
1

Dan Nussbaum

Scalable Synchronization Research Group
Joint work with Yossi Lev and Mark Moir
Sun Microsystems Labs

August 16, 2007

Phased Transactional 
Memory

1



Sun Confidential: Internal Only 2

Transactional Memory (TM)

• Replace locks with atomic sections.
• (Word-based.)
• Hardware or Software?
> Software (STM) is cheaper and more flexible.
> Hardware (HTM) is faster.

• Hybrid Transactional Memory (HyTM) gets best of 
both worlds.
> Common case in hardware -- fast.
> Uncommon case in software – correct.
> Make effective use of best-effort hardware (Rock).



Sun Confidential: Internal Only 3

Hybrid Transactional Memory (HyTM)

• HyTM approach: compiler plus library.
• Two code paths:
> Hardware path attempts to use  transactional hardware.

–Fast.
–Transactions don't always succed:

– Resource limitations.
– “Difficult” instructions.
– Contention.

> Software path contains calls into an STM library.
–Slower.
–Take this path whenever the hardware comes up short.



Sun Confidential: Internal Only 4

HyTM: Instrument Hardware Path
• Problem: TM hardware unaware of software txns.
• Solution: make hardware transactions aware of 

software transactions, by augmenting hardware path:

                     txn_begin;

                         if(!canHardwareRead(&X))
                         txn_abort;

   Y = X + 5;    ==>     tmp = X;

                         if(!canHardwareWrite(&Y))
                         txn_abort;

                         Y = tmp + 5;

                       txn_end;



Sun Confidential: Internal Only 5

Phased Transactional Memory

• Arrange to only be executing in a single mode at a 
time, system-wide.
> HARDWARE, SOFTWARE, (others).

• Partition time into phases.

• When in HARDWARE mode, use the hardware path.
> Don't have to allow for concurrent execution of software 

transactions: minimal overhead.

• When in SOFTWARE mode, use the software path.
> Don't have to allow for concurrent execution of hardware 

transactions: fewer constraints on STM.



Sun Confidential: Internal Only 6

PhTM Prototype: Mode Transitions
• Start out in HARDWARE mode, until some transaction (T) 

has to run in software.
• Switch to SOFTWARE mode, making sure that no 

hardware transactions are still running.
• Run in SOFTWARE mode for a while.
> Allow other transactions to start up in SOFTWARE mode.

• Switch back to HARDWARE mode.



Sun Confidential: Internal Only 7

if (FirstTryInHardware()) {

HW:

  chkpt(F);

  HWPostCheckpoint(); <== if (mode != HARDWARE) fail;

  <body>

  commit();

} else {

  while (!<try body with STM>) {

F:  if (!RetryInSoftware()) goto HW;

  }

}

PhTM Prototype: Schema



Sun Confidential: Internal Only 8

Experimental Set-Up

• STM-only experiments: E25K.
> Big (144-core) SMP.

• Transactional hardware: simulator.
> Wisconsin GEMS/ruby/LogTM (Simics-based).
> Modified LogTM to better reflect best-effort constraints.



Sun Confidential: Internal Only 9

Benchmarks

• Transactified Berkeley DB Lock subsystem.
> Every thread repeatedly locks and unlocks its own object.
> Ought to scale perfectly.

• Red-Black Tree.
> Tree is half full.
> 20% inserts, 20% deletes, 60% lookups.
> On larger machines, contention is significant.



Sun Confidential: Internal Only 10

Berkeley DB: STM-only



Sun Confidential: Internal Only 11

Berkeley DB: Simulations



Sun Confidential: Internal Only 12

RedBlackTree: STM-only



Sun Confidential: Internal Only 13

RedBlackTree: Simulations



Sun Confidential: Internal Only 14

Conclusions

• First-cut PhTM implementation already performs 
pretty well.
> TL2 looks like best choice for PhTM's software phase.

• With a bit more work, we hope to close the gap 
between PhTM and pure hardware even further.



Sun Confidential: Internal Only 15

Future Work

• Performance Improvements.
> Improve phase management strategy.
> Improve contention control strategy.
> Inline more of the fast path.
> Compiler optimizations.

• More than just two (HARDWARE, SOFTWARE) modes.
> Requires a more generalized approach (see paper).
> HYBRID mode.
> SEQUENTIAL mode.



Sun Confidential: Internal Only 16

References

• HyTM Paper (ASPLOS 2006)
> http://research.sun.com/scalable/pubs/ASPLOS2006.pdf

• TL2 Paper (DISC 2006)
> http://research.sun.com/scalable/pubs/DISC2006.pdf

http://research.sun.com/scalable/pubs/ASPLOS2006.pdf
http://research.sun.com/scalable/pubs/DISC2006.pdf


Sun Confidential: Internal Only 17

Acknowledgements

• Dave Dice and Nir Shavit (TL2).
• Brian Whitney (E25K).
• Peter Damron (Compiler).
• Sasha Fedorova and Victor Luchangco 

(Discussions).
• Kevin Moore (Simulator).



18

 

Yossi Lev, Mark Moir and
Dan Nussbaum

yosef.lev@sun.com
mark.moir@sun.com
daniel.nussbaum@sun.com

18

mailto:yosef.lev@sun.com
mailto:mark.moir@sun.com
mailto:daniel.nussbaum@sun.com


Sun Confidential: Internal Only 19

PhTM Prototype: Mode Transitions (2)
ModeIndicator = <mode, deferredCount, undeferredCount>

• Transactions waiting to run in SOFTWARE mode increment 
deferredCount.  Eventually one of them sets mode=SOFTWARE.

• Transactions that come into being when mode==SOFTWARE and 
deferredCount>0 increment undeferredCount and then run in 
software.

• Transactions that come into being when mode==SOFTWARE and
deferredCount==0 wait for mode to change to HARDWARE.

• All software transactions decrement appropriate count after 
they commit.  The last of these sees deferredCount==0 && 
undeferredCount==0, and sets mode=HARDWARE.



Sun Confidential: Internal Only 20

PhTM: Generalized Approach

• Many possible modes.
> HARDWARE, SOFTWARE, HYBRID, SEQUENTIAL, ...

• Managing transitions between modes.
> No interference between one phase and the next.
> When to switch; which mode to switch to?



Sun Confidential: Internal Only 21

PhTM: Generalized Approach (cont.)

•  ModeIndicator=<mode, mustFinishThis, otherTxns,
               nextMode, mustFinishNext, version>

• Collect candidates for next mode.
NextMode=<next Mode>; mustFinishNext++

• Mode Transition
> Only OK when mustFinishThis==0 && otherTxns==0
mode=nextMode;
nextMode=NONE;
mustFinishThis=mustFinishNext;
mustFinishNext=0;
version++;


