
Integrating Transactional Memory into C++

Integrating Transactional Memory 
into C++

Victor Luchangco

Scalable Synchronization Research Group
Sun Microsystems Laboratories

16 Aug 2007

(joint work with Lawrence Crowl, Yossi Lev,
Mark Moir and Dan Nussbaum)

Copyright 2007 Sun Microsystems, Inc



Integrating Transactional Memory into C++

Pragmatic approach
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We want a design that can we can
implement and make available to

real C++ programmers
and that they will want to use.
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compiler support

vs.

library support
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“object-based”

vs.

“word-based”
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transaction { 
  myAccount.deposit(x);
  yourAccount.withdraw(x);
}

• begin on block entry
• commit/abort on block exit
• entry and exit based on dynamic extent

> like try statement
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transaction { 
  myAccount.deposit(x);
  yourAccount.withdraw(x);
}

• commit on “normal” termination
> including break, continue, return

• what about “abnormal” termination?
> conflict
> asynchronous events
> exceptions
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transaction { 
  myAccount.deposit(x);
  yourAccount.withdraw(x);
} exception { printf(“error”); }

What if withdraw throws an exception?
• commit
• abort “on exit”
• abort “on throw”
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strong atomicity

vs.

weak atomicity
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privatization
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Other issues
• nesting: flat, closed, open
• input/output
• system calls
• programmer-directed contention control
• explicit abort
• transactional “control codes”
• customizing transactions
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Conclusion

• incremental
• sensitive to C++ programming style
• available sooner than later
• experience to guide research

We want a design that can we can
implement and make available to

real C++ programmers
and that they will want to use.


