
Transact `07

Transactional Memory and 
Hardware Primitives

Craig Zilles
University of Illinois at Urbana-Champaign



Craig Zilles Transact `07 2

The Virtues of a “Best Effort” Hardware TM

Clean Architecture: xbegin <PC>, xend, xabort

 Permits a high-performance implementation
 No observable intermediate states
 e.g., don’t want to expose coherence states in ISA

 Good forward compatibility (if best effort)
 can be implemented as branch, invalid opcodes

 Same basic hardware useful for:
 Hybrid TM, SLE, Compiler Optimization



Craig Zilles Transact `07 3

Hardware Atomicity for Reliable 
Software Speculation [ISCA 2007] 

 Greatly simplifies implementing speculative compiler optimizations
 e.g., we (correctly) implemented partial inlining in 6 hours
 Must identify un-handled cases, but not generate fix-up code

 Allows pushing the bounds of compiler speculation

VS.



Craig Zilles Transact `07 4

Is “best effort TM” enough for TM?

 Dealing with best effort limitations: HyTM
 HTM for small transactions (hopefully common)
 STM for large/long running transactions

 HyTM Challenge: HW not violating SW isolation
 HW transactions snoop STM metadata

• Adds overhead to HW transactions
• Single-thread slowdown vs. locks

Can we eliminate this overhead?



Craig Zilles Transact `07 5

What if we had a “very cheap fine-grain 
memory protection mechanism”?

 STM protects data it accesses:
 written data: read + write protects
 read data: write protects
 STM transactions locally disable protection



Craig Zilles Transact `07 6

What if we had a “very cheap fine-grain 
memory protection mechanism”?

 STM protects data it accesses:
 puts data in “transactional partition”

 HW transactions “fault” if access STM data
 Do not need to access STM metadata
 Can run full speed; no single-thread overhead

 Does not dictate STM’s semantics

STM DATA

OTHER DATA

memory

protection


