
TRANSACT 2007 Panel

“Beyond Transactions: The Evolution of 
Transactional Memory”

Ravi Rajwar
8/16/2007

Disclaimer: These are strictly my personal opinions and 
not necessarily the opinions of my employer. They are 
based on my observing/working in this field for the past 
decade.



2



3

What is TM?

1. TM as a scalable synchronization model
– Jensen et al., Herlihy&Moss 1993, Stone et al. 1993, …
– Primary focus of TM (including many STMs…)

2. TM as a new programming model
– Started ~2005… (composability)
– Primary focus of most recent papers on STMs and HW 

support for STMs/Unbounded TMs.

I ignore
– Speculative parallelization
– Speculative optimization
– Coherence, Consistency
– These are irrelevant to the overall question



4

TM for scalable synchronization

Goal very domain specific
– Performance: scalable synch (measurable)
– Lock-free data structures (goodness?)
– Non-blocking, Deadlock-free (how to measure?)

Variants
– Lock elision: gets most of what you need perf. wise

Metric
– Compare with locks – performance and usage
– Easier? Harder? Hard to say

I think this is a fine idea
– Can clearly see domains where useful…
– Is the domain large enough?
– Does it make parallel programming easier?



5

TM as a new programming model (1)

Taken research world by storm last 2 years
– Lots of great research by many smart folks
– Not just synctactic sugar…

Fundamental benefit here is “composability”
– Scalability/performance comes from earlier slide…

– Insufficient for driving a “programming model”

What is composability?
– Misunderstood by many?
– Can I call arbitrary stuff? Connect arbitrary modules? No
– Talks only about abstraction

– By itself does not provide correctness or deadlock-freedom
– Property is actually very synchronization construct focused…



6

TM as a new programming model (2)

Most of the work so far…
– STM implementations
– Allow to answer the questions: 

– Is this even going to ever work?
– Do the claims and promise even have any merit?

Similar to how research student writes a simulator
– Test out ideas
– Just writing a simulator does not guarantee a thesis

– You have to prove/demonstrate your idea

Assumed goodness w/o demonstration “in the field”
– We are still in “is this even a good idea/worth it phase”…



7

What was the goal of the programming model?

Are we…
– The grad. student who sees simulator writing as end goal?

TM was meant to be an easy programming model
– We need to prove/disprove this
– Looking at the papers on semantics, nesting, subtleties, 

etc., I argue that the discussion should have been put to 
rest right there…

Solution looking for a problem?
– Are we afraid to entertain the thought that TM as a 

programming model may not be the right thing?



8

What I want to see…

Let’s evaluate TM as a programming model
– Experimental languages, experimental systems in the field

Show me 
– Composability—how exactly, what exactly? Domain?
– Ease of programming, metrics, etc.
– Integration into existing world (many many many issues…)
– Value…

– If integration needs large scale rewrite/recompile, must have 
corresponding ROI

– If I am doing large scale re-write/re-compile, is TM what I 
really want to do?

Don’t show me
– Performance, Scalability
– I know how to do that without a new programming model…



9

Final thoughts on TM as a programming model

Panel focus 
– What HW support for this TM programming model

“ Let us not put the cart before the horse.
Lest the horse may already be dead. 

Let us first find that out…”


