

- Prohibits dependences on side-effecting actions

• “Go Nonspeculative”: serialize side-effecting transactions

+ Very simple and transparent, permits dependences

- Can affect performance; precludes explicit aborts

• Compensate: protect unprotected actions with compensation code

+ Permits explicit aborts, doesn’t serialize, permits dependences

- New source of bugs, no implicit isolation or conflict detection



Experimental Method: 
What’s a Side-Effecting Action?

• In TM, side-effects are I/O

• Three ways to perform I/O in x86:

• in and out instrs: not seen in critsecs

• memory-mapped I/O: only performed by the 
kernel and the single X11 thread

• syscalls: what we saw plenty of



Experimental Method: 
Should all syscalls be considered side-effecting?

• Prior work suggests application transactions 
ought not to subsume kernel-mode work

• Performance isolation can be lost in kernel 
sharing

• STMs cannot subsume kernel-mode work

• So we consider all syscalls to be performed 
extra-transactionally, and thus potentially 
side-effecting



• We use Pin for binary instrumentation

• Tracked critical sections by counting 
pthread_mutex acquires and releases

• Only considered top-level critical sections

• Looked for syscalls in critical sections: 

• when they happened

• what they were

• which critical sections they lived in

Experimental Method 



Results: Syscalls Seen
Frequency in Critsecs

Category of Syscall Syscalls Seen in Critical Sections
MySQL Firefox

Time gettimeofday, clock gettime 3.91% 70.18%

Filesystem

read*, write*, open, close, lseek, access, dup,

mkdir, ftruncate, fsync, writev, pread*,

pwrite*, stat, fstat, fcntl, getdents, getcwd,

fdatasync, mmap*, munmap*, mprotect*

53.79% 28.75%

Process Memory brk, mmap*, munmap*, mprotect* 31.03% 0.32%

Process Maintenance

waitpid, clone, sched setscheduler,

sched get priority max,

sched get priority min, rt sigaction,

rt sigprocmask, tgkill

8.97% 0.32%

Communication
ioctl, socket, pipe, read*, write*, pread*,

pwrite*
2.07% 0.40%

System Info sysinfo, uname 0.23% 0.03%

Table 1. Syscalls Seen in Critical Sections Six different categories of syscall were seen in critical sections in MySQL and

Firefox; their dynamic distributions in the critical sections of each workload are shown at right. Communications syscalls,

which are most difficult to make transaction-safe, are uncommon. Syscalls marked with asterisks belong to several categories.

5.1 Syscall Sites

Previous work characterized syscalls inside critical sections

for a selection of workloads, dividing them into read and

write operations, and determining the frequency of critical

sections performing them. [4]We delve deeper into the kinds

of syscalls seen in our workloads, determining what calls

are being made, what they are doing, and what minimum

protection they require.

In Table 1, we list the syscalls dynamically detected in crit-

ical sections in our workloads, divided into six categories:

filesystem, process memory, process maintenance, system

info, time, and communication. Some of the syscalls listed

belong to more than one category – for example, read may

be applied to a file handle as well as to a socket. Such

syscalls are marked with an asterisk. At the right side of the

table, we show the relative dynamic frequency of each cat-

egory of syscall in each workload. It is notable, in light of

the observations we make in the next section, that very few

communication syscalls are seen in either workload.

5.2 Syscall Protection – The Advantage of

Compensation Code

As we have suggested, not all of the syscalls that we ob-

served require the same treatment to become transaction-

safe. We found four “protection classes” among the syscalls

we observed:

• Null compensation: Some syscalls require no protection,
as their speculative execution does not logically change

system state. Time syscalls like gettimeofday fall in

this class, as may syscalls like pread, which reads from

a file without altering the file pointer. If side-effects are

handled by forcing transactions to become nonspecula-

tive, this class of syscalls will not require that. If side-

effects are handled by compensation code, a null com-

pensation block will be sufficient. Over 70% of the dy-

namic syscalls in Firefox critical sections fall into this

category; under 10% of MySQL’s do.

