
Capabilities and Limitations of Library-Based
Software Transactional Memory in C++

Luke Dalessandro, Virendra Marathe, Michael Spear
Michael Scott

University of Rochester
cs.rochester.edu/research/synchronization

TRANSACT
August 2007

http://cs.rochester.edu/research/synchronization
http://cs.rochester.edu/research/synchronization

We Want Language Support
For Transactional Memory
• Language support is appealing
- Should make transactional memory easy to use
- Many analysis benefits
- etc

• BUT
- Lots of work to implement
- High adoption costs
- Unclear what it should look like (yet)

Luke Dalessandro 2

In The Meantime

• Maybe we can get by with library
implementation?
- Low development overhead
- Easily distributed
- Unmatched flexibility
- Reasonable performance

• Most downsides relate to APIs
- Complex, incompatible
- Provide poor compile-time error detection

Luke Dalessandro 3

Typical SW Library APIs

BEGIN_TRANSACTION;
Node* curr = sentinel;
while (curr != NULL)
{
 if (curr->val >= v)
 break;
 curr = curr->next;
}
return ((curr != NULL) &&
 (curr->val == v));
END_TRANSACTION;

Luke Dalessandro 4

Holy Grail

Typical SW Library APIs

BEGIN_TRANSACTION;
Node* curr = sentinel;
while (curr != NULL)
{
 if (curr->val >= v)
 break;
 curr = curr->next;
}
return ((curr != NULL) &&
 (curr->val == v));
END_TRANSACTION;

bool found;
BEGIN_TRANSACTION(t);
Node* curr = sentinel->open_RO(t);
while (curr != NULL)
{
 if (curr->val >= v)
 break;
 curr = curr->next->open_RO(t);
}
found = ((curr != NULL) &&
 (curr->val == v));
END_TRANSACTION(t);
return found;

Luke Dalessandro 4

Holy Grail Object-based with Indirection

Typical SW Library APIs

BEGIN_TRANSACTION;
Node* curr = sentinel;
while (curr != NULL)
{
 if (curr->val >= v)
 break;
 curr = curr->next;
}
return ((curr != NULL) &&
 (curr->val == v));
END_TRANSACTION;

Luke Dalessandro 4

bool found;
BEGIN_TRANSACTION(t);
found = false;
Validator c_v;
Node* curr =
 sentinel->open_RO(t, c_v);
Node* n = curr->next; validate(c_v);
curr = n->open_RO(t, c_v);
while (curr != NULL) {
 long val = curr->val; validate(c_v);
 if (val >= v)
 break;
 n = curr->next; validate(c_v);
 ...

Holy Grail Object-based, No Indirection

Typical SW Library APIs

BEGIN_TRANSACTION;
Node* curr = sentinel;
while (curr != NULL)
{
 if (curr->val >= v)
 break;
 curr = curr->next;
}
return ((curr != NULL) &&
 (curr->val == v));
END_TRANSACTION;

bool found;
BEGIN_TRANSACTION;
found = false;
Node* curr = sentinel;
while (curr != NULL) {
 if (STM_READ_LONG(&curr->val) >= v)
 break;
 curr = (Node*)STM_READ_PTR(&curr->next);
}
found = ((curr != NULL) &&
 (STM_READ_LONG(&curr->val) == v));
END_TRANSACTION;
return found;

Luke Dalessandro 4

Holy Grail Word-based

Can Library TM Systems
Suffice?

• In The Short Term
- Research community needs
- TM implementation development and testing
- Large application development (chicken and egg)

• In The Long Term
- Naive users

• Current APIs: no and no

• Better APIs: yes and no

Luke Dalessandro 5

TM Hooks And Who
Enforces Their Use

First Access Per Access Post Access

DSTM
RSTM

Compiler N/A N/A

TL2 N/A User User

LibLTX Compiler N/A User

Luke Dalessandro 6

RSTM2

• Just an API, not an implementation!
- Back end library implementation can be any

published C/C++ library TM
- Current working implementations include RSTM,

~TL2, RTM, and several others

• Evolved through the use of RSTM
- RSTM was designed as an open platform to

experiment in C++
- Originally adopted the DSTM interface

Luke Dalessandro 7

RSTM2

Hook Mechanism Enforced By

First Access Smart Pointers Compiler

Per Access Smart Pointers Compiler

Post Access Field Accessors Compiler*

Luke Dalessandro

*possible to circumvent

8

Smart Pointers in C++
• Overload operator->() and
operator*() to make objects act like
pointers.

template <class T>
class smart_ptr
{
 T* impl;
 public:
 T* operator->() { return impl; }
 T& operator*() { return *impl; }
 ... // const members,
 // etc...
};Luke Dalessandro 9

Smart Pointers in
RSTM2

• API defines 4 types of smart pointers

State Name operator->() returns

Shared sh_ptr N/A

Readable rd_ptr const T*

Writable wr_ptr T*

Private un_ptr T*

Luke Dalessandro 10

Accessors...

