High-Level Small-Step

Operational Semantics for

@ﬂyxe Transactions

Katherine F. Moore
Dan Grossman

The University of Washington

Motivating Our Approach

= Operational Semantics

o Model key programming-language features
= Functions, memory allocation, ..., transactions

= High-Level
o No TM implementation detalls
o Programmer’s view
o Most appropriate for language specification

= Small-Step
o Transactions take many steps to complete
o Lets us investigate interleavings, parallelism

Outline

= A basic transaction language
o Used to demonstrate our approach

= [ransactions with Internal Parallelism
o Type system limits spawn actions

= [ransactions with Weak |solation

o Proof techniques for weak/strong equivalence
given static restrictions

o 0Ongoing Work: Weak languages with rollback

Technical Detalls...

= Program State: a;H;e | ...||e,

o Every eis a thread
o H is a heap that maps addresses to mutable contents.

o a indicates if there is an active transaction
= o forno,and e foryes

= To move from one program state to another,
evaluate a single thread.

. . . . S'.
a;H;e—a';H';e';e

opt

o expressions spawn af most one other thread in a step

A Basic Transaction Language

= Many rules are unaffected by transactions:
o Function application

a,H;(Axe)v—a/H;e{v/x};

= Some rules are specific to transactions:
o Entering or exiting transaction

o H ;atomic e — *;H ;inatomic(e);

*; H:inatomic(v); — o, H;v;

[A Basic Transaction Language]

= These rules prevent heap access in parallel
with a transaction:

o Read:

o, Hread(l) —o;H; H(l),-
o Write:

o;Hl:=v—0o,H, [Vl -

= But wait! Transactions need a way to read
and write the heap also....

A Basic Transaction Language

= Executing inside a transaction allows e to pick any
a-bit it wants. Now e can
o read or write H
o enter and exit nested transactions.

. . N & 4 I I
a,H,e—a';H"e';

*. H;1natomic(e) — *; H';inatomic(e');

= Nothing else can read or write H until the
transaction completes

A Basic Transaction Language

= Spawning threads inside a transaction causes a
dynamic failure:
a,H;e— a';H';

. ;1inatomic(e) — *; H';inatomic(e');

aH;spawn(e) — a;H;0;e

= Easy to prevent e from attempting this using a
type system.

Recap...

m Closed nested transactions with strong
Isolation

= Small-step with no TM details

= Some questions we can now ask...

O

Could we allow spawn inside a transaction?
What would it mean?

Can we formalize weak isolation?
How can we show when weak/strong are
equivalent?

Internal Parallelism

= We consider three “viable” kinds of spawn:
o Spawny : Top level spawn

] Never okay in a transaction
= Just like basic language

o Spawn,. : On commit spawn
] Can occur anywhere
= Delay computation until the containing transaction completes.

o Spawn;, : Internally parallel spawn
= Must execute in a transaction
= Transaction waits for spawned thread to complete before exit

= As before, a type system can prevent dynamlc errors due to spawn
expressions executing “at the wrong time”.

Internal Parallelism

= New state for transactions:

Internal transaction
expression as before

inatomic(a, e, T

a=®wheneorT, has
an active (nested)
transaction

N

Threads that will execute
in parallel with e.

OC’T)

\

Threads that are delayed

until commit

Outline

= A basic transaction language
o Used to demonstrate our approach

= [ransactions with Internal Parallelism
o Type system limits spawn actions

m [ransactions with Weak |solation

o Proof techniques for weak/strong equivalence
given static restrictions

o 0Ongoing Work: Weak languages with rollback

\Weak-Isolation

m Weak isolation relaxes the restrictions on a:
o Read:

a,H;read(l)— a,H; H(l),-

o Write;
aH,l=v—aH,[> v,
= Intuitively:
o This language has strictly more behaviors

....but only for programs that contain data races
between transactions and non-transactions

Formalizing intuition:

Equivalence
= Goal:
o Define a conservative subset of programs such
that; o€ = one GHGe . e,
iff oye— aHe .. lle,
= How?

o Disallow the transactional / nontransactional
races that cause problems.

[Heap Partition]

m Strict Partition:

o Each address is accessed always in a
transaction, or never in a transaction

o Conservative starting point for the
structure of the equivalence proof

o Defined formally via a type system
= Shows that evaluation preserves the partition

Weak/Strong
[Equivalence Theorem

—— e — o — —— —— — — —— — — — — — — — — — — —— —— —— —— — —

ol —> a; H e .. Ilen

strong

iff oye— a;Hse ll...lle

I’l

m Statement of Theorem is high-level

= Proof requires commuting operations

between threads to show transactions are
serializable

Weaker Transaction
Languages

= Original definition of weak isolation is
somewhat naive, for example...

o What would happen if a transaction aborts?

. Weak with rollback

o Recently proven equivalent to strong given a
heap partition

o Must show that rollback is correct

= Weak with lazy update

o Ongoing work

Conclusions

= Defined transactions without exposing
programmers to TM details

o Formalized transactions from programmers’
perspective

o Our model has a single transaction at a time
= Defined transactions that allow internal spawn
o Multiple reasonable semantics
= Defined weak-isolation and strong-isolation

o Proven they are equivalent under certain
conditions

o Future leverage this proof technique for less-
conservative restrictions (privatization, read-
only, thread-local, ...)

