
Integrating Transactional Memory into C++

Integrating Transactional Memory
into C++

Victor Luchangco

Scalable Synchronization Research Group
Sun Microsystems Laboratories

16 Aug 2007

(joint work with Lawrence Crowl, Yossi Lev,
Mark Moir and Dan Nussbaum)

Copyright 2007 Sun Microsystems, Inc

Integrating Transactional Memory into C++

Pragmatic approach
• useful to “working programmer”
• sooner rather than later

Integrating Transactional Memory into C++

Pragmatic approach
• useful to “working programmer”
• sooner rather than later

We want a design that can we can
implement and make available to

real C++ programmers
and that they will want to use.

Integrating Transactional Memory into C++

Desiderata
• composability
• minimality
• predictability
• orthogonality
• implementability
• incremental development
• incremental adoption
• scalability
• efficiency

Integrating Transactional Memory into C++

Desiderata
• composability
• minimality
• predictability
• orthogonality
• implementability
• incremental development
• incremental adoption
• scalability
• efficiency

Integrating Transactional Memory into C++

Desiderata
• composability
• minimality
• predictability
• orthogonality
• implementability
• incremental development
• incremental adoption
• scalability
• efficiency

Integrating Transactional Memory into C++

compiler support

vs.

library support

Integrating Transactional Memory into C++

“object-based”

vs.

“word-based”

Integrating Transactional Memory into C++

transaction {
 myAccount.deposit(x);
 yourAccount.withdraw(x);
}

• begin on block entry
• commit/abort on block exit
• entry and exit based on dynamic extent

> like try statement

Integrating Transactional Memory into C++

transaction {
 myAccount.deposit(x);
 yourAccount.withdraw(x);
}

• commit on “normal” termination
> including break, continue, return

• what about “abnormal” termination?
> conflict
> asynchronous events
> exceptions

Integrating Transactional Memory into C++

transaction {
 myAccount.deposit(x);
 yourAccount.withdraw(x);
}

What if withdraw throws an exception?
• commit
• abort “on exit”
• abort “on throw”

Integrating Transactional Memory into C++

transaction {
 myAccount.deposit(x);
 yourAccount.withdraw(x);
} exception { printf(“error”); }

What if withdraw throws an exception?
• commit
• abort “on exit”
• abort “on throw”

Integrating Transactional Memory into C++

strong atomicity

vs.

weak atomicity

Integrating Transactional Memory into C++

privatization

Integrating Transactional Memory into C++

Other issues
• nesting: flat, closed, open
• input/output
• system calls
• programmer-directed contention control
• explicit abort
• transactional “control codes”
• customizing transactions

Integrating Transactional Memory into C++

Conclusion

• incremental
• sensitive to C++ programming style
• available sooner than later
• experience to guide research

We want a design that can we can
implement and make available to

real C++ programmers
and that they will want to use.