• Macros generate accessors (get/set)

class Node {
 // sh_ptr<Node> next;
 GENERATE_FIELD(sh_ptr<Node>, next);
 //int val
 GENERATE_FIELD(int, val);
};

wr_ptr<Node> curr(head);
curr->set_val(10);

Luke Dalessandro 11

And Validators

• Getters take reference to smart
pointer

• This provides object based libraries a
post access validation hook

Luke Dalessandro 12

// RSTM backend
// rd_ptr caches object version on open
rd_ptr<Node> curr(head);

// accessor compares version on load
sh_ptr<Node> n = curr->get_next(curr);

Putting It Together

Luke Dalessandro 13

sh_ptr<Node> head;

rd_ptr<Node> curr(head);

curr = curr->get_next(curr);

wr_ptr<Node> edit(curr);

edit->set_val(10);

Putting It Together

first access

Luke Dalessandro 13

sh_ptr<Node> head;

rd_ptr<Node> curr(head);

curr = curr->get_next(curr);

wr_ptr<Node> edit(curr);

edit->set_val(10);

Putting It Together

first access

per-access

Luke Dalessandro 13

sh_ptr<Node> head;

rd_ptr<Node> curr(head);

curr = curr->get_next(curr);

wr_ptr<Node> edit(curr);

edit->set_val(10);

Putting It Together

per-access

first access

post access

Luke Dalessandro 13

sh_ptr<Node> head;

rd_ptr<Node> curr(head);

curr = curr->get_next(curr);

wr_ptr<Node> edit(curr);

edit->set_val(10);

List Search With
RSTM2

bool found;
BEGIN_TRANSACTION;
found = false;
rd_ptr<Node> curr(sentinel);
while (curr != NULL)
{
 if (curr->get_val(curr) >= v)
 break;
 curr = curr->get_next(curr);
}
found = ((curr != NULL) &&
 (curr->get_val(curr) == v));
END_TRANSACTION;
return found;

Luke Dalessandro

BEGIN_TRANSACTION;
Node* curr = sentinel;
while (curr != NULL)
{
 if (curr->val >= v)
 break;
 curr = curr->next;
}
return ((curr != NULL) &&
 (curr->val == v));
END_TRANSACTION;

14

Holy Grail Any Library Type

What have we gained?
• Normalized interface
- Write an app or benchmark once, test any library

implementation or feature you want
- Automated code sharing between transactional and non-

transactional contexts with template metaprogramming
- Clean enough for experts to use

• Nearly no dependence on programmer
discipline (compiler enforced hooks)

• Enables us to write non-trivial applications
- Delaunay mesh generation
- See papers on app [IISWC ’07], privatization [UR TR 915]

Luke Dalessandro 15

API Annoyances
• Arbitrary restrictions remain
- this is not a smart pointer
- No exceptions in shared object constructors
- No nonlocal returns
- Explicit transactional types (Node)

• Programming awkwardness
- Accessors an validators
- Template based code sharing
- Error messages are baffling

• These could be solved with simple
compiler modifications

Luke Dalessandro 16

More Fundamental Issues
• Shared data is explicitly specified at

object level
- Requires program design from a shared object

perspective

• Only shared objects revert on abort
- This seems like the wrong semantics
- Particularly annoying for simple loop indices

• Many open research questions require
compiler level knowledge
- eg. how much can be inferred about shared vs.

privatized data use?
Luke Dalessandro 17

Conclusions
• RSTM2 is suitable for short term needs
- Allows write-once TM benchmarks
- Simplifies large-scale application development
- Good framework for investigating TM semantics

• BUT it is not appropriate for naive users
- Generic programming is complicated
- Explicit use of 4 types of pointers too much
- Annoyances are overwhelming

• We feel that no pure library will suffice
long term (not surprising in retrospect)

Luke Dalessandro 18

Future Work

• Implement mappings to more back ends

• Write more applications, benchmarks

• Implement lightweight compiler support
to fix “the annoyances”

• Investigation of TM semantics choices
and their consequences

Luke Dalessandro 19

Thanks

• The rest of the RSTM team:
Arrvindh Shriraman, Aaron Rolett,
Sandhya Dwarkadas

• Download RSTM2 and write your own
apps and benchmarks for the last time

• http://www.cs.rochester.edu/research/synchronization/

Luke Dalessandro 20

http://www.cs.rochester.edu/research/synchronization/
http://www.cs.rochester.edu/research/synchronization/