• Memory-fixup: Many syscalls’ only side effect is a
change of kernel state. For example, lseek does not af-

fect a file directly, but instead adjusts a file offset pointer

within a file handle data structure. Since kernel code

is not executed transactionally, these actions must be

considered as side-effects. If the TM system provides a

mechanism for registering compensating code, then this

work may be easily done speculatively; otherwise this

side effect will necessitate either that the transaction go

nonspeculative, or that the call be deferred until commit.

• Full compensation: Many observed syscalls perform un-
protected I/O actions, and will require “going nonspec-

ulative” or compensation code. For example, a transac-

tion with an open call which creates a file will reg-

ister a corresponding unlink, an append call might

register a corresponding truncate3. If the filesystem

has transactional support, then the compensation blocks

might simply force a filesystem transaction abort.

• Real actions: A small minority of the syscalls we saw

cannot be adequately compensated at the scope of the

syscall. Some process maintenance syscalls like tgkill,

and communications syscalls like socket, pipe, and

reads or writes to sockets or pipes cannot be exe-

3While these compensations do not provide isolation from the rest of the

system, it is not clear that this matters in most cases. For example, a

critical section in MySQL responsible for database creation first created

a directory for the database, then attempted to create an options file inside

that directory. If the file creation failed, the directory was deleted again,

violating system-wide isolation – but the programmers were willing to

accept this result. A transactional filesystem can provide true isolation for

filesystem side-effects, if needed.
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• A Transactional Filesystem can protect filesystem syscalls

• Can the rest be compensated for?



Results: the Advantage of Compensation
•Found four “protection classes” among the syscalls we observed, 

representing what protection they require at the scope of the call:

• Null compensation syscalls require no protection -- e.g, ‘gettimeofday’

• over 70% in Firefox, under 10% in MySQL

• Memory-fixup syscalls only affect kernel state; can easily be compensated -- 
e.g. ‘lseek’ 

• Full compensation syscalls perform unprotected I/O actions, and require 
‘going nonspeculative’ or compensation -- e.g. an ‘open’ call creating a file may 
compensate with ‘unlink’

• Real syscalls cannot be adequately compensated for at the scope of the 
call -- e.g. ‘tgkill’, ‘socket’.  Programmers may compensate at 
higher levels

• 7% in MySQL, <1% in Firefox

• Compensation code within the system library is widely applicable



Results: Critical Section Length

• Syscalling Toplevel Critical Sections (TCSs) are a lot 
longer than non-syscalling TCSs

➡ Syscalls deferred for more time; transactions going 
nonspeculative -- that is, serializing -- for longer
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(b) Distribution of First Syscalls in syscalling-TCSs in MySQL
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Figure 4. Distribution of First Syscalls across Critical Sections

A significant fraction of first syscalls occur well before the end of the critical section. Aggregated results for all critical

sections in (a) Firefox, (b) MySQL. Bars are per-bin with axis on left; line is cumulative with axis on right.
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(b) Distribution of TCS Durations in MySQL
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Figure 3. Distribution of syscalling-TCS Durations (in

µsec)
TCSs with syscalls trend much larger than those without.

Black bars are TCSs without syscalls; grey bars are

syscalling-TCSs. Results for (a) Firefox, (b) MySQL

syscall’s position in the lifetime of its syscalling-TCS. These

graphs show that while syscalls do tend frequently to be po-

sitioned near the end of their syscalling-TCSs, they exist

in significant numbers throughout the lives of syscalling-

TCSs. This has several ramifications for the TM proposals

reviewed in Section 3. For techniques which defer syscalls

until their transaction is validated4, the earlier a syscall hap-

pens, the longer it must be deferred, and the more significant

its implicit reordering becomes – a problem both for the pro-

grammer and for the static analysis tools the compiler might

use to choose critical sections to defer. Furthermore, as an

operation may not be moved after any of its consumers, any

syscall in a TCS which produces values that are consumed

later in the TCS cannot be deferred. We analyzed syscalling-

TCSs responsible for 90% of the dynamic syscalling-TCS

instances in our benchmarks, and found that over 96% of

those in MySQL, and 100% of those in Firefox, consumed

the result of the first syscall in the TCS – suggesting that

deferral will not apply in the preponderance of cases. For

the technique of forcing transactions to “go nonspecula-

tive” prior to executing any syscall, a more serious problem

awaits.

5.5 The Overhead of “Going Nonspeculative”

In Figure 4, we show the distribution of the positions of

first syscalls within the durations of their syscalling-TCSs.

