
High-Level Small-Step
Operational Semantics for
Software Transactions

Katherine F. Moore
Dan Grossman

The University of Washington

Motivating Our Approach

 Operational Semantics
 Model key programming-language features

 Functions, memory allocation, …, transactions

 High-Level
 No TM implementation details
 Programmer’s view
 Most appropriate for language specification

 Small-Step
 Transactions take many steps to complete
 Lets us investigate interleavings, parallelism

I plan to give more detail about

Outline

 A basic transaction language
 Used to demonstrate our approach

 Transactions with Internal Parallelism
 Type system limits spawn actions

 Transactions with Weak Isolation
 Proof techniques for weak/strong equivalence

given static restrictions
 Ongoing Work: Weak languages with rollback

Technical Details…

 Program State:
 Every e is a thread
 H is a heap that maps addresses to mutable contents.
 a indicates if there is an active transaction

  for no, and  for yes

 To move from one program state to another,
evaluate a single thread.

 expressions spawn at most one other thread in a step

opteeHaeHa ;';';';; !

n
eeHa ||...||;; 1

A Basic Transaction Language

!•");inatomic(; atomic; e;He;Ho

!"!• ;;);(inatomic; v;HvH; o

 Many rules are unaffected by transactions:
 Function application

 Some rules are specific to transactions:
 Entering or exiting transaction

!" };/{;).(; xvea;Hvexa;H #

A Basic Transaction Language

 These rules prevent heap access in parallel
with a transaction:
 Read:

 Write:

 But wait! Transactions need a way to read
and write the heap also….

!"= l;vl;Hvl;H ;,:; aoo

!" ;lH;Hlread;H)(;)(; oo

 Executing inside a transaction allows e to pick any
a-bit it wants. Now e can
 read or write H
 enter and exit nested transactions.

 Nothing else can read or write H until the
transaction completes

A Basic Transaction Language

!•"•

!"

);'(inatomic;';)(inatomic;;

;';';';;

eHeH

eHaeHa

A Basic Transaction Language

 Spawning threads inside a transaction causes a
dynamic failure:

 Easy to prevent e from attempting this using a
type system.

ea;Hespawna;H ;0;)(; !

!•"•

!"

);'(inatomic;';)(inatomic;;

;';';';;

eHeH

eHaeHa

Recap…

 Closed nested transactions with strong
isolation

 Small-step with no TM details

 Some questions we can now ask…
 Could we allow spawn inside a transaction?

What would it mean?
 Can we formalize weak isolation?

How can we show when weak/strong are
equivalent?

Internal Parallelism

 We consider three “viable” kinds of spawn:
 Spawntl : Top level spawn

 Never okay in a transaction
 Just like basic language

 Spawnoc : On commit spawn
 Can occur anywhere
 Delay computation until the containing transaction completes.

 Spawnip : Internally parallel spawn
 Must execute in a transaction
 Transaction waits for spawned thread to complete before exit

 As before, a type system can prevent dynamic errors due to spawn
expressions executing “at the wrong time”.

Internal Parallelism

 New state for transactions:

 inatomic(a, e, Toc, Tip)

Internal transaction
expression as before

Threads that will execute
in parallel with e.

Threads that are delayed
until commit

a =  when e or Tip has
an active (nested)

transaction

Outline

 A basic transaction language
 Used to demonstrate our approach

 Transactions with Internal Parallelism
 Type system limits spawn actions

 Transactions with Weak Isolation
 Proof techniques for weak/strong equivalence

given static restrictions
 Ongoing Work: Weak languages with rollback

Weak-Isolation

 Weak isolation relaxes the restrictions on a:
 Read:

 Write:

 Intuitively:
 This language has strictly more behaviors

….but only for programs that contain data races
between transactions and non-transactions

!" ;lHa;Hlreada;H)(;)(;

!"= l;vla;Hvla;H ;,:; a

Formalizing intuition:
Equivalence

 Goal:
 Define a conservative subset of programs such

that:

 How?
 Disallow the transactional / nontransactional

races that cause problems.

!

o;";e#strong

*
a;H;e

1
|| ... ||en

iff o;";e#weak

*
a;H;e

1
|| ... ||en

Heap Partition
 Strict Partition:

 Each address is accessed always in a
transaction, or never in a transaction

 Conservative starting point for the
structure of the equivalence proof

 Defined formally via a type system
 Shows that evaluation preserves the partition

Weak/Strong
Equivalence Theorem

 Statement of Theorem is high-level
 Proof requires commuting operations

between threads to show transactions are
serializable

 then...checks,- type If e

!

o;";e#strong

*
a;H;e

1
|| ... ||en

iff o;";e#weak

*
a;H;e

1
|| ... ||en

Weaker Transaction
Languages

 Original definition of weak isolation is
somewhat naïve, for example…
 What would happen if a transaction aborts?

 Weak with rollback
 Recently proven equivalent to strong given a

heap partition
 Must show that rollback is correct

 Weak with lazy update
 Ongoing work

Conclusions

 Defined transactions without exposing
programmers to TM details
 Formalized transactions from programmers’

perspective
 Our model has a single transaction at a time

 Defined transactions that allow internal spawn
 Multiple reasonable semantics

 Defined weak-isolation and strong-isolation
 Proven they are equivalent under certain

conditions
 Future …. leverage this proof technique for less-

conservative restrictions (privatization, read-
only, thread-local, …)

