
Abstract nested transactions

Tim Harris (MSR Cambridge)

Srđan Stipić (BSC)

Atomic blocks and scalability

• Typical implementations of atomic blocks let
them execute concurrently as long as there are
no conflicts at an object level

atomic { tmp1 = o1.x; } atomic { tmp2 = o1.x; }

atomic { o1.x = 17; } atomic { o2.x = 42; }

atomic { o1.x = 42; } atomic { o1.y = 17; }

atomic { tmp1 = o1.x; } atomic { o1.y = 17; }

• This provides a way for programmers to
anticipate which transactions will run
concurrently and which cannot

– Unlike hashing on heap addresses

• Programs can suffer from „benign‟ conflicts

– Informally: conflicting operations where “the conflict
doesn‟t really matter”

Problem: benign conflicts

#1 – Shared temporaries

atomic { // Tx-1 atomic { // Tx-2

workOn(g_o1); workOn(g_o2);

} }

void workOn(Object o) {

g_temp = o;

// Work on ‘g_temp’

}

Both threads will update
‘g_temp’. Only one will
be allowed to commit.

• Transactional version of „xlisp‟

• Red-black tree sentinel node fields

• Haskell-STM identifies transactionally-silent stores

#2 – False sharing

atomic { // Tx-1 atomic { // Tx-2

g_obj.x ++; g_obj.y ++;

// Private work // Private work

} }

Both threads will update
fields of ‘g_obj’. Only one
will be allowed to commit.

• Different perf-counter fields

• Can be avoided by restructuring code...

• ...or by a finer-granularity of conflict detection

#3 – Commutativity & layering

atomic { // Tx-1 atomic { // Tx-2

g.Insert(100, v1); g.Insert(200, v2);

// Private work // Private work

} }

The operations on the shared collection
commute, but the STM operations and

memory accesses do not

• Updates to the same perf counter

• Can avoid with open-nesting (ONTs) – but care
required to retain serializability of transactions

#4 – Low-level conflicts

atomic { // Tx-1 atomic { // Tx-2

f = g_l.Find(1000); g_l.Insert(10);

} }

If ‘g_l’ is a typical linked list then
Tx-1’s read set will be massive and

conflict with Tx-2’s update

• STM-specific hooks to trim the read set

• Need great care to ensure correctness (suppose
we add DeleteFrom...)

#5 – Arbitrary choices

while (true) {

atomic { // Tx-1

t = getAny(g_in);

if (t == null) break;

// Work on t

put(g_out, t);

} } }

Run two loops in parallel –
they’ll both pick the same

items and conflict…

• Open-nesting can be used directly (taking care
with empty lists)

• Use randomization

Discussion

• Some cases can/could be handled automatically

– Shared temporaries: recognise as a form of silent store

– False conflicts due to granularity

• Some cases are handled by ONTs

– Commutative operations on a collection

– Arbitrary removal from a work-queue

• Other cases use manual optimization interfaces

– Low-level conflicts in linked-list operations

Do this transparently in
the implementation

Use randomization?

Develop analyses or new
dynamic techniques?

Overview: abstract nested transactions

• ANTs identify possible benign conflicts in the
source code

– We do this manually

– It could be automated in the future

• Our new syntax is semantically transparent

– Impacts the program‟s performance, not possible
behavior

– Poor usage of ANTs may slow down a program; it
won‟t make it crash

#2 – False sharing

atomic { // Tx-1 atomic { // Tx-2

ant { g_obj.x ++; } ant { g_obj.y ++; }

// Private work // Private work

} }

Both threads will update
fields of ‘g_obj’. Only one
will be allowed to commit.

• Different perf-counter fields

• Can be avoided by restructuring code...

• ...or by a finer-granularity of conflict detection

#3 – Commutativity & layering

atomic { // Tx-1 atomic { // Tx-2

ant { g.Insert(100, v1); } ant { g.Insert(200, v2); }

// Private work // Private work

} }

The operations on the shared collection
commute, but the STM operations and

memory accesses do not

• Updates to the same perf counter

• Can avoid with open-nesting (ONTs) – but care
required to retain serializability of transactions

What does this actually do?

• Goal is to

– Detect conflicts experienced by an ANT

– Upon conflict just re-execute the ANT, not whole tx

• Do this by

– Tracking the inputs to the ANT (values it reads from
the heap, variables it reads from)

– Tracking the outputs from the ANT (values it writes to
the heap, variables it updates, result value/exception)

• In case of conflict

– Re-execute the ANT with the same inputs

– Check it produces the same outputs

Why can it help?

• Before:

First ANT execution Fail to commit

After:

First ANT execution Re-execute ANTs

Commit

ANT invalidated by physical
conflicts in this interval

Re-executed ANT recovers
from physical conflict

Re-execute
everything

Basic implementation (GHC)

r0 = <LOTS-OF-WORK> ;

ant { o1.ctr ++ } ;

r1= <LOTS-OF-WORK> ;

ant { o2.ctr ++ } ;

Addr Old New

Ordinary transaction log

Addr Old New

0x2000 20 21

0x3000 40 41

ANT log

0x1000 100 200

0x6004 400 500

ANT action list

Closure to run
{ o1.ctr ++; }

Closure to run
{ o2.ctr ++; }

Commit: refresh the ANT log
• Validate the ANT log

– OK? We‟re done

– Invalid? Discard the log and re-run ANTs

Addr Old New

Ordinary transaction log

Addr Old New

0x2000 20 21

0x3000 40 41

ANT log

0x1000 100 200

0x6004 400 500

ANT action list

Closure to run
{ o1.ctr ++; }

Closure to run
{ o2.ctr ++; }

Addr Old New

0x2000 340 341

0x3000 500 501

Commit
• Finish the commit operation:

– Commit the ANT log into the ordinary log

– Commit the resulting log to the heap

Addr Old New

Ordinary transaction log ANT log

0x1000 100 200

0x6004 400 500

ANT action list

Closure to run
{ o1.ctr ++; }

Closure to run
{ o2.ctr ++; }

Addr Old New

0x2000 340 341

0x3000 500 501

0x2000 340 341

0x3000 500 501

Prototype perf

Conclusion

• Prototype implementation in progress in GHC

– Fall-back to direct execution in complex cases

– Several ideas for perf improvements

• Key argument for this approach:

– Deal with some of the uses of open nesting

– Guarantee atomic means atomic

– Provide reasonable perf, good scalability