In these graphs, the first syscall executed within a syscalling-

TCS (including syscalls indirectly called by nested children

of the syscalling-TCS) increments the bar corresponding

to that syscall’s position in the lifetime of its syscalling-

TCS. The figure shows that while a significant number of

syscalling-TCSs have their first syscall near the end of their

lives – over 50% in the last 10% of Firefox syscalling-TCSs

– many execute their first syscall relatively early. If trans-

actions attempting syscalls must first “go nonspeculative”,

then from that point – the point of the first syscall – until

their commit, no other transaction may become nonspecula-

tive. This Figure shows that at least one third of syscalling-

TCSs in both workloads see their first syscall before they are

4 That is, known to be safe to commit, and correspondingly nonspeculative
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(b) Distribution of First Syscalls in syscalling-TCSs in MySQL
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Figure 4. Distribution of First Syscalls across Critical Sections

A significant fraction of first syscalls occur well before the end of the critical section. Aggregated results for all critical

sections in (a) Firefox, (b) MySQL. Bars are per-bin with axis on left; line is cumulative with axis on right.
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(b) Distribution of TCS Durations in MySQL
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Figure 3. Distribution of syscalling-TCS Durations (in

µsec)
TCSs with syscalls trend much larger than those without.

Black bars are TCSs without syscalls; grey bars are

syscalling-TCSs. Results for (a) Firefox, (b) MySQL

syscall’s position in the lifetime of its syscalling-TCS. These

graphs show that while syscalls do tend frequently to be po-

sitioned near the end of their syscalling-TCSs, they exist

in significant numbers throughout the lives of syscalling-

TCSs. This has several ramifications for the TM proposals

reviewed in Section 3. For techniques which defer syscalls

until their transaction is validated4, the earlier a syscall hap-

pens, the longer it must be deferred, and the more significant

its implicit reordering becomes – a problem both for the pro-

grammer and for the static analysis tools the compiler might

use to choose critical sections to defer. Furthermore, as an

operation may not be moved after any of its consumers, any

syscall in a TCS which produces values that are consumed

later in the TCS cannot be deferred. We analyzed syscalling-

TCSs responsible for 90% of the dynamic syscalling-TCS

instances in our benchmarks, and found that over 96% of

those in MySQL, and 100% of those in Firefox, consumed

the result of the first syscall in the TCS – suggesting that

deferral will not apply in the preponderance of cases. For

the technique of forcing transactions to “go nonspecula-

tive” prior to executing any syscall, a more serious problem

awaits.

5.5 The Overhead of “Going Nonspeculative”

In Figure 4, we show the distribution of the positions of

first syscalls within the durations of their syscalling-TCSs.

In these graphs, the first syscall executed within a syscalling-

TCS (including syscalls indirectly called by nested children

of the syscalling-TCS) increments the bar corresponding

to that syscall’s position in the lifetime of its syscalling-

TCS. The figure shows that while a significant number of

syscalling-TCSs have their first syscall near the end of their

lives – over 50% in the last 10% of Firefox syscalling-TCSs

– many execute their first syscall relatively early. If trans-

actions attempting syscalls must first “go nonspeculative”,

then from that point – the point of the first syscall – until

their commit, no other transaction may become nonspecula-

tive. This Figure shows that at least one third of syscalling-

TCSs in both workloads see their first syscall before they are

4 That is, known to be safe to commit, and correspondingly nonspeculative
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(a) Distribution of Syscalls in syscalling-TCSs in Firefox
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(b) Distribution of Syscalls in syscalling-TCSs in MySQL
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Figure 2. Distribution of Syscalls across syscalling-TCSs

Syscalls are distributed throughout syscalling-TCSs, and are more frequent towards the end of the critical sections.

Aggregated results for all syscalling-TCSs in (a) Firefox, (b) MySQL. Bars are per-bin with axis on left; line is cumulative

with axis on right.

cuted speculatively without knowledge of the context of

the call. These syscalls are the most difficult to encapsu-

late so that programmers at higher levels of abstraction

may use them speculatively, but some possibilities ex-

ist. Buffering support in the manner of ReViveI/O may

be employed [17], but unlike that work, the amount that

may need buffering is unbounded. Alternatively, if it is

possible, compensation may be provided at a higher level

of abstraction by the application or library developer. For

example, a network program may use a transaction-safe

protocol, in which messages may be tentatively issued

and revoked later – or it might not, and this information

would not be available at the level of the system call.

