
1

Dissecting Transactional Executions
in Haskell

Cristian Perfumo+*, Nehir Sonmez+*, Adrian Cristal+,
Osman S. Unsal+, Mateo Valero+*, Tim Harris#

+Barcelona Supercomputing Center
*Computer Architecture Department, UPC, Barcelona, Spain

Microsoft Research Cambridge

2

Motivation

• Haskell is a great tool to try out ideas on
transactional memory.

• Need more detail than just execution time.
– Big rollback rate?
– Time in the commit phase?
– Overhead of the transactional runtime?
– Relationship between number of reads and readset?

Writes? Transactional read-to-write ratio?
– Trend with more processors?

• Dearth of transactional benchmarks for Haskell.

3

Contributions

• A Haskell STM application suite that can
be used as a benchmark by the research
community.

• Addition of detailed transactional data
gathering module in Haskell STM.

• Based on the collected raw data, new
metrics are derived.

• These metrics can be used to characterize
STM applications.

4

Background in Haskell STM

• Pure and lazy functional programming language.
• Write-buffer and lazy conflict detection.
• Object-based conflict detection.
• The IO world and the STM world are separated

thanks to monads.
– Tvars can’t be accessed non-transactionally

Originally it was slide #4

5

Applications in the suite

• Some are developed by us
and some by developers
that don’t know about the
internals of the (underlying)
STM implementation .

• Different lengths.
• Different number of atomic

blocks.

6

Gathered statistics

• For committed and aborted transactions:
– Number of transactions.
– Work time.
– Commit phase time.
– Number of transactional reads and writes.
– Readset and writeset lengths (in objects).

• Histogram of rollbacks

7

Execution time
• 8 cores (four dual-core

SMP) Intel Xeon 5000 3.0
GHz processors.

• 4MB L2 cache/processor.
• 16GB of total memory.
• Exactly as many threads

as physical cores.
• All of the reported results

are based on the average
of five executions.

8

Execution time (cont.)

• Normalized to one-core configuration
execution times.

• They allow us to see scalability.

9

Inside and outside a transaction

• The more the time inside a transaction, the more
the gain in performance by optimizing STM
runtime. (Amdahl’s Law)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Blockw orld Gcd LL10 LL100 LL1000 LLUnr10 LLUnr100 LLUnr1000 Prime SingleInt Sudoku Tcache Unionf ind

% out a Tx

% in a Tx

10

Stats: Rollback rate

• Allows classifying applications in different
groups.

• Accordingly to the group they belong to, the
STM runtime can implement different
optimizations.

11

Stats: Rollback histograms

• Observation: a transaction can be rolled
back several (10+) times.

• Therefore: STM can incorporate
mechanisms to ensure fairness

12

Stats: Wasted work

• Wasted work:
()

() ()committedTabortedT

abortedT

+

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Blockworld Gcd LL10 LL100 LL1000 LLUnr10 LLUnr100 LLUnr1000 Prime SingleInt Sudoku TCache Unionfind

% Useful

% Wasted

13

Stats: Readset size and aborts

• Some apps have transactions with various
readset sizes.

• The bigger the readset, the bigger the probability
of rollbacks (Intuition confirmed!)

8 cores
()
()committedreadsetAVG

abortedreadsetAVG

_

_

14

Conclusions

• Applications’ internal behavior was analyzed
• When atomic is used for “non-parallelizable”

problems, high rollback rates and “late commits”
appear.

• Foresight: A smart (dynamic) runtime system
could avoid some of the problems that
appeared.

• Future work: expand the application set and run
it with more cores (128).

15

Thank you!

Questions?
Now or later to cristian.perfumo@bsc.es

16

Stats: Commit phase overhead

• Commit Overhead