In these cases, the only choice is to wait until the trans-

action is nonspeculative before executing the syscalls –

or permitting compensation code to be registered at a

higher scope. This class corresponds to the Communi-

cation category described in Table 1, as well as some

process management syscalls like clone and tgkill.

It comprises about 7% of the syscalls in MySQL’s critical

sections, but a minuscule component of Firefox’s.

Importantly, all these categories except for the last may be

compensated for at the level of the syscall – and the last cate-

gory represents very few of the dynamic syscalls we encoun-

tered. It is clear that with adequate compensation the bulk

of dynamic syscalls can be rendered transaction-safe, and

thus speculatively executable. For the workloads we exam-

ined, written in C/C++, this could be accomplished simply

by providing compensation code in the system library (e.g.

libc); if this were done, our workloads could be transactified

with nearly all syscalls in transactions handled transparently

to the application developers.

5.3 Syscall Context

We have examined the types of syscalls executed from criti-

cal sections in our workloads; now we examine their context,

exploring the structure of critical sections which perform

syscalls. We will attempt to characterize side-effecting trans-

actions by their frequency, by the distribution of syscalls

within them, by their (temporal) length, and by the degree

of concurrency they expose.

Previous research on other applications has shown that

syscalling critical sections are dynamically very rare in mul-

tithreaded workloads [4]. We find the same: in Firefox,

only 0.71% of dynamic critical sections issue syscalls; in

MySQL, the proportion is even smaller: only 0.02%. How-

ever, further examination of these critical sections shows that

it may not be wise to dismiss them as too rare to matter.

Figure 3 shows the approximate durations, in µseconds, of
toplevel critical sections – both those which execute syscalls

(the syscalling-TCSs) and those which do not – in our work-

loads. In both workloads, we find that critical sections per-

forming syscalls tend to be much longer than those which

do not. To what degree this reflects an intrinsic quality of

atomic regions which perform syscall, and to what degree it

reflects the cost of switching into kernel mode, matters less

to us than the fact that critical sections performing syscalls

tend to be quite long. The longer transactions last, the more

chance they have to affect the performance of other transac-

tions in the same application

5.4 The Applicability of Deferral

In Figure 2, we show where, in the progress of syscalling-

TCSs in our workloads, syscalls are executed. In these

graphs, every syscall executed within a syscalling-TCS (in-

cluding syscalls indirectly called by nested children of the

syscalling-TCS) increments the bar corresponding to that
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(b) Distribution of Syscalls in syscalling-TCSs in MySQL
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Figure 2. Distribution of Syscalls across syscalling-TCSs

Syscalls are distributed throughout syscalling-TCSs, and are more frequent towards the end of the critical sections.

Aggregated results for all syscalling-TCSs in (a) Firefox, (b) MySQL. Bars are per-bin with axis on left; line is cumulative

with axis on right.

cuted speculatively without knowledge of the context of

the call. These syscalls are the most difficult to encapsu-

late so that programmers at higher levels of abstraction

may use them speculatively, but some possibilities ex-

ist. Buffering support in the manner of ReViveI/O may

be employed [17], but unlike that work, the amount that

may need buffering is unbounded. Alternatively, if it is

possible, compensation may be provided at a higher level

of abstraction by the application or library developer. For

example, a network program may use a transaction-safe

protocol, in which messages may be tentatively issued

and revoked later – or it might not, and this information

would not be available at the level of the system call.

In these cases, the only choice is to wait until the trans-

action is nonspeculative before executing the syscalls –

or permitting compensation code to be registered at a

higher scope. This class corresponds to the Communi-

cation category described in Table 1, as well as some

process management syscalls like clone and tgkill.

It comprises about 7% of the syscalls in MySQL’s critical

sections, but a minuscule component of Firefox’s.

Importantly, all these categories except for the last may be

compensated for at the level of the syscall – and the last cate-

gory represents very few of the dynamic syscalls we encoun-

tered. It is clear that with adequate compensation the bulk

of dynamic syscalls can be rendered transaction-safe, and

thus speculatively executable. For the workloads we exam-

ined, written in C/C++, this could be accomplished simply

by providing compensation code in the system library (e.g.

libc); if this were done, our workloads could be transactified

with nearly all syscalls in transactions handled transparently

to the application developers.

5.3 Syscall Context

We have examined the types of syscalls executed from criti-

cal sections in our workloads; now we examine their context,

exploring the structure of critical sections which perform

syscalls. We will attempt to characterize side-effecting trans-

actions by their frequency, by the distribution of syscalls

within them, by their (temporal) length, and by the degree

of concurrency they expose.

Previous research on other applications has shown that

syscalling critical sections are dynamically very rare in mul-

tithreaded workloads [4]. We find the same: in Firefox,

only 0.71% of dynamic critical sections issue syscalls; in

MySQL, the proportion is even smaller: only 0.02%. How-

ever, further examination of these critical sections shows that

it may not be wise to dismiss them as too rare to matter.

Figure 3 shows the approximate durations, in µseconds, of
toplevel critical sections – both those which execute syscalls

(the syscalling-TCSs) and those which do not – in our work-

loads. In both workloads, we find that critical sections per-

forming syscalls tend to be much longer than those which

do not. To what degree this reflects an intrinsic quality of

atomic regions which perform syscall, and to what degree it

reflects the cost of switching into kernel mode, matters less

to us than the fact that critical sections performing syscalls

tend to be quite long. The longer transactions last, the more

chance they have to affect the performance of other transac-

tions in the same application

5.4 The Applicability of Deferral

In Figure 2, we show where, in the progress of syscalling-

TCSs in our workloads, syscalls are executed. In these

graphs, every syscall executed within a syscalling-TCS (in-

cluding syscalls indirectly called by nested children of the

syscalling-TCS) increments the bar corresponding to that
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Results: Syscall Distribution

• Syscalls happen throughout their critical sections

• Increased opportunity for intra-critsec dependence on 
syscalls



(a) Distribution of First Syscalls in syscalling-TCSs in Firefox
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(b) Distribution of First Syscalls in syscalling-TCSs in MySQL
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Figure 4. Distribution of First Syscalls across Critical Sections

A significant fraction of first syscalls occur well before the end of the critical section. Aggregated results for all critical

sections in (a) Firefox, (b) MySQL. Bars are per-bin with axis on left; line is cumulative with axis on right.
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Figure 3. Distribution of syscalling-TCS Durations (in

µsec)
TCSs with syscalls trend much larger than those without.

Black bars are TCSs without syscalls; grey bars are

syscalling-TCSs. Results for (a) Firefox, (b) MySQL

syscall’s position in the lifetime of its syscalling-TCS. These

graphs show that while syscalls do tend frequently to be po-

sitioned near the end of their syscalling-TCSs, they exist

in significant numbers throughout the lives of syscalling-

TCSs. This has several ramifications for the TM proposals

reviewed in Section 3. For techniques which defer syscalls

until their transaction is validated4, the earlier a syscall hap-

pens, the longer it must be deferred, and the more significant

its implicit reordering becomes – a problem both for the pro-

grammer and for the static analysis tools the compiler might

use to choose critical sections to defer. Furthermore, as an

operation may not be moved after any of its consumers, any

syscall in a TCS which produces values that are consumed

later in the TCS cannot be deferred. We analyzed syscalling-

TCSs responsible for 90% of the dynamic syscalling-TCS

instances in our benchmarks, and found that over 96% of

those in MySQL, and 100% of those in Firefox, consumed

the result of the first syscall in the TCS – suggesting that

deferral will not apply in the preponderance of cases. For

the technique of forcing transactions to “go nonspecula-

tive” prior to executing any syscall, a more serious problem

awaits.

5.5 The Overhead of “Going Nonspeculative”

In Figure 4, we show the distribution of the positions of

first syscalls within the durations of their syscalling-TCSs.

In these graphs, the first syscall executed within a syscalling-

TCS (including syscalls indirectly called by nested children

of the syscalling-TCS) increments the bar corresponding

to that syscall’s position in the lifetime of its syscalling-

TCS. The figure shows that while a significant number of

syscalling-TCSs have their first syscall near the end of their

lives – over 50% in the last 10% of Firefox syscalling-TCSs

– many execute their first syscall relatively early. If trans-

actions attempting syscalls must first “go nonspeculative”,

then from that point – the point of the first syscall – until

their commit, no other transaction may become nonspecula-

tive. This Figure shows that at least one third of syscalling-

TCSs in both workloads see their first syscall before they are

4 That is, known to be safe to commit, and correspondingly nonspeculative
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(b) Distribution of First Syscalls in syscalling-TCSs in MySQL
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Figure 4. Distribution of First Syscalls across Critical Sections

A significant fraction of first syscalls occur well before the end of the critical section. Aggregated results for all critical

sections in (a) Firefox, (b) MySQL. Bars are per-bin with axis on left; line is cumulative with axis on right.
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Figure 3. Distribution of syscalling-TCS Durations (in

µsec)
TCSs with syscalls trend much larger than those without.

Black bars are TCSs without syscalls; grey bars are

syscalling-TCSs. Results for (a) Firefox, (b) MySQL

syscall’s position in the lifetime of its syscalling-TCS. These

graphs show that while syscalls do tend frequently to be po-

sitioned near the end of their syscalling-TCSs, they exist

in significant numbers throughout the lives of syscalling-

TCSs. This has several ramifications for the TM proposals

reviewed in Section 3. For techniques which defer syscalls

until their transaction is validated4, the earlier a syscall hap-

pens, the longer it must be deferred, and the more significant

its implicit reordering becomes – a problem both for the pro-

grammer and for the static analysis tools the compiler might

use to choose critical sections to defer. Furthermore, as an

operation may not be moved after any of its consumers, any

syscall in a TCS which produces values that are consumed

later in the TCS cannot be deferred. We analyzed syscalling-

TCSs responsible for 90% of the dynamic syscalling-TCS

instances in our benchmarks, and found that over 96% of

those in MySQL, and 100% of those in Firefox, consumed

the result of the first syscall in the TCS – suggesting that

deferral will not apply in the preponderance of cases. For

the technique of forcing transactions to “go nonspecula-

tive” prior to executing any syscall, a more serious problem

awaits.

5.5 The Overhead of “Going Nonspeculative”

In Figure 4, we show the distribution of the positions of

first syscalls within the durations of their syscalling-TCSs.

In these graphs, the first syscall executed within a syscalling-

TCS (including syscalls indirectly called by nested children

of the syscalling-TCS) increments the bar corresponding

to that syscall’s position in the lifetime of its syscalling-

TCS. The figure shows that while a significant number of

syscalling-TCSs have their first syscall near the end of their

lives – over 50% in the last 10% of Firefox syscalling-TCSs

– many execute their first syscall relatively early. If trans-

actions attempting syscalls must first “go nonspeculative”,

then from that point – the point of the first syscall – until

their commit, no other transaction may become nonspecula-

tive. This Figure shows that at least one third of syscalling-

TCSs in both workloads see their first syscall before they are

4 That is, known to be safe to commit, and correspondingly nonspeculative
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Results: Syscall Distribution

• First syscalls are also fairly distributed

• If “going nonspeculative”, serialized regions may be large



Implications for Existing 
TM I/O Proposals

• Outlaw: simply forbid any non-protected actions inside transaction.

• Defer: postpone side-effecting actions until commit

• “Go Nonspeculative”: serialize side-effecting transactions

• Compensate: protect unprotected actions with compensation code

What does our data say about these?



Results: The Applicability 
of Deferral

• We analyzed syscalling-TCSs responsible for 90% of 
the dynamic instances in our workloads:

•  Over 96% of those in MySQL, and 100% in Firefox, 
consumed the result of their first syscall

➡ Deferral is not a general solution



• Two approaches: “commit lock” and “unkillable”

• We measured the overlap of syscalling-TCSs:

• a syscalling-TCS x overlaps with all other TCSs 
which retire between x’s first syscall and its release

• We use this overlap to quantify the cost of 
“going nonspeculative”

• Overlap represents the number of transactions 
which would like to retire but cannot

Results: The Cost of 
“Going Nonspeculative”



• If “going nonspeculative” serializes all transactions, much parallelism is lost

• If it serializes only syscalling transactions, much less parallelism is lost
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(b) Syscalling-TCS Overlap in MySQL
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Figure 5. Degree of Overlap of Toplevel Syscalling Critical Sections (syscalling-TCSs) and Toplevel Critical Sections

(TCSs)

All syscalling-TCSs in (a) Firefox, (b) MySQL. This cumulative plot shows (black line) how many syscalling-TCSs (y-axis)

overlap (x-axis) or fewer TCS; (grey line) how many syscalling-TCSs (y-axis) overlap (x-axis) or fewer other syscalling-TCSs

halfway finished. As the barrier to concurrency is a prob-

lem proportional to the length of syscalling-TCSs, which, as

shown in Figure 3, tend large, this represents considerable

potential for even a relatively small number of toplevel side-

effecting transactions to impact concurrency throughout ap-

plications.

These large transactions translate to a significant degree

of overlap (described in Section 4.2.) The overlaps of

syscalling-TCSs in our workloads are shown in the black

plots in Figure 5. While a majority of syscalling-TCSs over-

lap with no other TCS – two-thirds in Firefox and half in

MySQL – a significant minority have substantial overlap.

15% of the syscalling-TCSs in Firefox overlap with 360 or

more TCSs; if the presence of a nonspeculative transaction

precludes any other transactions from committing (e.g. by

holding a “commit” token), this betokens a significant loss

of concurrency throughout both our applications.

Blundell et al. suggest that the nonspeculative transaction

(the unrestricted transaction in their parlance) need not block

speculative (restricted) transactions from retiring – as long

as there is only one nonspeculative transaction active at a

time, and it may never be aborted. [3] Their restricted trans-

actions are not only constrained from “going nonspecula-

tive”, but are also bounded in time and memory footprint.

However, the memory and time bounds are not strictly re-

quired; there is no reason that speculative transactions of any

size or duration might not retire even while another transac-

tion is nonspeculative, so long as the speculative transactions

do not conflict with the nonspeculative. In this case, it is in-

structive to consider, as a lower bound to syscalling-TCS

overlap, the overlap that syscalling-TCSs have with other

syscalling-TCSs. This metric, measured in the grey plots in

Figure 5, is similar to that shown in Figure 1 (Section 4.2),

except that not every retiring TCS increments the global

TCS retire counter – only retiring syscalling-TCSs may. As

only one syscalling-TCS is allowed to be nonspeculative at

a time, the overlapped critical sections in the grey plots in

Figure 5 cannot be executed concurrently under a regime in

which syscalling-TCSs “go nonspeculative” – but the loss of

concurrency is much less than that seen in the black plots in

Figure 5: over 93% of Firefox syscalling-TCSs overlap with

10 or fewer other syscalling-TCSs, and only 2% of MySQL

syscalling-TCSs overlap with any other syscalling-TCSs at

all, none with more than 4 others.

We expect these results to be a lower bound of the actual con-

currency available in transactional versions of these work-

loads. Atomic regions which, in lock-based code, would be

guarded by different locks, will, of course, when transac-

tional, not conflict (for if they did, the lock-based code would

have race conditions.) However, some atomic regions which

in lock-based code would be guarded by the same lock might

as transactions not conflict.

6. Conclusion

While transactional memory is a promising technique for

achieving concurrency in synchronized code, two of its oft-

cited advantages – composability and programmability –

are compromised by the difficulty of speculatively execut-

ing side-effecting code. In this paper, we have examined

the side-effecting operations, particularly the syscalls, per-

formed in critical sections in two large, multithreaded work-

loads. We have classified the kinds of syscalls thus per-

formed, noting that the presence of correct compensation

code and a transactional filesystem permit nearly all syscalls

to be executed speculatively. Transaction-safe system li-

braries, linked to transactional filesystems, could enable ap-

plication programmers to speculatively invoke, directly or

through composition, nearly every syscall.
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Figure 5. Degree of Overlap of Toplevel Syscalling Critical Sections (syscalling-TCSs) and Toplevel Critical Sections

(TCSs)

All syscalling-TCSs in (a) Firefox, (b) MySQL. This cumulative plot shows (black line) how many syscalling-TCSs (y-axis)

overlap (x-axis) or fewer TCS; (grey line) how many syscalling-TCSs (y-axis) overlap (x-axis) or fewer other syscalling-TCSs

halfway finished. As the barrier to concurrency is a prob-

lem proportional to the length of syscalling-TCSs, which, as

shown in Figure 3, tend large, this represents considerable

potential for even a relatively small number of toplevel side-

effecting transactions to impact concurrency throughout ap-

plications.

These large transactions translate to a significant degree

of overlap (described in Section 4.2.) The overlaps of

syscalling-TCSs in our workloads are shown in the black

plots in Figure 5. While a majority of syscalling-TCSs over-

lap with no other TCS – two-thirds in Firefox and half in

MySQL – a significant minority have substantial overlap.

15% of the syscalling-TCSs in Firefox overlap with 360 or

more TCSs; if the presence of a nonspeculative transaction

precludes any other transactions from committing (e.g. by

holding a “commit” token), this betokens a significant loss

of concurrency throughout both our applications.

Blundell et al. suggest that the nonspeculative transaction

(the unrestricted transaction in their parlance) need not block

speculative (restricted) transactions from retiring – as long

as there is only one nonspeculative transaction active at a

time, and it may never be aborted. [3] Their restricted trans-

actions are not only constrained from “going nonspecula-

tive”, but are also bounded in time and memory footprint.

However, the memory and time bounds are not strictly re-

quired; there is no reason that speculative transactions of any

size or duration might not retire even while another transac-

tion is nonspeculative, so long as the speculative transactions

do not conflict with the nonspeculative. In this case, it is in-

structive to consider, as a lower bound to syscalling-TCS

overlap, the overlap that syscalling-TCSs have with other

syscalling-TCSs. This metric, measured in the grey plots in

Figure 5, is similar to that shown in Figure 1 (Section 4.2),

except that not every retiring TCS increments the global

TCS retire counter – only retiring syscalling-TCSs may. As

only one syscalling-TCS is allowed to be nonspeculative at

a time, the overlapped critical sections in the grey plots in

Figure 5 cannot be executed concurrently under a regime in

which syscalling-TCSs “go nonspeculative” – but the loss of

concurrency is much less than that seen in the black plots in

Figure 5: over 93% of Firefox syscalling-TCSs overlap with

10 or fewer other syscalling-TCSs, and only 2% of MySQL

syscalling-TCSs overlap with any other syscalling-TCSs at

all, none with more than 4 others.

We expect these results to be a lower bound of the actual con-

currency available in transactional versions of these work-

loads. Atomic regions which, in lock-based code, would be

guarded by different locks, will, of course, when transac-

tional, not conflict (for if they did, the lock-based code would

have race conditions.) However, some atomic regions which

in lock-based code would be guarded by the same lock might

as transactions not conflict.

6. Conclusion

While transactional memory is a promising technique for

achieving concurrency in synchronized code, two of its oft-

cited advantages – composability and programmability –

are compromised by the difficulty of speculatively execut-

ing side-effecting code. In this paper, we have examined

the side-effecting operations, particularly the syscalls, per-

formed in critical sections in two large, multithreaded work-

loads. We have classified the kinds of syscalls thus per-

formed, noting that the presence of correct compensation

code and a transactional filesystem permit nearly all syscalls

to be executed speculatively. Transaction-safe system li-

braries, linked to transactional filesystems, could enable ap-

plication programmers to speculatively invoke, directly or

through composition, nearly every syscall.
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Syscalling TCSs

All TCSs

Results: “Going Nonspeculative”



Conclusions
• Critical sections do have side effects in real code -- outlawing 

won’t be trivial

• However, between correct system-library-level compensation 
code and a transactional filesystem, nearly all of the observed 
side effects can be handled speculatively, by protecting them 
at the library level

• Deferring side-effects until commit applies in only a minority 
of cases

• “Going nonspeculative” is not observed to be likely to affect 
performance, and could be a good choice if explicit aborts 
are not required

• No solution is a comprehensive answer!



Acknowledgements

• Thanks to Ravi Rajwar, who mentored an 
internship in which the basis of this research 
was performed

• This research was supported in part by NSF 
CAREER award CCR-03047260 and a gift 
from the Intel Corporation


